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Abstract

An algorithm for calculating generalized fractal dimension of a time series using the gen-
eral information function is presented. The algorithm is based on a strings sort technique and
requires O(N log, N) computations. A rough estimate for the number of points needed for the
fractal dimension calculation is given. The algorithm was tested on analytic example as well
as well-known examples, such as, the Lorenz attractor, the Rossler attractor, the van der Pol
oscillator, and the Mackey—Glass equation, and compared, successfully, with previous results
published in the literature. The computation time for the algorithm suggested in this paper is
much less than the computation time according to other methods. (© 1999 Elsevier Science
B.V. All rights reserved.
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1. Background

In the recent decades the study of chaos theory has gathered momentum. The com-
plexity that can be found in many physical and biological systems has been analyzed
by the tools of chaos theory. Characteristic properties, such as the Lyapunov expo-
nent, Kolmogorov entropy and the fractal dimension (FD), have been measured in
experimental systems. It is fairly easy to calculate signs of chaos if the system can be
represented by a set of non-linear ordinary differential equations. In many cases it is
very difficult to build a mathematical model that can represent sharply the experimental
system. It is essential, for this purpose, to reconstruct a new phase space based on the
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information that one can produce from the system. A global value that is relatively
simple to compute is the FD. The FD can give an indication of the dimensionality and
complexity of the system. Since actual living biological systems are not stable and the
system complexity varies with time, one can distinguish between different states of the
system by the FD. The FD can also determine whether a particular system is more
complex than other systems. However, since biological systems are very complex, it is
better to use all the information and details the system can provide. In this paper we
will present an algorithm for calculating FD based on the geometrical structure of the
system. The method can provide important information, in addition, on the geometrical
of the system (as reconstructed from a time series).

The most common way of calculating FD is through the correlation function, C,(r)
(Eq. (6)). There is also another method of FD calculation based on Lyapunov exponents
and the Kaplan—Yorke conjecture [1] (Eq. (27)). However, the computation of the
Lyapunov exponent spectrum from a time series is very difficult and people usually try
to avoid this method!. The algorithm which is presented in this paper is important,
since it gives a comparative method for calculating FD according to the correlation
function. The need for an additional method of FD calculation is critical in some types
of time series, such as EEG series (which are produced by brain activity), since several
different estimations for FD have been published in the literature [2—-7]. A comparative
algorithm can help to reach final conclusions about the FD estimate for the signal.

A very simple way to reconstruct a phase space from single time series was suggested
by Takens [8]. Giving a time series x;, i = 1,...,N,, we build a new n-dimensional
phase-space in the following way:

Yo = {x(t0),x(to + 1), x(to + 27),...,x(ts + (n — 1)1)},

—

V1 =Ax(t1),x(t1 + 1), x(t1 + 27),...,x(t; + (n — D)1)},
Pnv = {x(ty ). x(ty + 1) x(ty + 27),....x(ty + (n — D7)},

ti=ty+iAt, t=mAt, N=N,—(n—1)m, m=integer, (1)

where At¢ is the sampling rate, T corresponds to the interval on the time series that
creates the reconstructed phase-space (it is usually chosen to be the first zero of the
autocorrelation function (discussions about the choose of 7 see for example [9-11], or
the first minimum of mutual information [12]; in this work we will use m instead of
as an index), and N is number of reconstructed vectors. For ideal systems (an infinite
number of points without external noise) any 7 can be chosen. Takens proved that
such systems converge to the real dimension if n>2D + 1, where D is the FD of the
real system. According to Ding et al. [13] if n>D then the FD of the reconstructed
phase-space is equal to the actual FD.

! The basic difficulty is that for high FD there are some exponents which are very close to zero; one can
easily add an extra unnecessary exponent that can increase the dimensionality by one; this difficulty is most
dominant in Lyapunov exponents which have been calculated from a time series.
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In this paper we will first (Section 2) present regular analytic methods for calculat-
ing the FD of a system (generalized correlation method and generalized information
method). An efficient algorithm for calculating the FD from a time series based on
string sorting will be described in the next section (Section 3). The following step is
to check and compare the general correlation methods with the general information
method (see Eq. (2)) using known examples (Section 4). Finally, we summarize in
Section 5.

2. Generalized information dimension and generalized correlation dimension
2.1. Generalized information dimension

The basic way to calculate an FD is with the Shannon entropy, /;(¢)? [14], of the
system. The entropy is just a particular case of the general information which is defined
in the following way [15]:

1 M)
i=1

where we divide the phase-space to M (¢e) hypercubes of edge ¢. The probability to find
a point in the ith hypercube is denoted by p;. The generalization, ¢, can be any real
number; we usually use just an integer g. When we increase g, we give more weight
to more populated boxes, and when we decrease ¢ the less occupied boxes become
dominant. For ¢ =1, by applying the I’Hospital rule, Eq. (2) becomes
M(e)
LE)==)Y plnp, 3)
i=1
where [;(¢) is referred to also as the Shannon entropy [11] of the system. The definition
of the general information dimension (GID) is

D=~ lim = =, (4)

for N — oo (N is the number of points). However, in practice, the requirement ¢ — 0
is not achieved, and an average over a range of ¢ is required.

In some cases, this average is not sufficient because several values of /,(¢) can be
computed for the same ¢. To illustrate this we use a 2D Cantor set, presented in Fig. 1.
We start from a square. From 9 sub-squares we erase the 5 internal squares. We
continue with this evolution for each remainder square. This procedure is continued, in
principle, to infinity. The FD, Dy, of the 2D Cantor set is In4/In 3 (when ¢=0, I is just
the number of nonempty squares and Dy is the logarithmic ratio between nonempty
squares and &, where the square edge is normalized to one) as shown in Fig. 1.

2 Generally, one has to add a superscript, 1, the embedding dimension in which the general information is
calculated. At this stage we assume that the embedding dimension is known.
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—— 9 squares grid
16 squeres grid

Fig. 1. 2D Cantor set. Two different positions of the two-dimensional grid, give completely different FD.

However, it is possible to locate the 2D grid in such a way that there are 16 nonempty
squares, giving rise to Dy = 21In4/In3, twice the time of the real FD of the system.
This illustration shows that when ¢ is not small, different positions of the grid can
lead to different FDs. In this case it is clear that we have to locate the grid in such
a way that minimum squares will be nonempty (it is easy to show that this claim for
the minimum is true for every ¢). In general, we can say that one must locate the
hyper-grid so that the general information is minimum:

1 M(e)
I,(¢) = min In J2 R (5)

This proper location of the hyper-grid reduces the influence of surface boxes that are
partly contained in the attractor. The requirement of a minimum gives a good estimate
for the GID when ¢ is not small.

2.2. Generalized correlation dimension

In 1983 Grassberger and Procaccia presented a new method for calculating D, [16].
According to this method, it is possible to calculate the dimension just from the cor-
relation between different points, without direct connection to the phase space, and
therefore easy to use. Some years later, a more general correlation function was sug-
gested by Pawelzik and Schuster [17]:

g1 =D

> 00—k -5 : (6)

1 j=1

1
N

7

Cq(’”) =

N

=z =
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where N is the number of points, X; is a point of the system and ¢ is the generalization
parameter. ©(x) is the Heaviside step function

0 when x<0,
1 whenx > 0.

O(x) = { (7
According to this method we have to calculate the generalized probability to find any
two points within a distance ». This method is some kind of integration on Eq. (2).
It is not necessary to compute the real distance (e.g. ||¥|| = v/x} + -+ +x2 where n
is the phase-space dimension); it is equivalent to calculating the probability to find
any two points in a hyper-box where one of them is located in the middle (e.g.
|IX]| = max; <;<n |x;:| [18]). It is easier to compute the last possibility. For the special
case of ¢ =1, Eq. (6) can be written (by applying the 1’Hospital’s rule [12]) as

N N
1 1 L
lnCl(r):NZln NZ@(r—pc,«—le) . (8)
i=1 j=1

The generalized correlation dimension (GCD) has a similar definition to the GID
(Eq. (4)):

InC,
D= tim 2G)

N—o0;r—0 lnr

)

Both GID and GCD methods should give identical results. The GCD method is easy
use and gives smooth curves. On the other hand, the method requires O(N?) compu-
tations 3. Also, the smooth curves due to averaging over all distances are associated
with a loss in information based on the attractor structure.

As we pointed out earlier, we usually have a limited number of points, forcing
us to calculate dimension at large ». Thus, an error enters the calculation of FD. The
minimum number of points needed for the FD calculation has been discussed in several
papers and different constraints suggested (for example [20,21]). In this paper we will
use the Ny, of the Eckmann and Ruelle [21] constraint:

21 N
< 0810

2 ) (10)
lOglo(%)
under the following conditions:
p=;<l, INYP > 1 (11)
0

with reference to the Grassberger and Procaccia method. Here, ry is the attractor diam-
eter, and 7 is the maximum distance that gives reliable results in Eq. (6) when g =2.
The normalized distance, p, must be small because of the misleading influence of the
hyper-surface. A p too large (close to 1) can cause incorrect results since we take

31f one looks just at small » values, the method requires just O(N) computations [18].
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into account also hyper-boxes that are not well occupied because the major volume is
outside the attractor.

However, if one has a long time series, then it is not necessary to compute all N2
relations in Eq. (6). One can compute Eq. (6) for certain reference points such that
the conditions in Eq. (11) will still hold. Then, Eq. (6) can be written as follows:

1/(g=1)

1 Nrey 1 Naata -1
C =|— _ O(r— |xis — X; s 12
q(’”) Nref ; Ndata —2w—1 ; (7" ‘x le) ( )

where

Ndata
Nref

For each reference point we calculate the correlation function over all data points. The
step for the time series is s. To neglect short time correlation one must also introduce
a cutoff, w. Usually w =~ m (m corresponds to the 7 from (1)) [22]. The number of
distances |x; — X;| will be P = Nyer(Ngaa — 2w — 1) instead of N2. The new form of
Eq. (10) is

li-s—j| >w, s:{

1 P
&01 , (13)
IOglo(;)
and the conditions (11) become
P=L<l, 1PpP>1. (14)
ro

Although we discussed here a minimum number of data points needed for the dimension
calculation, one must choose p such that the influence from the surface is negligible
(the growth of the surface is exponential to the embedding dimension). That gives us
an upper limit for p. On the other hand, in order to find the FD we must average over
a range of r, giving us a lower limit for p; therefore Np, is determined according to
the lower limit, giving rise to larger amount of points.

3. Algorithm
3.1. Background

In this section we describe an algorithm for GID method*. The algorithm is based
on a string sort and can be useful both for GID and GCD methods.

In previous works there have been several suggestions to compute DIG [23-28].
The key idea of some of those methods [25-27] is to rescale the coordinates of each
point and to express them in binary form. Then, the edge-box size can be initialized
by the lowest value possible and then it doubles on each step. Those methods require

4 Computer programs are available at http://faculty.biu.ac.il/~ ashkenaz/FDprog).
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O(N log N) operations. Another method [24] uses a recursive algorithm to find the FD.
The algorithm starts from a d dimensional box which contains all data points. Then,
this box is divided into 29 sub-boxes, and so on. The empty boxes are not consid-
ered, and those which contain only one point are marked. This procedure requires only
O(N) operations (for a reasonable series length this fact does not make a significant
difference [24]).

As pointed out in Ref. [24], in spite of the efficiency of the above algorithm (speed
and resolution), it is quite difficult to converge to the FD of a high dimensional system.
I was aware to this difficulty, and suggested a smoothing term to solve it (as will be
explained in this section). Basically, we allow any choice of edge length (in contrast
to power of 2 edge size of the above methods) and optimal location of the grid is
searched. This procedure leads to convergence to the FD.

One of the works that calculates GID was done by Caswell and Yorke [23]. They
calculate FD of 2D maps. They have proved that it is very efficient to divide the phase
space into circles instead of squares in spite of the neglected area between the circles.
However, this approach is not suitable for higher phase-space dimensions. The reason
might be that the volume of the hyper-balls compared to the entire volume of the
attractor decreases according to the attractor dimension. In this way we lose most of
the information that is included in the attractor, since the space between the hyper-balls
is not taken into account. It is easy to show that the ratio between the volume of the
hyper-sphere with radius R, Vs, and the volume of the hyper-box with edge size of
2R, Vp (the sphere is in the box), is

e e (3 (15)
Ve(2n) 2-4-6---2n\2/) °

for even phase space dimension, and,
Vs2n—1) 1 <E>n—1 (16)
Vg(2n—1) 1-3-5---Q2n—1)\2 ’

for odd phase space dimension. It is clear that the ratios (15) and (16) tend to zero
for large n.

3.2. Algorithm

Let us call the time series x(i). The form of the reconstructed vector, Eq. (1),
depends on the jumping, m, that creates the phase space. We order the time series in
the following way:

x(0),x(m),x(2m),...,x(({ — )m),
x(1),x(1 +m),x(1 +2m),...,.x(1 + ([ — 1)m),

x(m—=1),x(m—=14+m),x(m—1+4+2m),....x(m —1+{ —1)m), (17)
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where / = |N,/m]|. Let us denote the new series as X; (i =0,...,(Im — 1); we lose
N, — Im data points). If we take n consecutive numbers in each row, we create a
reconstructed vector in the n dimensional embedding dimension.

At this stage, we fit a string (for each ¢) to the number series Eq. (17). One character
is actually a number between 0,...,255, and thus, it is possible to divide one edge
of the hyper-box to 255 parts (we need one of the 256 characters for sign). The
correspondence is applied in the following way. We search for the minimum value in
X; series, and denote it as Xy, (similarly, we denote the maximum values as X, ). The
corresponding character to x; is

;= { )E’_)E“““J . (18)

€
The value of ¢ is in the range

(fmax - )Zmin)
255
If we take now n consecutive characters (string), we have the “address” of the hyper-
cube in which the corresponding vector is found.
Let us represent the string as follows:

<8<(imax_fmin)~ (19)

So=YoV1---Vn—1> St1=V1i---VnseosSl—n = YVi—n---Vi—1>»

Sl—nt1 = Vi Vitn—1s-->82(l—n)+1 = V2i—n--- V2I—1 5

Sm—1)I—nt1) = Ym—1) ++- Yim—D)l4n—Ts++>Sm(l—nt1)=1 = Ymi—n--- Ymi—1 .  (20)

Obviously, we do not have to keep each string s; in the memory; we can keep just
the pointers to the beginning of the strings in the character series, y;. The number of
vectors/strings is m(/ —n + 1).

As mentioned, each string is actually the address of a hyper-box (for which the
vector is contained) in a hyper-grid that covers the attractor. The first character is the
position of the first coordinate of the hyper-box on the first edge of the hyper-grid.
The second character denotes the location on the second edge, and so on. We actually
grid the attractor with a hyper-grid so that any edge in this grid can be divided into
255 parts. Thus the maximal number of boxes is 255", where n is the embedding
dimension (there is no limit for n). Most of those boxes are empty, and we keep just
the occupied boxes in the hyper-grid.

The next step is to check how many vectors fall in the same box, or, in other
words, how many identical “addresses” there are. For this we have to sort the vector
that points to strings, s;, in increasing order (one string is less than the other when the
first character that is not equal is less than the parallel character; e.g., ‘abcce’ < ‘abeda’
since the fourth character in the first string, ¢, is less then the fourth character in the
second string, d). The above process is illustrated in Fig. 2.
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X X Yi

0.3 0.3 a S, =ab
0.1 0.5 [——=| b | S,=bb
0.9 0.6 |—=| b S, =bc

sorting

0.5 0.8 |—=| ¢ /’\

0.2 0.1 |[——=| a S, =aa

| E— | | —)

=ab s.b. s.

o

0.6 0.7 |————=| b | S;=ba

s.b. = same box

0.4 0.9 [—=| ¢ S, =ca

0.8 0.0 |——=| a | Sg=ab
0.1 0.4 |——=| b | Sy=bc
1.0 1.0 c

Fig. 2. Illustration of the GID algorithm. We take series containing 12 data points between zero and one.
The parameter values are: m =3, ¢ = 0.4 and n = 2. For simplicity, we assume that the lowest character is

)

a.

The most efficient way to sort N elements is the “quick sort” [29] (There is other sort
algorithms that require even less computation (O(N)) such as radix sorting [30,31]).
It requires just O(N log, N) computations. However, this sort algorithm is not suitable
for our propose, since after the vector is sorted, and we slightly increase the size of
the edge of the hyper-box, &, there are just a few changes in the vector, and most of it
remains sorted. Thus, one has to use another method which requires less computations
for this kind of situation, because the quick sort requires O(NV log, N) computations
independently of the initial state. The sort that we used was a “shell sort” [29], which
requires O(N*?) computations in worst case, around O(N>4) computations for random
series, and O(/V) operations for an almost sorted vector. Thus, if we compute the infor-
mation function for m different ¢ values O(N log, N + mN') operations will be needed.

After sorting we count how many identical vectors there are in each box. Suppose
that we want to calculate GID for embedding dimensions 7y, . . . #max, and generaliza-
tions Gmin - - - gmax- We count in the sorted pointers vector identical strings containing
nmax Characters. Once we detect a difference we know that the coordinate of the box
has changed. We detect the first different location. A first difference in the last char-
acter of the string means that it is possible to observe the difference just in the n'
embedding dimension, and in lower embedding dimension it is impossible to observe
the difference. If the first mismatch is in the nth character in the string, then the box
changes for embedding dimensions higher than or equal to n. We hold a counter vector
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for the different embedding dimensions, and we will assign zero for those embedding
dimensions in which we observed a change. At this stage, we have to add to the results
matrix the probability to fall in a box according to Egs. (2), (3). We continue with
this method to the end of the pointer vector and then print the results matrix for the
current ¢ and continue to the next e.

It is easy to show that one does not have to worry about the range of the generaliza-
tion, g, because for large time series with 10° data points the range of computational
q’s is from —100 to 100.

The method of string sorting can be used also for calculating GCD. Our algorithm
is actually a generalization of the method that was suggested by Grassberger [18].
The algorithm is specially efficient for small » (»r < (1/10)D where D is the attractor
diameter) and it requires O(N log, N) computations instead of O(N?) computations
(according to the Grassberger algorithm it requires O(N) computations instead O(N?)
computations).

The basic idea of Grassberger was that for small ry,x values, where rp,, is the
maximum distance for which the correlation function is computed, one does not have
to consider distances larger than ry,y, distances which require most of the computation
time. Thus, it is enough to consider just the neighboring boxes (we use the definition
distance ||X|| = max;<;<, |x;| in Eq. (6)), for which their edge is equal to rmax, since
distances greater than rp,x are not considered in Eq. (6). If, for example, one wants
to calculate the correlation of » <rp., = (1/10)D (in accordance with conditions (10)
(11) (13) (14)), then (in 2D projection) it is enough to calculate distances in 9 squares
instead 100 squares (actually, it is enough to consider just 5 squares since Eq. (6) is
symmetric). According to Grassberger, one has to build a matrix in which any cell
points to the list of data points located in it. It is possible to generalize this method
to a 3D projection matrix.

The generalization to higher dimensions can be done very easily according to the
string sort method. As a first step one has to prepare a string y; (18), which is the
same operation as gridding the attractor by a hyper-grid of size ». The next step is to
sort strings s; (20). For each reference point in Eq. (12) the boxes adjoining the box
with the reference point in it should be found. Now, it is left to find the distances
between the reference point to other points in neighboring boxes (we keep the pointer
vector from string y; to the initial series and vice versa), and calculate the correlation
according to Eq. (12).

The algorithm described above is especially efficient for very complex systems with
high FD. For example, for EEG series produced by brain activity, it is well known
(except for very special cases such as epilepsy [19]) that the FD is, at least, four.
In this case npni, =4, and instead of calculating distances in I* boxes (I is the ratio
between the attractor diameter and r) it is sufficient to calculate distances in 3* = 81
boxes. If, for example, / =9, just 3*/9* = 1/81 distances must be computed (or even
less if one takes into account also the symmetry of Eq. (12)). In this way, despite
the O(N log, N') operations needed for the initial sort, one can reduce significantly the
computation time.
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3.3. Testing of GID algorithm and number of data points needed for calculating
GID

Let us test the algorithm of GID on random numbers. We create a random series
between 0 to 1 (uniform distribution). We then reconstruct the phase-space according
to Takens theory (1). For any embedding dimension that we would like to reconstruct,
the phase space we will get a dimension that is the same as the embedding dimension,
since the new reconstructed vectors are random in the new phase space, and hence fill
the space (in our case, a hypercube of edge 1).

For embedding dimension 1 (a simple line), if the edge length is ¢, then the proba-
bility to fall on any edge is also &. The number of edges ¢ that covers the series range
[0,1) is |1/¢]. The probability to fall on the last edge is (1 mode¢) (the residue of the
division). For generalization g one gets

M(z)
Zp?z{l/sja"—f—(lmods)q. (21)
i=1

For embedding dimension 2, one has to square (21) since the probability distribution
on different sides is equal. For embedding dimension n Eq. (2) becomes

I,(e) = ! qln[[l/.sjs" + (1 mod ¢)?]". (22)

1 —
Opening Eq. (22) according to the binomial formula will give all different combinations
for the partly contained boxes. Notice that this grid location fulfills requirement (5)
for the minimum information function.

In Fig. 3 we present —/(¢), both, according to the GID algorithm, and according
to Eq. (22). There is full correspondence between the curves, and, as we find, it is
possible to see that the slope (dimension) in the embedding dimension # is equal to the
dimension itself. When —/,(¢) =~ —10, the curves separate. There is lower convergence
(when —I(¢) = —12.5) since the edge is too small, and the number of reconstructed
vectors is equal to the number of nonempty boxes.

The “saw tooth” that is seen in Fig. 3 is caused by partial boxes that fall on the
edge of the hyper-box. The “saw tooth” appears when there is an integer number of
edges that covers the big edge. The slope in the beginning of every saw tooth is equal
to zero (that comes from the extremum condition of (22)). The “saw teeth” become
smaller when ¢ decrease, since the relative number of boxes that fall on the surface in
small compared to the entire number of boxes.

It is possible to calculate roughly the number of points needed for the dimen-
sion calculation in a homogeneous system. The separation point of Fig. 3 is approx-
imately around —/(¢) =~ —10, for every embedding dimension. Thus, the number of
hyper-boxes at this point is e!® (since —10 = In(M(&) p*) where p ~ 1/M(e) in our
example). The graph comes to a saturation around —/,(¢) ~ —12.5, giving rise to e'®
data points. The number of points per box is just, e ~ 12. Thus, generally, when
there are less then 12 points per box, the value of /,(¢) is unreliable. Let us denote the
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0.0

—— algorithm

_IQ(E)

-10.0 7

-15.0 L i L . L I
5. -4.0 -3.0 -2.0 -1.0 0.0
Ine

Fig. 3. Dimension calculation for random series by GID algorithm and by the theory.

minimum edges needed for the calculation as mmin (Mmin is just |1/¢], and thus one
can define a lower value for ¢). The number of hyper-boxes in embedding dimension
n is m . . Thus, the minimum number of points needed for computing the FD of an
attractor with an FD D, is

N =12mP. . (23)

min
This estimate is less than what was required by Smith [20] (42”) and larger then the
requirement of Eckmann and Ruelle [21] (if we take, for example, my, = 1/p = 10
then according to Eq. (10), 10°/2 points is needed and according to Eq. (23), 12 x 107
points is needed). However, as we pointed out earlier, Eq. (23) is a rough estimation,
and one can converge to a desired FD even with less points.

4. Examples

In this section we will present the results of both GID and GCD on well-known
systems, such as the Lorenz attractor and the Rossler attractor. The FD of those re-
sults are well known by various methods, and we will present almost identical results
achieved by our methods. In the following examples, we choose one of the coordinates
to be the time series; we normalize the time series to be in the range of 0,..., 1.

4.1. Lorenz attractor
The Lorenz attractor [32] is represented by a set of three first-order non-linear

differential equations:

dx

o =0 =),
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d

d—fz—xz—i—rx—y,

d

—dj =xy—bz. (24)

Although it is much simpler to find the FD from the real phase-space (x, y,z), we prefer
the difficult case of finding the FD just from one coordinate to show the efficiency of
Takens theorem. We choose the zth component to be the time series from which we
reconstruct the phase space (the parameter values are: ¢ = 16, r =45.92, b=4). We
took 32768 data points and m = 6 (the jumping on the time series which creates the
reconstructed phase space; the time step is Af=0.02). The generalization that we used
was ¢ =2. The embedding dimensions were n=1...7. The FD of the Lorenz attractor
is 2.07 ([33] and others).

In Fig. 4 we show the results of GCD and GID methods. As expected from the GCD
curves, in Fig. 4a we see very smooth curves, for which the slopes (in the center parts
of the curves) converge approximately to dimension 2.08. In Fig. 4b we see some
jumping in the GID curves. It can be clearly seen that for small & one cannot see
the jumping while for large ¢ the non-monotonicity is much stronger. This is typical
behavior for GID curves; large ¢ (or larger box edge) reflects more variability of
—I>(¢) to the hyper-grid location. To smooth the curves in order to get reliable results,
it is necessary to find a proper location of the hyper-grid that gives minimum general
information 7,(¢) (or maximum —/,(g)). We have performed seven comparisons to
find that proper location. As for GCD, we also fitted approximate linear curves (dashed
lines) which lead to dimension 2.09 (Fig. 4¢), and thus agree well with previous results.
To make sure of the validity of the dimension results we add here (Fig. 4d) graphs
of successive slopes of curves in Fig. 4c, and conclude with dimension results versus
embedding dimension according to several generalizations (¢ = 2,...,5, Fig. 4e). In
both graphs, the approximate dimension is 2.03.

4.2. Rossler attractor

Let us examine briefly our second example, the Rossler attractor [34]. The differential
equations which generate the trajectory are

dr

dt_ Y

d

d—);:x+ay, (25)
d

d—j:bJrz(xfc).

The parameter values are: a=0.15, b=0.2, ¢=10. The time step is t=0.2 and m=8.
We use the y direction to be the time series. The number of data points is N = 16384.
In Fig. 5 we show the results of GID method of embedding dimension n=1,...,7.
There are many more discontinuities in the unsmoothed curves (Fig. 5a) compared to
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Fig. 4. Correlation and information curves of reconstructed Lorenz attractor. (a) Correlation curves; the esti-
mate slopes are added. (b) Unsmoothed information curves. (¢) Smoothed information curves; the estimated
linear curves (dashed line) and their slope is added. (d) The slopes of —i5(¢) (Fig. 4c). The dashed line
represents the estimated FD. (e) FD of Lorenz attractor for different embedding dimensions, n, and for

—l,(e)
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Fig. 4. Continued.

the Lorenz attractor, reflecting a sensitivity to the grid location. The smooth curves
in Fig. 5b are produced after 20 comparisons. Again, we approximate the slopes of
central linear part of the curves in two different ways and find dimension 2.05, which
is in agreement with dimension 2.03 calculated by the use of the GCD method, and
through the Lyapunov exponent [33].

4.3. Van der Pol oscillator

Another example that will be tested is the van der Pol oscillator [35,36]. This system
was investigated in the beginning of the century in order to find a model for the heart
beat variability (among other uses of this equation). The behavior of the system (with
parameter values that will be used) is chaotic although it looks quite periodic. Thus,
we expect a smooth behavior of the geometrical structure of the attractor. The equation
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Fig. 5. (a) Unsmoothed graphs of Rossler attractor. (b) Smoothed information graphs; the FD estimation is
added.

of motion is
X —o(l —x*) +kx= fcosQt . (26)

The parameter values are: Q2 =2.446, « =5, k=1 and f = 1. Habib and Ryne [37]
and others [38] have found that the Lyapunov exponents of the system are A; ~ 0.098,
42 =0 and /3 =~ —6.84, and thus, according to the Kaplan and Yorke formula [1],
S A, 0098

+ 77 2014, (27)

D, = ~
L 6.84

where j is defined by the condition that 3/ 4; >0 and 3" J; < 0. The fact that
the system has a “periodic” nature is reflected in this very low FD (as known, the
minimal FD of a chaotic system is 2).
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Fig. 6. van der Pol oscillator: the smoothed information graphs, —/(¢); the estimated FD is added (dashed
lines with their corresponding slope).

In Fig. 6 we present the calculation of D; which we suppose to be close to D;. The
approximate slope leads to an FD of D; ~ 2.02, which is in good agreement with D;.
Notice that minimization of /;(¢) did not succeed for large ¢ values although we used
7 grid comparisons; that fact can cause a small error in the slope estimation, since the
slope is usually determined from the central part of the curves.

4.4. Mackey—Glass equation

Up to now we examined the relation between GID and GCD on systems with finite
dimension, for which their FD can be calculated by using methods based on the true
integrated vector of the system. A class of systems which is more close to reality are
systems with infinite dimensional dynamics. A delay differential equation of the type

dx(¢)

Sdr
belongs to this class. In order to solve this kind of equation, one needs to initiate x(z)
in the range 0<t<(7, and then, by assuming that the system can be represented by a
finite set of discrete values of x(), it is possible to evaluate the system dynamics step
by step. The solution is considered to be accurate if one converges to the same global
properties, such as Lyapunov exponents and FD, by different methods [39], and without
dependence on the number of intervals to which the function is divided [16]°. Delay

F(x(t),x(t — 1)) (28)

5 Note that the dynamics which is calculated by the use of different methods, or, equivalently, by a different
number of discrete integration intervals, does not have to behave identically. In fact, one can expect similar
dynamics if the system is not chaotic, but, if the system is chaotic, it is sensitive to initial conditions and to
the integration method, and even moreover, to integration accuracy [40,41]. However, the global properties of
a system converge to the same values, by using different integration methods and using different integration
accuracy [41].
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Fig. 7. Mackey—Glass equation: (a) The GCD graphs. One notices two regions of parallel curves, which
lead to different FDs. (b) The successive slopes of a. (¢) The GID graphs. (d) The successive slopes of c.

equations, such as Eq. (28), describe systems in which a stimulus has a delay response.
There are many practical examples from control theory, economics, population biology,
and other fields.

One of the known examples is the model of blood cell production in patients with
leukemia, formulated by Mackey and Glass [42]:

ax(t — 1)
——— — bx(1) . 29
e —oF PO (29)
Following Refs. [16,39], the parameter values are: a=0.1, »=0.2, and c=10. We confine
ourselves to 1 =30.0. As in Ref. [16], we choose the time series to be {x(¢),x(¢ + 1),

X)) =
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0.0
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x(t+21),...},° as well as the integration method which is described in this reference.
The length of the time series is N = 131072.

The FD (D,) calculation of the Mackey—Glass equation is presented in Fig. 7. The
embedding dimensions are, n = 1,...,9. In Fig. 7a, the correlation function, Cy(7) is
shown. One notices that there are two regions in each one of which there is convergence
to a certain slope. These regions are separated by a dashed line. In Fig. 7b, the average
local slope of Fig. 7a is shown. One can identify easily two convergences, the first

61In fact, the common procedure of reconstructing a phase space from a time series is described in Eq. (1).
According to this method, one has to build the reconstructed vectors by the use of a jumping choice m
which is determined by the first zero of the autocorrelation function, or the first minimum of the mutual
information function [8]. However, we used the same series as in Ref. [16] in order to compare results.
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in the neighborhood of ~ 3.0, and the second around ~ 2.4. Thus, there are two
approximations for the FD, D,, pointing to two different scales. The first approximation
is similar to the FD that was calculated in Ref. [16]. However, the GID graphs which
are presented in Fig. 7c and 7d lead to an FD, D, ~ 2.45, which seems to be very
close to the second convergence of Fig. 7b. Notice that the convergence to D, ~ 2.4
appears, in both methods, in the neighborhood of the same box size (~ 2.1).

5. Summary

In this work we develop a new algorithm for calculation of a general type of infor-
mation, /,(n), which is based on string sorting (the method of string sort can be used
also to calculate the conventional GCD method). According to our algorithm, one can
divide the phase space into 255 parts in each hyper-box edge. The algorithm requires
O(N log, N) computations, where N is the number of reconstructed vectors. A rough
estimate for the number of points needed for the FD calculation was given. The algo-
rithm, which can be used in a regular system with known equations of motion, was
tested on a reconstructed phase space (which was built according to Takens theorem).
The general information graphs have non-monotonic curves, which can be smoothed
by the requirement for minimum general information. We examine our algorithm on
some well known examples, such as, the Lorenz attractor, the Rossler attractor, the van
der Pol oscillator and others, and show that the FD that was computed by the GID
method is almost identical to the well-known FDs of those systems.

In practice, the computation time of an FD using the GID method, was much less
than for the GCD method. For a typical time series with 32768 data points, the com-
putation time needed for the GCD method was about nine times greater than the
computation time of GID method (when we do not restrict ourselves to small r values
and we compute all N? relations). Thus, in addition to the fact that the algorithm
developed in this paper enables the use of comparative methods (which is crucial in
some cases), the algorithm is generally faster.
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