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Scaling laws in earthquake memory for interevent times and distances
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Earthquakes involve complex processes that span a wide range of spatial and temporal scales. The limited
earthquake predictability is partly due to the erratic nature of earthquakes and partly due to the lack of
understanding of the underlying mechanisms of earthquakes. To improve our understanding and possibly the
predictability of earthquakes, we develop here a lagged conditional probability method to study the spatial and
temporal long-term memory of interevent earthquakes above a certain magnitude. We find, in real data from
different locations, that the lagged conditional probabilities show long-term memory for both the interevent
times and interevent distances and that the memory functions obey scaling and decay slowly with time, while, at
a characteristic time (crossover), the decay rate becomes faster. We also show that the epidemic-type aftershock
sequence model, which is often used to forecast earthquake events, fails in reproducing the scaling function of
real catalogs as well as the crossover in the scaling function. Our results suggest that aftershock rate is a critical
factor to control the long-term memory.
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I. INTRODUCTION

The mechanisms of earthquakes are still not fully under-
stood and remain a great scientific challenge [1]. Still, there
are some well known empirical laws regarding earthquakes:
(i) the Gutenberg-Richter law, which determines the relation
between the number of earthquakes N in a given region and
a time period and the magnitude m as N (m) ∝ 10−bm (b ≈ 1)
[2], and (ii) the Omori law, according to which the rate of
triggered events is ∼t−p, where t is the time since a triggering
earthquake (p ≈ 1 for large earthquakes) [3].

An important characteristic of some complex systems is
the scaling behavior [4] where earthquakes have been found
to follow scaling behavior [5–7]. Using the Gutenberg-Richter
law and the exponent of the Omori law, Bak et al. [8] found
that the probability density function (PDF) of interevent times
for different magnitude thresholds and different spatial grid
sizes can be rescaled into a single function. This suggests
a universal scaling law for earthquakes. Corral [9] extended
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this scaling to different regions and introduced a more general
approach. Specifically, he introduced a unified function f (x)
to describe the distribution of interevent times as D(τ ) =
R f (Rτ ), where τ is the interevent time and R = 1/τ̄ is the
average occurrence rate which depends on magnitude, space
scale, and different locations. Corral also argued that the
optimal fitted function of f (x) is the generalized � distribution
[10]. This scaling function follows a power law for small
scales and decays exponentially at large scales. Some ques-
tions have been raised regarding the universal scaling with re-
gion size [11]. In the context of the epidemic-type aftershock
sequence (ETAS) model, the scaling function has been found
to depend on the ratio between correlated and independent
events [11,12]. In addition, a different study suggested that
multiple characteristic timescales, which are controlled by the
parameters of the ETAS model, are relevant for the universal
scaling behavior of the interevent time distribution in the
ETAS model [13].

The distribution of earthquake events alone does not reflect
all the information about the dynamics, and further time series
analysis could improve our understanding of the underlying
dynamics of earthquakes. For example, Livina et al. [14]
studied the conditional probability of consecutive interevent
times and found that these are correlated and not random,
i.e., a short interevent time tends to follow a short one and
a long interevent tends to follow a long one. Furthermore,
detrended fluctuation analysis (DFA) of the interevent interval
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FIG. 1. Time series (1981–2017) of (a) interevent times and
(b) their corresponding distances for the whole Italian catalog for
a magnitude threshold of 3.0. The vertical dashed lines indicate
earthquake events with magnitudes above 5.8.

time series revealed long-range (power-law) correlations [15].
In addition, memory has been found in the time series of
earthquakes magnitudes [15,16]. The conditional probability
method and DFA have been applied recently to study the
memory in time series of consecutive interevent interval time
series of real and ETAS model earthquake data [17].

The studies mentioned above [14–17] focused only on
short-term memory, i.e., on successive interevent intervals of
earthquakes. However, as shown below, there exists long-term
memory in both interevent times and distances. Long-term
memory in earthquakes has been found by previous studies
using different techniques [18–20]. Here we study the long-
term memory by considering the lagged conditional proba-
bilities of interevent times and distances in real earthquake
catalogs. Thus, we consider here not only the dependence of
an interevent interval on the previous one (as in Refs. [14,17])
but also the conditional probability of an interevent interval
depending on a previous (lagged) kth interevent intervals.
Moreover, we study not only interevent times (as in previous
studies) but also interevent distances.

II. MEMORY IN REAL SEISMIC CATALOGS

We start by analyzing the seismic catalog of Italy [21].
An interevent interval time τi is defined as the time interval
between two consecutive earthquake events τi = ti+1 − ti (in
days) above a certain magnitude threshold. Following the
Gutenberg-Richter law, the mean interevent time increases
with the threshold magnitude. Similarly, we define an in-
terevent distance ri as the distance (in kilometers) between
the locations of events i + 1 and i above a certain magnitude
threshold. Figure 1 depicts the time series of interevent times
and their corresponding distances for all of Italy. As can be
seen, after the occurrence of a large earthquake, the interevent
times decrease rapidly and then slowly increase, in agreement
with the Omori law mentioned above [Fig. 1(a)]. Similarly,
the interevent distances [Fig. 1(b)] also typically decrease fast

FIG. 2. Conditional PDF of (a) the interevent times τ1 and (b) the
interevent distances r1 (for magnitude threshold M0 = 3.0) for all of
Italy; the common area between the conditional PDF of the first and
third quantiles is s13 = 0.43 and s13 = 0.42 for times and distances,
respectively. Note that no memory corresponds to s13 = 1 and full
memory to s13 = 0. (c) and (d) Same as (a) and (b) but for lag
k = 10 where the common area is now s13 = 0.57 and s13 = 0.67 for
times and distances, respectively. A larger common area indicates
less correlation. The black dashed curves indicate the PDFs for all
τ (r). The PDFs are normalized in a logarithmic scale.

after a large earthquake but the following gradual increase
observed in the interevent times [see Fig. 1(a)] is less apparent
here. We find that similar behavior occur for two specific
smaller areas in Italy (see Fig. S3 in [22]) and also for Japan
and California [23] (Fig. S4 in [22]). Figure S5 in [22] depicts
a scatter plot of interevent times vs interevent distances where
two well separated blobs can be observed [see also Fig. 2(b)].
These two groups can be attributed to aftershocks (left blob,
short distances) and main shocks (right blob, long distances)
(see also [24,25]). Figure S5 in [22] shows that the interevent
times and distances exhibit some dependence when consider-
ing different blobs (as shorter distances have shorter interevent
time) but seem almost uncorrelated within each of the blobs.

To study possible long-term memory in the interevent
times and distances of earthquakes, we introduce a lagged
conditional PDF method. First, we sort all the interevent times
(distances) in ascending order and then divide the sorted
series into three equal quantiles. Thus, the first quantile Q1
contains the smallest 1/3 interevent times (distances) and the
third quantile Q3 contains the largest 1/3 interevent times
(distances). We define the conditional PDF of interevent times
and distances as ρ(τk|τ0) [ρ(rk|r0)], where τ0 (r0) belongs to
Q1 or Q3 and τk (rk) is the lagged kth interevent time that
follows τ0 (r0). Note that earlier studies [14,17] considered
only the first lag (k = 1) and considered only interevent times
(but not interevent distances). Figure 2(a) shows the lagged
k = 1 conditional PDF ρ(τ1|τ0) for the first (left peak) and
third (right peak) quantiles. Both ρ(τ1|τ0) for Q1 and Q3 are
substantially different from the overall PDF ρ(τ ) (indicated
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FIG. 3. Memory measure (a) S(τk |τ0 ) and (b) S(rk|r0) as a func-
tion of the lag index k for interevent times and distances, respectively.
Colors represent different grid sizes L. The shapes of the sym-
bols represent different magnitude thresholds M0. The grid size of
L = 14◦ covers the whole region of the Italian catalog. Rescaled
memory measure for (c) interevent times and (d) distances. Black
dashed lines are fitted power-law curves. Note that the narrow large-k
regimes could be fitted also by exponential decay. The vertical red
dotted lines indicate the location of the crossover.

by the dashed line). These results are consistent with the
significant short-term memory of the nearest time intervals
reported in previous studies [14,17]. In addition, we find sig-
nificant memory for the interevent distances function ρ(r1|r0)
as shown in Fig. 2(b). Moreover and interestingly, we find
significant long-term and long-range memory (correlations)
even for large lags, e.g., for k = 10 [Figs. 2(c) and 2(d)] and
for k = 50 and k = 100 (Fig. S6 in [22]). The significance of
this type of long-term memory can be verified by comparing
the conditional PDF to those of the randomly shuffled time
series. Since the randomly shuffled time series contain no
memory, ρ(τk|τ0) and ρ(rk|r0) should be identical to the
unconditional overall PDF of interevent times and distances,
ρ(τ ) or ρ(r), as indeed shown in Fig. S7 in [22].

To quantify the level of memory expressed by the con-
ditional PDF, we suggest as a measure the common area
between the conditional PDFs of the smallest and largest
quantiles Q1 and Q3. In the absence of memory the common
area is one, while when the PDFs of the two quantiles are
completely separated, the common area is zero. The common
area is marked in Fig. 2 as s13 (dark area). Therefore, we
define the level of memory to be S(τk|τ0) ≡ 1 − s13 in a
range between 0 and 1 where large S(τk|τ0) indicates strong
memory. Similarly, S(rk|r0) represents the level of memory
for the interevent distances.

Next we divide all of Italy into a grid of boxes of edge
size L and construct the interevent times (distances) of the
events within each box. Then, as described above, we obtain
the memory measure S(τk|τ0) for all the boxes (grid points)
of size L. The conditional PDF for the small size L = 3.5◦
is depicted in Fig. S8 in [22]. Figure 3(a) shows S(τk|τ0) for

different grid sizes L (different colors) and magnitude thresh-
olds M0 (different symbols). The memory in the small grid
size (red or dark gray) is stronger than the memory of large
grid size (green or light gray). The weaker memory for the
larger grid size is due to the mixture of the weakly correlated
events from remote locations with the nearby highly corre-
lated events. The corresponding memory measure S(rk|r0) for
the interevent distances exhibits weaker dependence on the
grid size [Fig. 3(b)]. Note that the memory measure S has
two decay rates: It decays slowly for small k and faster for
large k, for both the interevent times and interevent distances.
Moreover, the crossover point for both is nearly the same.

Since the frequency of earthquakes decreases exponen-
tially with magnitude in Fig. S1 in [22] (Gutenberg-Richter
law), the interevent times grow exponentially with magnitude.
Indeed, if we rescale k as k × 10bM0 (where b = 1 as for the
Gutenberg-Richter law) and multiply the memory measure S
by Ldu/10aM0 , we obtain a single scaling function [Figs. 3(c)
and 3(d)]. Thus, the rescaled memory measure F (x) is

F (k × 10bM0 ) = S(k)Ldu/10aM0 , (1)

where du = 0.14 and a = 0.09 for the interevent times and
du = −0.08 and a = 0.24 for the interevent distances. Thus,
we are able to rescale the memory measure of different grid
sizes and different magnitude thresholds into a single function
(memory measure). The scaling parameters were obtained by
minimizing the average of the standard variation in all bins in
Figs. 3(a) and 3(b). The average of the standard variation for
different parameter values is shown in Fig. S9 in [22].

It is apparent that the memory measure decreases for
larger grid size L and du > 0 represents this decrease for
the interevent times. For the interevent distances we find the
opposite where du < 0, indicating that the memory measure
actually increases with the grid size. The PDF for the large
quantile Q3 is limited by the size L and as the grid size
increases, the PDF of Q3 shifts to the right and the common
area is reduced [Fig. 2(b)], indicating a stronger memory. We
find a positive a, indicating that a larger magnitude threshold
M0 tends to have a stronger memory after k is rescaled. Note
that the parameter a of interevent distances is larger than the
corresponding parameter a of interevent times.

The scaling functions shown in Figs. 3(c) and 3(d) indicate
a crossover between two distinct power-law relations. The
scaling function is F (x) ∼ x−γ1 for x = k × 10bM0 , where x
is in the range of [100, 105] and γ1 is 0.19 and 0.21 for the
interevent times and interevent distances, respectively. Both
scaling functions exhibit a significant crossover at xc ≈ 105.0

and the approximate scaling exponent for large x (i.e., in range
of [105, 105.5]) is γ2 = 0.88 and 1.11 for interevent times
and interevent distances, respectively. It is clear that γ1 � γ2

such that the decay for small scales is much slower than the
decay for larger scales. Note that, due to the short range of
large x [105, 105.5], this range decay could be also fitted to
an exponential decay. We cannot rule out that the crossover
is due to a transition from a correlated (short-range) regime
to an uncorrelated (long-range) regime where the transition is
exponential.

Figure S10 in [22] shows the relation between the average
(and rescaled average) time differences between two earth-
quakes and their lag k (and rescaled lag). It indicates that the
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TABLE I. Estimated parameters a and du, power-law exponents
of the scaling function γ1 and γ2, and the crossover points xc and tc for
the interevent times and distances for the Italy, Japan, and California
earthquake catalogs.

Parameters Italy Japan California

Time
a 0.09 0.07 0.1
du 0.14 0.05 0.07
γ1 0.19 0.09 0.2
γ2 0.88 0.28 0.65
γ2/γ1 4.63 3.11 3.25
log10(xc ) 4.91 4.77 4.98
tc 126 days 19 days 88 days

Distance
a 0.24 0.2 0.2
du −0.08 −0.07 −0.14
γ1 0.21 0.23 0.35
γ2 1.11 0.71 0.75
γ2/γ1 5.29 3.09 2.14
log10(xc ) 4.97 4.74 4.97
tc 144 days 18 days 86 days

crossover xc for the smaller grid size L corresponds to a longer
time tc. For all of Italy, the time tc is around 130 days and it is
the same for different magnitude thresholds.

To verify the generality of our scaling, we performed
the same scaling analysis [using Eq. (1)] for the Japan and
California earthquake catalogs and obtained good scaling. The
scaling functions exhibit a crossover similar to that discussed
above (Figs. S11 and 12 in [22]). The scaling parameters and
exponents are slightly different for the different catalogs and
are summarized in Table I. The rescaled memory measure F
of the Japan catalog decays slower (as expressed in the smaller
exponents γ1 and γ2) in comparison to the other locations,
probably due to the high aftershock rate there. The rescaled
lags of the crossover xc are also listed in Table I. Note that the
scaling curves of interevent times and distances have a similar
crossover point xc for the Italy, Japan, and California catalogs.
Thus the crossover xc seems to be unaffected by time and
size scales of catalogs (see also Fig. S16 in [22]). It is likely
that the crossover point xc is related to the universal behavior
of aftershocks. After a characteristic time, the sequences for
independent and dependent events will overlap with high
probabilities. This could destroy correlations leading to a fast
decay of memory even when they exist in spatially separated
but temporally overlapping sequences [11].

III. MEMORY IN THE ETAS MODEL

A good earthquake model should be able to reproduce the
observed long-term and long-range memory features. Such
a model could have the potential to significantly improve
the forecasting capability of earthquakes. Thus, we next test
the memory in the frequently used earthquake model, the
epidemic-type aftershock sequence model (see Supplemental
Material in [22]) [26,27]. The ETAS model can provide statis-
tically some reliable forecasts of seismicity [28]. Figure S13
in [22] shows the conditional PDF of the interevent times and

(a) (b)

(c) (d)

−1.2

−1

−0.8

−0.6

−0.4

−1.5

−1

−0.5

−1.4

−1.2

−1

−0.8

−0.6

−3.5

−3

−2.5

0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5

3 3.5 4 4.5 5 5.5 3 3.5 4 4.5 5 5.5

log10(k) log10(k)

log10(k10bM0) log10(k10bM0)

l o
g 1
0[
S(

τ k
| τ 0
)]

lo
g 1
0[
S(
r k
|r 0
)]

lo
g 1
0[
S(

τ k
|τ 0
)L
d u
10
aM

0 ]

lo
g 1
0[
S(
r k
|r 0
)L
d u
10
aM

0 ]

3.5°

7°

14°

3
3.5
4

FIG. 4. Memory measure of the ETAS model catalogs for the
area (34◦N-48◦N, 6◦E-20◦E) as a function of the lag index k:
(a) S(τk |τ0) (interevent times) and (b) S(rk|r0) (interevent distances).
Colors and shapes are the same as in Fig. 3. Also shown is the
rescaled memory measure for (c) interevent times and (d) distances.
The model’s parameters are estimated for the Italian catalog [17,29]
(see also [22]). The memory measure S is averaged over 50 indepen-
dent realizations and each realization includes 106 events. The error
bars are the standard deviations.

distances and these exhibit much larger overlap in comparison
to the memory in the data (Fig. 2), indicating weaker memory
in the model. Figures 4(a) and 4(b) shows the memory mea-
sure for both interevent times and distances calculated from
the ETAS model. As for the real catalogs [Figs. 4(c) and 4(d)],
the memory measure of the model satisfies the scaling relation
expressed in Eq. (1). The scaling parameters are du = 0.16
and a = 0.14 for the interevent times and du = −0.04 and
a = 0.55 for the interevent distances. As expected, the grid
size scaling leads to du > 0 for the interevent times and du < 0
the interevent distances, similar to the real catalogs. Also, the
magnitude threshold scaling parameter a is positive, as for
the real catalogs; however, the value of a of the interevent
distances in the model (a = 0.55) is two to three times larger
than the value we obtain for the real catalogs (a = 0.24, Ta-
ble I). Thus, the memory measure of the model is significantly
smaller than that of the real catalog, even when using the
optimal parameters for the ETAS model suggested in [17,29].
Moreover, the crossover power-law behavior at xc that has
been observed in the real catalogs (Fig. 3) cannot be seen in
the model (Fig. 4). We thus conclude that the ETAS model
does not reproduce the main memory features found in the
present study for real catalogs.

To better understand which parameters control the power-
law exponent and to find the optimal model’s parameters that
reproduce the characteristics of the real catalogs, we perform
sensitivity tests by varying the parameters p and α for different
choices of μ. We estimate the scaling exponents γ1 and γ2

for different regimes of k [similar to Figs. 3(c) and 3(d)
and Table I]. The ratio between the high- and small-k expo-
nents γ2/γ1 quantifies the level of crossover and the double
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power-law behavior. For real catalogs the ratio γ2/γ1 is much
larger than 1 and is about 5 for the interevent times and above
2 for the interevent distances. For the model, the results of the
sensitivity tests for interevent times and distances are shown in
Figs. S14 and 15 in [22]. It indicates that γ1 and γ2 depend on
both p and α. They are almost unaffected by the choice of the
background noise level μ. A small p and large α correspond
to a small γ1 and a large γ2 at the bottom right corner; these
exponents mimic the exponents of the data. Thus, the largest
γ2/γ1 will be found at this corner too. Still, γ2/γ1 for the
model is very different from the ratio for the real catalogs
summarized in Table I; for the ETAS model, the largest γ2/γ1

is about 1.0, thus indicating the absence of crossover and
double power-law behavior that was observed for the data (see
Figs. S14 and 15 in [22]).

IV. CONCLUSION

In summary, we have proposed a lagged conditional PDF
method and detected significant memory in both interevent
times and distances for real data and the model. We proposed a

scaling function of this memory, for both interevent times and
distances, in which the scaling curves of different magnitude
thresholds and grid sizes collapse into a single curve. How-
ever, we found that the memory function in real data is very
different from that of the ETAS model: The model’s memory
is weaker (stronger) in the short (long) timescale compared
to the real catalogs. Moreover, the model does not exhibit the
clear crossover observed in the real catalogs (see Figs. 3 and
4). The two power-law decays found here and the crossover
between them may imply the existence of large and small
aftershock productivity rates α, corresponding to short- and
long-term memories of earthquakes.
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