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Magnitude and Sign Correlations in Heartbeat Fluctuations
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We propose an approach for analyzing signals with long-range correlations by decomposing the signal
increment series into magnitude and sign series and analyzing their scaling properties. We show that
signals with identical long-range correlations can exhibit different time organization for the magnitude
and sign. We find that the magnitude series relates to the nonlinear properties of the original time series,
while the sign series relates to the linear properties. We apply our approach to the heartbeat interval
series and find that the magnitude series is long-range correlated, while the sign series is anticorrelated
and that both magnitude and sign series may have clinical applications.
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A broad class of physical and biological systems ex-
hibits complex dynamics, associated with the presence of
many components interacting over a wide range of time or
space scales. These often-competing interactions may gen-
erate an output signal with fluctuations that appear “noisy”
and “erratic” but reveal scale-invariant structure. One gen-
eral approach to study these systems is to analyze the ways
that such fluctuations obey scaling laws [1–3].

Here, we take into account that the fluctuations in the dy-
namical output of any system can be characterized by their
magnitude (absolute value) and their direction (sign). These
two quantities reflect the underlying interactions in a sys-
tem—the resulting “force” of these interactions at each
moment determines the magnitude and the direction of the
fluctuations. For an important representative of complex
dynamics —human heartbeat intervals —we find unex-
pected results for the time ordering of the heartbeat inter-
val fluctuations by studying the scaling properties of their
magnitude and sign. We also demonstrate that fluctuations
following identical long-range correlations can exhibit
very different time ordering for the magnitude and sign.

We consider the time series formed by consecutive car-
diac interbeat intervals (Fig. 1a) and focus on the corre-
lations in the time increments between consecutive beats.
This time series is of general interest, in part because it is
the output of a complex integrated control system, includ-
ing competing stimuli from the neuroautonomic nervous
system [4]. These stimuli modulate the rhythmicity of the
heart’s intrinsic pacemaker, leading to complex fluctua-
tions. Previous reports indicate that these fluctuations ex-
hibit scale-invariant properties, and are anticorrelated over
a broad range of time scales (i.e., the power spectrum fol-
lows a power-law where the amplitudes of the higher fre-
quencies are dominant) [5,6].

The time series of the fluctuations in heartbeat intervals
can be “decomposed” into two different time series. We
analyze separately the time series formed by the magni-
tude and the sign of the increments in the time intervals
0031-9007�01�86(9)�1900(4)$15.00
between successive heartbeats (Figs. 1b and 1c). We use
2nd order detrended fluctuation analysis [6] (and not the
conventional power spectrum) since it has the ability to ac-
curately estimate correlations in the heartbeat fluctuations
even when they are masked by linear trends [7]. We find
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FIG. 1. (a) An example of 2000 heartbeat (RR) intervals of a
healthy subject during daytime. (b) The magnitude series of a por-
tion of the RR series (beat numbers 800–1300) shown in (a).
Patches of more “volatile” increments with large magnitude (beat
numbers 800–1000) are followed by patches of less volatile in-
crements with small magnitude (beat numbers 1000–1300), con-
sistent with our quantitative conclusion that there is correlation in
the magnitude time series. (c) The sign series (±), as well as the
DRR series (≤) of a portion of the RR series (beat numbers 1180–
1230) shown in (a). The positive sign (11) represents a positive
increment, while the negative sign (21) represents a negative in-
crement in the RR series of interbeat intervals. The tendency to al-
ternation between 11 and 21 is consistent with our quantitative
conclusion that there is (multiscale) anticorrelation in the sign
time series.
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FIG. 2. (a) Root mean square fluctuation, F�n�, for �6 hour
record (�32 000 data points) for the interbeat interval RRi se-
ries (�) of healthy subject [9]. Here, n indicates the time
scale (in beat numbers) over which each measure is calculated.
The scaling is obtained using second order detrended fluctua-
tion analysis, and indicates long-range anticorrelations in the
heartbeat interval increment series DRRi [6]. As expected, the
scaling properties of the heartbeat interval increment series re-
main unchanged after the Fourier phase randomization (�). (b)
The root mean square fluctuation of the integrated magnitude
series (�) indicates long-range correlations in the magnitude
series jDRRi j [group average exponent of a 2 1 � 0.74 6 0.08
where F�n��n ~ na21]. After Fourier phase randomization
of the interbeat interval increment series we find random be-
havior with exponent 0.5 (�). This change in the scaling
(after removing the nonlinear features in the time series) sug-
gests that the magnitude series carries information about the
nonlinear properties of the heartbeat dynamics. (c) The root
mean square fluctuation of the integrated sign series (�) indi-
cates anticorrelated behavior in sign�DRRi� [group average ex-
ponent of a 2 1 � 0.42 6 0.03 where F�n��n ~ na21]. The
scaling properties of the sign series remain unchanged after the
Fourier phase randomization (�), which suggests that the sign
series relates to linear properties of the heartbeat interval time
series. We note the apparent crossovers at n � 20 beats and n �
100 beats. A gradual loss of anticorrelation in the sign se-
ries is observed at time scales larger than n � 100 beats. We
note, however, that heartbeat increments derived from the origi-
nal time series are anticorrelated up to scales of thousands of
heartbeats.

for each subject in a group of 18 healthy individuals [8],
that the time series of the magnitudes exhibits correlated
behavior (Fig. 2b) (unlike the original heartbeat increment
time series, which is anticorrelated, Fig. 2a). The sign se-
ries, however, exhibits anticorrelated behavior (Fig. 2c) [9].
Correlation in the magnitude series indicates that an incre-
ment with large magnitude is more likely to be followed
by an increment with large magnitude. Anticorrelation in
the sign series indicates that a positive increment is more
likely to be followed by a negative increment. Our result
for the temporal organization of heartbeat fluctuations thus
suggests that, under healthy conditions, a large increment
in the positive direction is more likely to be followed by a
large increment in the negative direction. We find that this
empirical “rule” holds over a broad range of time scales
from several up to hundreds of beats (Fig. 2) [10].

To show that fluctuations following an identical scaling
law can exhibit different time ordering for the magnitude
and sign, we perform a Fourier transform on a heartbeat in-
terval increment time series, preserving the amplitudes of
the Fourier transform but randomizing the Fourier phases.
Then we perform an inverse Fourier transform to create a
surrogate series. This procedure eliminates nonlinearities,
preserving only the linear features (i.e., two-point correla-
tions) of the original time series [11]. The new surrogate
series has the same power spectrum as the original heart-
beat interval increment time series, with a scaling expo-
nent indicating long-range anticorrelations in the interbeat
increments (Fig. 2a). Our analysis of the sign time series
derived from this surrogate signal shows scaling behavior
almost identical to the one for the sign series from the orig-
inal data (Fig. 2c). However, the magnitude time series de-
rived from the surrogate (linearized) signal exhibits uncor-
related behavior — a significant change from the strongly
correlated behavior observed for the original magnitude
series (Fig. 2b). Thus, the increments in the surrogate se-
ries do not follow the empirical “rule” observed for the
original heartbeat series, although these increments follow
a scaling law identical to the original heartbeat increment
series. Moreover, our results raise the interesting possibil-
ity that the magnitude series carries information about the
nonlinear properties of the heartbeat series, while the sign
series relates importantly to linear properties.
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FIG. 3. (a) (≤) An example of anticorrelated noise (the scaling
exponent of the increment series is 0) with (�) uncorrelated
magnitude series and (�) uncorrelated sign series with exponent
0.5. (Note the sign series is anticorrelated for n , 20 and
uncorrelated for n . 100). (b) We shuffle the magnitude series
from (a) (gray squares) and then multiply its elements by the
elements of the sign series from (a). The new surrogate series
(�) is uncorrelated.
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FIG. 4. (a) The relation between the scaling exponents of cor-
related noise, the integrated magnitude series, and the integrated
sign series for the short-range regime (n , 16). We generate
10 series of length 32 768 with different correlations (input ex-
ponent) and then calculate the scaling exponents of the original
series (≤), of the integrated magnitude series (�), and of the
integrated sign series (�). In the figure we show the average
61 standard deviation. The dashed line indicates the approxi-
mate empirical relation between the different scaling exponents
[asign � �aoriginal 1 amagnitude��2]. This empirical approxima-
tion is good for the short-range regime only (n , 16). (b) Same
as (a) for the long-range regime (n . 64). Here the approxima-
tion does not hold anymore. In this regime the scaling exponents
of the magnitude and sign series are uncorrelated no matter what
is the exponent of the original series.

Next, we investigate the relation between the scaling ex-
ponent of the original series and the scaling exponents of
the magnitude and the sign series. For this purpose, we
test our approach on well-defined signals with built-in cor-
related behavior that show uncorrelated behavior for the
magnitude and sign. First, we consider a particular ex-
ample of correlated noise with scaling exponent equal to 1,
for which the increment series is anticorrelated with scal-
ing exponent equal to 0 (Fig. 3a). Surprisingly, at large
time scales, we find that the magnitude series and the
sign series of the increments exhibit uncorrelated behav-
ior (scaling exponent of 0.5) although the original incre-
ment series, which is the multiplication of the elements of
these two series, is strongly anticorrelated. Moreover, we
find that for linear colored noise with correlation exponent
less than 1.5 (i.e., with anticorrelations for the increment
series), the magnitude and sign series of the increments
are uncorrelated (Fig. 4b). Next, we shuffle the magnitude
series by randomly exchanging pairs of elements. After
multiplication of the elements of the shuffled magnitude
series with the elements of the sign series, we find that
the resulting time series is uncorrelated, in contrast to the
original increments time series which is strongly anticor-
related. Note that the scaling exponents of the magnitude
and sign series remain the same as before the shuffling
(Fig. 3b). This test indicates that the correlations in a time
1902
series are not related to the correlations in the magnitude
and sign series, but rather to the particular pairing of the
elements of the magnitude and sign series.

At small time scales, however, we find an empirical
approximate relation for the scaling exponents (Fig. 4a),
asign � 1

2 �aoriginal 1 amagnitude�. We observe that for the
heartbeat series this relation is valid over a larger range of
scales (i.e., for time scales n , 100).

Finally, we test our analysis on a group of 12 subjects
with congestive heart failure [8]. Compared to the healthy
subjects, the magnitude exhibits weaker correlations with a
scaling exponent closer to the exponent of an uncorrelated
series. The change in the magnitude exponent for the heart
failure subjects is consistent with a previously reported loss
of nonlinearity with disease [12,13]. The sign time series
of heart failure subjects shows scaling behavior similar to
that observed in the original time series, but significantly
different from the healthy subjects (Table I).

TABLE I. Comparison of the statistics of the root mean square
fluctuation, F�n� (calculated using the second order detrended
fluctuation analysis method [6] where n is the time scale in beat
numbers over which each measure is calculated), and the scaling
exponents for 18 healthy subjects and 12 subjects with heart fail-
ure [8] (obtained from 6-h records during the day). The scaling
features of the magnitude and sign change significantly for the
subjects with heart failure, raising the possibility of bedside ap-
plications. a is the best fit to the range 6 , n , 1024. F�n� is
estimated at the crossover position (n � 16) (Fig. 2b) where the
largest separation between the two groups is estimated. Since we
observe two apparent crossovers in the scaling behavior of the
sign series, we calculate the scaling exponents in three different
regions: (i) the short-range regime for time scales 6 , n , 16
with scaling exponent a1; (ii) the intermediate regime for time
scales 16 # n # 64 with scaling exponent a2; and (iii) the long
range regime for time scales 64 , n # 1024 with scaling ex-
ponent a3. For each measure, the group average 61 standard
deviation is presented. The values which show highly significant
differences (p # 0.01 by student’s t-test) between the healthy
and heart failure groups are indicated in boldface. We note, sur-
prisingly, that the short-range and the intermediate range scaling
exponents a1 and a2 of the sign series may provide even more
robust separation between healthy and heart failure compared to
previous reports [6] based on the scaling exponents of the origi-
nal heartbeat series.

Magnitude

Measure Healthy Heart failure p Value

log10F�n� 21.49 6 0.16 21.92 6 0.17 1 3 1027

a 1.74 6 0.08 1.66 6 0.06 0.01
a1 1.55 6 0.08 1.6 6 0.08 0.13
a2 1.66 6 0.08 1.61 6 0.08 0.14
a3 1.82 6 0.1 1.71 6 0.1 4 3 1023

Sign

Measure Healthy Heart failure p Value

log10F�n� 0.14 6 0.05 0.02 6 0.06 1 3 1026

a 1.42 6 0.03 1.44 6 0.02 0.08
a1 1.43 6 0.12 1.15 6 0.12 7 3 1027

a2 1.27 6 0.07 1.41 6 0.07 1 3 1025

a3 1.53 6 0.065 1.49 6 0.04 0.04
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We conclude that series with identical correlation prop-
erties can have completely different time ordering, which
can be characterized by different scaling exponents for the
magnitude and sign series. Moreover, we show that the
magnitude series carries information regarding the nonlin-
ear properties of the original series while the sign series
carries information regarding the linear properties of the
original series. The significant decrease in the short-range
scaling exponent for the sign series in heart failure may be
related to perturbed vagal control affecting relatively high
frequency fluctuations. The decrease of the long-range
scaling exponent for the magnitude series of the heart
failure patients indicates weaker correlations and loss of
nonlinearity, which may be related to impaired feedback
mechanisms of neurohormonal cardiac regulation. Be-
cause information obtained by decomposing the original
heartbeat time series into magnitude and sign time series
likely reflects aspects of neuroautonomic regulation, this
type of analysis may help address the challenge of devel-
oping realistic models of heart rate control in health and
disease.
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