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We study the spectral properties of the magnitudes of daily river flux increments, the volatility. The volatility
series exhibits ~i! strong seasonal periodicity and ~ii! power-law correlations for time scales less than 1 yr. We
test the nonlinear properties of the river flux increment series by randomizing its Fourier phases and find that
the surrogate volatility series ~i! has almost no seasonal periodicity and ~ii! is weakly correlated for time scales
less than 1 yr. We quantify the degree of nonlinearity by measuring ~i! the amplitude of the power spectrum at
the seasonal peak and ~ii! the correlation power-law exponent of the volatility series.
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Climate is strongly forced by the periodic variations of
the Earth with respect to state of the solar system. The sea-
sonal variations in the solar radiation cause periodic changes
in temperature and precipitation, which eventually lead to
seasonal periodicity of river flow. In spite of this well-
defined seasonal change, river flow exhibits highly unpre-
dictable complex behavior; floods and droughts are usually
unexpected and cause severe damage in life, housing, and
agriculture products. Hence, river flow is likely to have an
indirect nonlinear response to the various focings, among
them the seasonal changes in solar radiation.

Many components of the water budget of a catchment are
coupled in a nonlinear fashion. The key for all interactions
between atmospheric processes like precipitation, tempera-
ture, humidity, and surface runoff is the soil. The dynamic
state of this key variable is highly nonlinear. An essential
feature in this respect is, e.g, the dependence of this dynam-
ics from the past.

By means of the methods proposed here, it will be pos-
sible to characterize quantitatively the degree of nonlinearity
of the involved processes in a compact way by investigating
the outputs of the catchment ~the resulting runoff time series!
only. This check would be very helpful, for example, in view
of the design of time series models or statistical prediction
algorithms.

There are several statistical approaches to the study of
river flow fluctuations. For instance, river flow fluctuations
have broad probability distribution, i.e, the tails of the distri-
bution decay approximately as a power law @1,2#. Moreover,
river flow fluctuations have unique temporal organization;
they are long-range power-law correlated and possess scale
invariant structure @3#. These power-law correlations are usu-
ally characterized by scaling exponents @4,5# as was origi-
nally defined by Hurst for the Nile River floodings @6#. Simi-
lar power-law correlations occur also for temperature
fluctuations in the atmosphere @7# and in the oceans. How-
ever, such scaling laws only quantify the linear properties
~two-point correlations! of a time series. Here we study other
nonlinear aspects of river flow fluctuations.

A nonlinearity of a stationary time series may be defined
with respect to its Fourier phases @8,9#. The series where its
statistical properties are independent of the Fourier phases is
linear, otherwise the series is nonlinear. For instance, autore-
gression processes and fractional Brownian motion are lin-
ear, while multifractal processes are nonlinear. Recently, it
has been shown that volatility correlations of long-range
power-law correlated time series reflect the degree of nonlin-
earity of a time series @9#. Given a time series x i , the vola-
tility series is defined as the magnitudes of the series incre-
ments, uDx iu[ux i112x iu. It was found that long-range
correlated linear series have uncorrelated volatility series,
while long-range correlated nonlinear series have correlated
volatility series; see Ref. @9# for details. Power-law correla-
tions in the volatility series indicate that the magnitudes
uDx iu are clustered into patches of small and big
magnitudes—a big magnitude increment is likely to precede
a big magnitude increment, and vice versa. When the vola-
tility series uDx iu is uncorrelated, the increment series is ho-
mogeneous. Volatility correlations were found, e.g., in
econometric time series @10#, heartbeat interval series @9,11#,
and human interstride interval series @12#.

Here we study the volatility properties of daily river flow
fluctuations. We first extend the notion of volatility to peri-
odic time series. We find that after randomizing the Fourier
phases of the river flow increment series, the periodicity of
the volatility series is almost diminished, indicating that ‘‘pe-
riodic volatility’’ is a result of nonlinearity. We also find
long-range volatility correlations for time scales below 1 yr.
Our results suggest that clusters of magnitudes of river flow
increments appear in two ways: periodically and in long-
range correlated manner.

We analyze the daily river flux time series of 30 rivers
scattered around the globe. The mean flux of these rivers
ranges from ;0.6 m3/s to ;23105 m3/s, covering more
than five orders of magnitudes. The series length ranges from
26 yr to 171 yr, with an average length of 81 yr. Figure 1
shows a typical example of 4 yr ~1986–1990! of River flow
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data ~Maas river, Europe!. It is evident that fluctuations
around large river flows are large, while fluctuations around
small river flows are small.

To study the nonlinear properties of the river flow record,
we apply a surrogate data test to the river flow increment
series. Shortly, the surrogate series is created as follows: ~i!
shuffle the original series, ~ii! Fourier transform the shuffled
series and adjust its power spectrum to the power spectrum
of the original series, and ~iii! inverse transform the series
from ~ii! and adjust its histogram to the histogram of the
original series. Repeat steps ~ii! and ~iii! till convergence; for
more details, see Ref. @8#. The surrogate data test preserves
both the power spectrum and the probability distribution of
the river flow increment series but randomizes the Fourier
phases. Thus, the surrogate data test linearizes the series un-
der consideration. Since the histograms of the original incre-

ment series and of the surrogate series are identical, one can
be sure that the probability distribution is not the source of
the nonlinearity of the data. Figure 2 shows the river flow
increment series and its power spectrum before and after the
surrogate data test. Although the river flow increment series
exhibits irregular behavior, its power spectrum shows a very
pronounced seasonal peak with few harmonics. As expected,
the surrogate series shows a similar pattern with very similar
power spectrum.

Next we compare the power spectrum of the volatility
series obtained from the original increment river flow series
with the surrogate series ~Fig. 3!. The power spectrum of the
original volatility series shows a pronounced seasonal peak,
while the power spectrum of the surrogate volatility series
has no seasonal periodicity. The seasonal periodicity of the
original volatility series may be associated with the increased

FIG. 1. Typical river flow time series of the Maas River ~Eu-
rope!. The record shows a periodic pattern with irregular fluctua-
tions. Fluctuations are large around large river flow and small
around small river flow.

FIG. 2. River flux increment series of the Maas River ~left pan-
els! and their corresponding power spectra ~right panels! before
~upper panels! and after ~lower panels! the surrogate test for non-
linearity. The series length is 80 yr where just the last 4 yr data are
shown ~in the left panels!. The original river flow increment series
and the surrogate increment series have identical probability distri-
butions and very similar power spectra.

FIG. 3. Same as Fig. 2, but for the river flow volatility series
uDF iu[uF i112F iu. Here, the original volatility series shows a pro-
nounced seasonal peak, while the surrogate volatility series does not
show such a peak, indicating that the periodicity in the volatility
series is a result of nonlinearity.

FIG. 4. Log-log plot of the power spectra shown in Fig. 3. The
solid lines are the best fits of S( f );1/f b for frequencies
1.05 yr21

, f ,52 yr21. The original volatility series ~left panel!
decays as a power law (1/f b50.66), indicating long-range correla-
tions. The power spectrum of the linearized surrogate volatility
~right panel! series has a flatter spectrum, indicating much less cor-
related behavior. Thus, correlations in the volatility series are an
additional measure for nonlinearity of the river flow increment time
series.
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fluctuation for large river flux ~Fig. 1!. The absence of sea-
sonal periodicity for the surrogate volatility series is some-
how counterintuitive since the surrogate series itself is as
periodic as the original river flow increment series, while a
simple inversion operation of the negative values of Dx i to
obtain uDx iu diminishes this periodicity. This absence of the
seasonal periodicity from the surrogate volatility series indi-
cates that periodicity in the magnitude series is a result of
nonlinearity associated with correlations in the Fourier
phases. We suggest that the amplitude of the seasonal peak of
the original volatility series compared to the seasonal peak of
the surrogate volatility series can quantify the degree of non-
linearity.

We use the power spectra of the original and surrogate
volatility series to analyze the correlation properties of these
series. A series x i is long-range correlated if its autocorrela-
tion function decays as a power law, C(l)5@1/(N
2l)#( i51

N2lx i1lx i;l2g, where N is the series total length, l is
the lag, and g is the correlation exponent (0,g,1). Then
also the power spectrum follows the scaling law S( f )
;1/f b, where g512b . In Fig. 4 we show the power spec-
tra of the original and surrogate volatility series for frequen-
cies larger than 1 yr21. While the power spectrum of the

surrogate volatility series is almost flat, the power spectrum
of the original volatility series decays as a power law with an
exponent of b'0.66. Thus ~i! the original volatility series is
power-law correlated and ~ii! its correlations are a nonlinear
measure since they significantly reduced after the surrogate
data test. The interpretation of these correlations is that there
are clusters of big magnitudes uDF iu that are statistically fol-
lowed by patches of big magnitudes. These clusters are in
addition to the periodic clustering ~shown in Fig. 3!. We also
repeated the scaling analysis with a more advanced method,
the detrended fluctuation analysis @13#, and find less noisy
but similar results @14#.

We summarize the periodic volatility and the long-range
volatility correlation results for 30 rivers in Fig. 5. To sys-
tematically compare the seasonal periodicity of different riv-
ers, we first normalize the volatility series by subtracting its
mean and dividing it by its standard deviation; thus, the area
under the power spectrum of the different volatility series
should be the same. The seasonal peak of the volatility series
exists for all 30 rivers, and is significantly higher than the
seasonal peak of the surrogate volatility series ~Fig. 5, upper
panel!. The scaling exponent b of the original volatility se-
ries ~Fig. 5, lower panel! indicates correlations; in most of
the cases ~27/30590%! the exponent of the original volatil-
ity series lies above 1 standard deviation of the exponent of
the surrogate volatility series. The average 61 standard de-
viation of the scaling exponent of original volatility series is
b50.4960.11, and is significantly higher than the average
61 standard deviation of the scaling exponent of the surro-
gate volatility series b50.1860.13. The p value of the stu-
dent’s t test is less than 1026. For time scales above 1 yr, the
volatility series is only weakly correlated with average expo-
nent b50.2760.26.

FIG. 5. A summary of the results obtained for 30 rivers around
the world. For each river flow increment series (d), we generated
ten surrogate series (s), and calculated the amplitude of the sea-
sonal peak of the volatility series ~upper panel! and the scaling
exponent b for frequencies 1.05 yr21

, f ,52 yr21 ~lower panel!;
the average and 1 standard deviation are shown. In order to system-
atically compare the results of the different rivers, we subtract from
the volatility series its mean and normalize it by its standard devia-
tion. The seasonal peak of the volatility series is significantly higher
compared to the seasonal frequency of the surrogate volatility series
~upper panel!. The scaling exponent b shown in the lower panel is
systematically higher for the original volatility series. For 27 rivers,
the original volatility exponent lies well above the surrogate series
exponent. The error bars on the right hand side are the group aver-
age 61 standard deviation.

FIG. 6. The power spectrum of the normalized volatility series
uDx iu of an artificial series x i5(11Ah i)s i for different noise levels
A; see text. The power spectra of the original ~upper panels! and
surrogate ~lower panel! volatility series are shown. When the noise
level increases ~from left to right!, the seasonal peak of the surro-
gate volatility series reduces. The harmonics of the power spectra
are partly caused by the asymmetric x i and partly because of the
absolute value operation for the volatility series.
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Thus, we find two measures of nonlinearity related to the
river flow data, periodic volatility and long-range correlated
volatility. These two measures are related to the clustering of
the magnitudes of river flow fluctuations, periodic and long-
range correlated clustering.

To study in more detail the possible source for such a
seasonal periodicity of the volatility series, we propose a
simple scheme to generate series with some similar charac-
teristics as for the river flow data. To mimic the enhanced
fluctuations for large river flow, we assume that x i5(1
1Ah i)s i , where h i is a Gaussian white noise ~zero mean
and unit standard deviation!, A is the noise level, and s i is an
asymmetric periodic function,

s i5s j1nT5H 11cos~2p f j ! for 0< j,
2

3
T ,

12cos~4p f j ! for
2

3
T< j,T ,

~1!

where T5365 is the time period in arbitrary units, j is an
integer 0< j,T , f 50.75/T , and n is an integer. x i decreases
for 2/3 of the time period T and increases for 1/3 of this time
period. When the noise level A increases, the nonlinear term
Ah is i also increases. We generate x i series with different
noise levels, and then calculate the power spectrum of the
normalized volatility series uDx iu of the original and surro-
gate Dx i series ~Fig. 6!. We find that when the noise level is
relatively small the seasonal peak is present in both the origi-
nal and surrogate volatility series. The periodicity of the sur-
rogate volatility series diminishes for increasing noise level.
Thus, the larger is the difference between the peak of original

volatility series and the peak of the surrogate volatility se-
ries, the larger is the nonlinearity of Dx i . This scheme indi-
cates that the surrogate data test does not always deminish
the seasonal periodicity of the volatility series, but rather
eliminates the nonlinear part of the process which is propor-
tional to the noise level. We also analyzed time series gener-
ated by a realistic hydrological model ~ASGi model for Ba-
varia, Germany @15#! for the Naab, Regniz, and Vils Rivers.
Both the seasonal periodicity of the volatility series and its
correlations are reproduced by the model and disappear after
phase randomization, as for the real data.

In summary, we have analyzed the periodic and long-
range correlated volatility of river flow data for 30 rivers
around the globe. We find that the volatility series are corre-
lated with a power-law behavior for time scales less than 1
yr. The periodic volatility and the long-range correlated vola-
tility disappear after randomizing the Fourier phases; indicat-
ing that these volatility features result from a nonlinear dy-
namical process. These volatility features may quantify the
degree of nonlinearity. We suggest that such nonlinear fea-
tures may result from an interaction between noise and the
seasonal trends.

Preliminary analysis of other climate records, such as
daily temperature and pressure records, shows the existence
of periodic and long-range volatility with similar properties
as for the river flow data. Thus, the results presented here
may be generic for other climate records.

We gratefully acknowledge financial support from the Is-
rael Science Foundations and the Deutsche Forschungsge-
meinschaft. Y.A. thanks the BIKURA Foundation for finan-
cial support.

@1# R.U. Murdock and J.S. Gulliver, J. Water Resour. Plan. Man-
age. 119, 473 ~1993!.

@2# C.N. Kroll and R.M. Vogel, J. Hydrologic Eng. 7, 137 ~2002!.
@3# D.L. Turcotte and L. Greene, Stochastic Hydrol. Hydr. 7, 33

~1993!.
@4# Y. Tessier et al., J. Geophys. Res., @Atmos.# 101, 26 427

~1996!.
@5# G. Pandey, S. Lovejoy, and D. Schertzer, J. Hydrol. 208, 62

~1998!.
@6# H.E. Hurst, Trans. Am. Soc. Civ. Eng. 116, 770 ~1951!.
@7# E. Koscielny-Bunde, A. Bunde, S. Halvin, H.E. Roman, Y.

Goldreich, and H.J. Schnellnhuber, Phys. Rev. Lett. 81, 729
~1998!; R.A. Monetti, S. Halvin, and A. Bunde, Physica A ~to
be published!.

@8# T. Schreiber and A. Schmitz, Physica D 142, 346 ~2000!.
@9# Y. Ashkenazy, P.Ch. Ivanov, S. Havlin, Ch.K. Peng, A.L. Gold-

berger, and H.E. Stanley, Phys. Rev. Lett. 86, 1900 ~2001!; Y.
Ashkenazy S. Havlin, P.Ch. Ivanov, Ch.-K. Peng, V. Shulte-
Frohlinde, and H.E. Stanley, Physica A ~to be published!,
e-print cond-mat/0111396.

@10# Y.H. Liu, P. Gopikrishnan, P. Cizeau, M. Meyer, C.-K. Peng,
and H.E. Stanley, Phys. Rev. E 60, 1390 ~1999!.

@11# J.W. Kantelhardt, et al., Phys. Rev. E 65, 051908 ~2002!.
@12# Y. Ashkenazy et al., Physica A 316, 662 ~2002!.
@13# C.K. Peng et al., Phys. Rev. E 49, 1685 ~1994!; A. Bunde

et al., Phys. Rev. Lett. 85, 3736 ~2002!.
@14# Unlike the power spectrum, the detrended fluctuation analysis

~DFA! is capable to remove polynomial trends from the data
@13#. Before applying the DFA method, we filtered out the
seasonal periodicity of the data.

@15# A. Becker and P. Braun, J. Hydrol. 217, 239 ~1999!.

BRIEF REPORTS PHYSICAL REVIEW E 67, 042101 ~2003!

042101-4


