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Complexity, tunneling, and geometrical symmetry
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It is demonstrated in the context of the simple one-dimensional example of a barrier in an infinite well that
highly complex behavior of the time evolution of a wave function is associated with the near degeneracy of
levels in the process of tunneling. Degenerate conditions are obtained by shifting the position of the barrier.
The complexity strength depends on the number of almost degenerate levels which depend on geometrical
symmetry. The presence of complex behavior is studied to establish correlation with spectral degeneracy.
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Tunneling processes have become of considerable interest In a study by Nietcet al.[7], it was shown that tunneling
as one of the possible mechanisms for creating highly comin an asymmetric double well is a very sensitive function of
plex behavior in the structure of the quantum wave functionthe potential. The behavior of the development of the wave
Tomsovic and Ullmo[1] found that there is an interesting function under these conditions was not, however, discussed
correlation between classical chaotic behavior and the rate gfere.
tunneling in the corresponding quantum system. The conclu- The calculation in this work is done for a square barrier of
sion of their study is that chaos facilitates tunneling. heightV="5 and widthw=x,—X,=2 (X, is the left bound-

On the other hand, Pattanayak and Schif@] found 5 "ot the barrier and, is the right boundary; we take
chaotic behavior in the semiclassical phase sgdetned by, — | 2m=1) embedded in an infinite well of width

expectation valugsof a one-dimensional time-independent 2l=110[interval (—1,1)]. In the calculation, an exact ana-
Duffing oscillator where new variables, associated with dis- P '

persion of the quantum states, are defined and included in tm—ﬁt'c expression is evaluated on the computer; there is no

description of the system. They concluded that quantum tun@ccumulation of error for large times, since there is no inte-

neling plays a crucial role for the chaotic behavior in the9ration over time. .
corresponding semiclassical maps. They have arfitiat We first dlscus_s the energy spectrum according to the lo-
the spectrum becomes more complicated in the neighboF—at'O” of the barrler.lln Fig. 1 one can see the lower energy
hood of the separatrix. levels “almost crossing”(the levels do not cross, but can
In a recent study, we have considered a model in whictPecome very close to each othet several locations of the
tunneling leads to highly complex behavior of the quantumbarrier. In the middlgthe positionc of the center of the
wave function and its time dependence. The spectrum, dsarrier is taken at=0; generallyc= 3 (X;+X,)] every en-
anticipated by Pattanayak and Schi¢2¢8], indeed makes a ergy level is almost degenerate. In other discrete locations,
transition to more complex behavior in the presence of @ne finds almost degeneracy for every second level, every
classical separatripd]. It is clear that the near degeneracy of third level, and so on.
levels is necessary for the existence of significant tunneling.
We directly investigate, in this work, the effect of near de- 10
generacy in the presence of tunneling on the complexity and
the behavior of the development of the wave function. This

criterion is, in fact, closely analogous to the criterion of over- 08 r
lapping resonances for the onset of classical ch&ps
The model we shall use is related to the one we previ- 06 |

ously explored[6], i.e., a barrier embedded in an infinite  gos
well. By displacing the barrier in the double well systétm

the right or to the left certain positions are passed where the 04 ¢ R,
system becomes strongly near-degenerate. These positions e
occur at almost commensurate intervals. It is exactly for

|(||u|..

.. . . i . 02 - -
those positions that one may find significant tunneling ac- - -
companied by complex behavior. We show, moreover, that
in the cases of very high degeneracy, tunneling from left to 00— ’r - :
. . . . g . . —-20. -10.0 0.0 10.0 20.0
right has exponential decay, on a significant interval of time, center of barrier ¢

but at other positions, where near degenerate conditions are
somewhat weaker, the transition curve develops strong oscil- FIG. 1. Square root of energy eigenvalues as a function of the
lations. center of the barrier.

1063-651X/97/563)/369714)/$10.00 55 3697 © 1997 The American Physical Society



3698 BRIEF REPORTS 55

0.8 ‘ - , Figure 1 and 2 show complete correspondence; the strength
of the RE’s depend on the number of degenerate energy lev-
els (Fig. 2, insel. The second strongest RE in the picture is
found where the system has near degeneracy for every fifth
level (c~—54/5 andc~54/5).

An additional factor that one must consider is the projec-
tion of the initial state(Gaussian wave packebn different
eigenfunctions, i.e., the coefficients of the representation. It

is clear that the strength of a RE depends on the number of
l‘ ' almost degenerate states that have a large overlap with the
i

0.6 -

Pr max(x)
' (=]
H

02 ¢ initial state. Thus, in order to get strong RE, there must exist

at least one pair of eigenstatég,— 1>, |j>, which fulffill
“ “ two conditions:(1) Near degeneracy of level€(_~E;),
00,00 100 Y 100 200 and (2) the scalar product of the eigenstate with the initial
center ¢ state is large enoudhe., in our case(y(0),¢;) appreciable
compared to unity Condition(1) forms a general underlying
symmetry of the system, while conditi@B) is a requirement
for the symmetry effects to be realized.
In fact, near degeneracy of levelgcondition (1)],
E;_1~E;, implies symmetry properties of a pair of eigen-
As an approximation to our model, consider two separatstates,j—1) and|j). Let us denote the part of the eigen-
infinite wells with widthsl +x; andl —x,. The energy levels function on the left side of the barrier & , and on the right
of the two separate wells exhibit very similar behavior to thatside of the barrier agr (we neglect the function under the
of the finite barrier, but in this case, exact degeneracy occurgarrier, since the eigenfunctions are small in this region
according to the geometrical configuration of the system. FoNear degeneracy of levels and orthogonality implies that the
Xp=—X;, we have complete symmetry and all levels areeigenfunctions are almost the same on one side of the barrier,
degenerate. When the width of the left well is twice theand opposite in sign on the other side of the barrier, i.e.,
width of the right well or vice versa, one obtains degeneracyp, ;_~¢_ j=¢ and ¢rj_1~— drj=—¢r, Or vice
for every second energy levébf three levels, two are de- versa. Moreover, the eigenvalue condition requires that
generatg If the width of the left well is one-third of that of [, |#,|>~ [r|#r|2, While the normalization condition re-
the right well, every third level is degenerate, and so on. This,,; 2 2. 2. 2.1
follows from the relationsE,, =#2(mn;)%2m(l +x;)* and Quires [ | "+ [l del°~1. Thus, fu|gn|*~ el el 5.

FIG. 2. Maximum probability to be to the right of the barrier.
The inset shows partial correspondence betweerirBEnance en-
hancementand almost degenerate levels.

These properties imply symmetry and antisymmetry in the
En =%2(mn)?2m(1 —x2)?; if ny/ny=(1+x1)/(1 —x2), then  central position. We conjecture that this symmetry is the es-
En,=En, (n, and n, are positive integejs The locations sential property of the central position=£0).

for which these degeneracies oceur are The wave function for the main, central RE exhibits a
c=[(n,—n,)/(n,+n)](I—w/2). In everyn,+n, levels we Ccomplex behavior for the evolution. This complexity is due
have at least one degeneracy. In our mdbatrier in infinite 0 the large number of almost degenerate levels. When we
well), the behavior is very similar to the problem of separateeasure a physical quantity, the difference between levels
wells for the lower energy leveldor the higher energy lev- determines the time dependeritee time-dependent phase is
els there are, in fact, no crossingdegeneracy locations are, computed according tAE;;). The very small frequency due
moreover, shifted slightly forwards the center. to near degeneracy implies a very large recurrence time. On

In order to study the tunneling process, we constructed &€ other hand, large energy differences are associated with
wave packet approximating the form y(x,0) Shorttime scales. The influence of these types of frequencies

= cex] — (x—xo)%/(40?) +ik,] [where 0=5, k,~0.45 and can be seen in most of the results. However, this behavior
Xo=(x,—1)/2], from 28 or less of the first energy levels, does not occur for the total probability in the left side of the

located in the middle of the left side of the barrigme nor-  Well as a function of time, as seen in FigaB The curves
malization of the wave packet is approximately 0.999he &€ smooth and_do not reflect the mfluenpe of the shor_t time
average energy is approximately 0.1We then measured scale. As explamgd before_, at RE Iocatl_ons there eX|_st, at
the maximum probability to be on the right side of the barrier'®aSt, one pair of eigenfunctiorf -, ¢; which are approxi-
during a very long time intervalf,.,~2x5x 10°). The cal- mately the same on the left side afit, ¢;_1¢; is appre-
culation is done for the central region of the wéltom  ciable (approximately 3). The influence of other(non-
—1/5tol/5) to avoid a phase space imbalancing effédhe  neighboring eigenfunctions orP, tends to be small. The
barrier is located too close to the left side, for example, theesult is a combination of periodic functiofthe number of
probability to be in the left side is much smaller than thethese functions corresponds to the number of pairs that fulfill
probability to be in the right side, just because the availabléhe two conditions for RE with very small frequency dif-
space is much legslt can be seen clearly from Fig. 2, that ferences.

just several positiongwhich we call RE, for resonance en-  The transition from one side to another, wheacy=0,
hancementallow tunneling, while in most regions the wave exhibits approximate exponential behavior for times not too
packet is trapped in the left side. The strongest RE is founghort or too lond (Fig. 3(@)]. We observe similar behavior,

in the center of the well where we have complete symmetrybut less clear, in other locations that have very strong RE
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‘ L FIG. 4. The entropy function as a function of time for different
0.00000 0.00010 0.00020 000030 0.00040 locations.(a) c=c,=0 (b) c=c,=—10.89,(c) c=c,=—3.63,(d)
c=c3=—1; the inset shows an enlargement of typical periodic
FIG. 3. (a) Probability to be to the left of the barrier as a func- oscillations.

tion of time for three largest RE'En the interval (~1/5,1/5)]. (b) L . . . .
The power spectrum dof). initial condition after approximately 80 000 time units. The

entropy for non-RE locations shows almost periodic behav-

(locations such as~ —54/3 andc~ —54/2). It appears that ior [Fig. 4(d); the inset shows the structure at increased
this exponential decay is due to the behavior of a sum oscald. A similar behavior can be seen fop(t)
periodic functions with very small different frequencies, as=({(x?)—(x)?).
can be seen in Fig.(8). After this interval of decayP Comparison between different locations shows that one
enters a domain of large oscillations. can characterize the behavior by two time scales. The first is

In Fig. 3@, we show also the results of the same calcu-the time of approach to equilibriun\t.g), and the second is
lation for some other RE locations. As expected, we find ahe recurrence timeAt,.). The approach to equilibrium time
periodic (or almost periodig behavior. The Fourier trans- corresponds to averaging small frequendies, (AE) over
form [Fig. 3(b)] shows very strong frequency peaks that fitall energies that satisfy near degenejadyne can easily
the most dominant near degenerate energy levels, and shadentify At.q from Fig. 3a) (for ¢;) and from Fig. 4a),
clearly that very small frequencies dominate the motion.  while At,. can be calculated analytically from the known

The near degeneracy of levels that produces a high levaigenvalues. It appears that.,/At,. can give a measure
of complexity, i.e., chaoticlike behavior, occurs in the pres-for the complexity of the behavior of the system, as seen in
ence of strong tunneling. We have observed this effect inhese results. In all casete, is approximately the same,
Ref.[6]. We study here one of the most clear ways to displaywhile At,. is changed drastically from, to c; (one cannot
this connection. We compare, in Fig(aB results of four recognize recurrence in thgy location, whilec,; andc, ex-
positions. Forc;=—10.89, there is a large RE with three hibit near recurrence as mentioned in the previous para-
pairs of dominant, near degenerate, eigenstates, and fgraph. Thus, the ratio of these two time scales is largest for
c,=—3.63 there is a smaller RE with one pair of dominantc; (largest RE and maximum complexityand decreases
almost degenerate eigenstates. The choiagef—1 results when the RE’'s become strongér when the complexity
in no RE, no degeneracy, and no tunneling at all. The maitecomes stronggr
RE, atc=cy=0, reflects a very complex behavior, as we In Fig. 5, we compare thép):(x) maps, sampled at peak
have shown in Ref(6]. times (times at which the wave function forms peakBor

In Fig. 4 the entropy defined by S(t) each location of the barriercg,cq,...), we measure the
=— [|x.1)|An|¥(x.t)|?dx is computed. Foc,, shown in Fig.  time between peaks ofs(x;,t)|. At ¢, (a) the map moves
4(a), the entropy rises sharply accompanied by high-toward the center and then accumulates in the central region.
frequency oscillations and then remains a long time in arhe map ofc,; (b) shows some ordered lines, and it is easy to
“*quasiequilibrium state.” The second RE;, shown in Fig. see that the wave packet stays most of the time in the left
4(b), shows a tendency to recurrence after 280 000 timaide. More ordered behavior appears in the mag.ofc),
units, while ¢,, shown in Fig. 4c), returns to almost the where the lines appear as semiperiodic pafiike mapping
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-0.5 | T 1 FIG. 5. The accumulation of
points in thex):(p) plane accord-
é_ ing to peak times for different lo-
v—10 ' ‘ ‘ ' ' ' ' ’ ; cations. (8) c=c,=0, (b) c=c;
(c.) (d.) —-10.89, () c=c,=—3.63, (d)
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b the barrier.
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oscillates back and forth, each time adding points to pathsior of the wave functions of a quantum system. A large num-
Finally, c; (d) provides ordered maps, as expected. The samber of near degenerate levels induces a high level of com-
pattern can be seen also {ar):(p) (m=dp/dt), at peak plexity. In general, a pair of near degenerate levels has a pair
times, and from the Poincamaps(p):(x) sampled when of equivalent eigenfunctions for which one is nonalternating
p(t) is minimum[i.e., w(t)=0 andd=/dt>0] [2]. A period  and the other alternating. Moreover, in this case, the prob-
doubling behavioksmall circles within large circlgscan be  apility to be to the left side is approximately equal to the
seen in the(p):(x) plane, and in thgm):(p) plane, as probability to be to the right side, without connection to the
shown in Ref.[6]. The behavior becomes more ordered asharrier position. These conditions suggest an underlying
the RE height decreases, while fog there are just large symmetry property which depends strongly on the geometry

circles. o o of the system.
We have shown in this study that tunneling in the pres-

ence of near degeneracy of levels provides necessary and We wish to thank E. Eisenberg, M. Lewkowicz, |. Dana,
sufficient conditions for the development of complex behav-and R. Berkovits for many useful discussions.

[1] S. Tomsovic and D. Ullmo, Phys. Rev.3D, 145(1994. tori, where the classical trajectories lie. The transition from

[2] A.K. Pattanayak and W.C. Schieve, Phys. Rev. L&#.2855 localized states on EBK tori to delocalized states with support
(1994). on, e.g., the classical chaotic region is usually accompanied by

[3] A.K. Pattanayak and W.C. Schieve, Phys. Rev5®& 3607 a sequence of degeneracies in the spectrum as clearly demon-
(1994). strated in the case of kicked-Harper models on a toroidal phase

[4] R. Berkovits, Y. Ashkenazy, L.P. Horwitz, and J. Levitan, space[l. Dana, Phys. Rev. B2, 466 (1995]. We thank I.
Physica A(to be publishel Dana for a discussion of this point.

[5] The mechanism by which the quantized EBK classical invari- [6] Y. Ashkenazy, L.P. Horwitz, J. Levitan, M. Lewkowicz, and
ant tori are broken by perturbations is not fully understood. In Y. Rothschild, Phys. Rev. Let?5, 1070(1995.
the integrable part the semiclassical eigenstates are concenf7] M.M. Nieto, V.P. Gutschick, C.M. Bender, F. Cooper, and D.
trated exponentially around the quantized classical invariant ~ Strottman, Phys. Lett. B63 336 (1985.



