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Complexity, tunneling, and geometrical symmetry
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It is demonstrated in the context of the simple one-dimensional example of a barrier in an infinite well that
highly complex behavior of the time evolution of a wave function is associated with the near degeneracy of
levels in the process of tunneling. Degenerate conditions are obtained by shifting the position of the barrier.
The complexity strength depends on the number of almost degenerate levels which depend on geometrical
symmetry. The presence of complex behavior is studied to establish correlation with spectral degeneracy.
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Tunneling processes have become of considerable inte
as one of the possible mechanisms for creating highly c
plex behavior in the structure of the quantum wave functi
Tomsovic and Ullmo@1# found that there is an interestin
correlation between classical chaotic behavior and the rat
tunneling in the corresponding quantum system. The con
sion of their study is that chaos facilitates tunneling.

On the other hand, Pattanayak and Schieve@2,3# found
chaotic behavior in the semiclassical phase space~defined by
expectation values! of a one-dimensional time-independe
Duffing oscillator where new variables, associated with d
persion of the quantum states, are defined and included in
description of the system. They concluded that quantum
neling plays a crucial role for the chaotic behavior in t
corresponding semiclassical maps. They have argued@3# that
the spectrum becomes more complicated in the neigh
hood of the separatrix.

In a recent study, we have considered a model in wh
tunneling leads to highly complex behavior of the quant
wave function and its time dependence. The spectrum
anticipated by Pattanayak and Schieve@2,3#, indeed makes a
transition to more complex behavior in the presence o
classical separatrix@4#. It is clear that the near degeneracy
levels is necessary for the existence of significant tunnel
We directly investigate, in this work, the effect of near d
generacy in the presence of tunneling on the complexity
the behavior of the development of the wave function. T
criterion is, in fact, closely analogous to the criterion of ov
lapping resonances for the onset of classical chaos@5#.

The model we shall use is related to the one we pre
ously explored@6#, i.e., a barrier embedded in an infini
well. By displacing the barrier in the double well system~to
the right or to the left!, certain positions are passed where t
system becomes strongly near-degenerate. These pos
occur at almost commensurate intervals. It is exactly
those positions that one may find significant tunneling
companied by complex behavior. We show, moreover, t
in the cases of very high degeneracy, tunneling from lef
right has exponential decay, on a significant interval of tim
but at other positions, where near degenerate conditions
somewhat weaker, the transition curve develops strong o
lations.
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In a study by Nietoet al. @7#, it was shown that tunneling
in an asymmetric double well is a very sensitive function
the potential. The behavior of the development of the wa
function under these conditions was not, however, discus
there.

The calculation in this work is done for a square barrier
heightV55 and widthw5x22x152 (x1 is the left bound-
ary of the barrier andx2 is the right boundary; we take
\[1,2m[1) embedded in an infinite well of width
2l5110 @interval (2 l ,l )#. In the calculation, an exact ana
lytic expression is evaluated on the computer; there is
accumulation of error for large times, since there is no in
gration over time.

We first discuss the energy spectrum according to the
cation of the barrier. In Fig. 1 one can see the lower ene
levels ‘‘almost crossing’’~the levels do not cross, but ca
become very close to each other! at several locations of the
barrier. In the middle@the positionc of the center of the

barrier is taken atc50; generally,c5 1
2 (x11x2)# every en-

ergy level is almost degenerate. In other discrete locatio
one finds almost degeneracy for every second level, ev
third level, and so on.

FIG. 1. Square root of energy eigenvalues as a function of
center of the barrier.
3697 © 1997 The American Physical Society
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As an approximation to our model, consider two separ
infinite wells with widthsl1x1 andl2x2. The energy levels
of the two separate wells exhibit very similar behavior to th
of the finite barrier, but in this case, exact degeneracy occ
according to the geometrical configuration of the system.
x252x1, we have complete symmetry and all levels a
degenerate. When the width of the left well is twice t
width of the right well or vice versa, one obtains degenera
for every second energy level~of three levels, two are de
generate!. If the width of the left well is one-third of that o
the right well, every third level is degenerate, and so on. T
follows from the relationsEnl

5\2(pnl)
2/2m( l1x1)

2 and

Enr
5\2(pnr)

2/2m( l2x2)
2; if nl /nr5( l1x1)/( l2x2), then

Enl
5Enr

(nl and nr are positive integers!. The locations
for which these degeneracies occur a
c5@(nr2nl)/(nr1nl)#( l2w/2). In everynl1nr levels we
have at least one degeneracy. In our model~barrier in infinite
well!, the behavior is very similar to the problem of separ
wells for the lower energy levels~for the higher energy lev-
els there are, in fact, no crossings!; degeneracy locations are
moreover, shifted slightly forwards the center.

In order to study the tunneling process, we constructe
wave packet approximating the form c(x,0)
5cexp@2(x2x0)

2/(4s2)1ikx# @where s55, kx;0.45 and
x05(x12 l )/2], from 28 or less of the first energy level
located in the middle of the left side of the barrier~the nor-
malization of the wave packet is approximately 0.9999!. The
average energy is approximately 0.1V. We then measured
the maximum probability to be on the right side of the barr
during a very long time interval (tmax;2353105). The cal-
culation is done for the central region of the well~from
2 l /5 to l /5) to avoid a phase space imbalancing effect~if the
barrier is located too close to the left side, for example,
probability to be in the left side is much smaller than t
probability to be in the right side, just because the availa
space is much less!. It can be seen clearly from Fig. 2, tha
just several positions~which we call RE, for resonance en
hancement! allow tunneling, while in most regions the wav
packet is trapped in the left side. The strongest RE is fo
in the center of the well where we have complete symme

FIG. 2. Maximum probability to be to the right of the barrie
The inset shows partial correspondence between RE~resonance en-
hancement! and almost degenerate levels.
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Figure 1 and 2 show complete correspondence; the stre
of the RE’s depend on the number of degenerate energy
els ~Fig. 2, inset!. The second strongest RE in the picture
found where the system has near degeneracy for every
level (c;254/5 andc;54/5).

An additional factor that one must consider is the proje
tion of the initial state~Gaussian wave packet! on different
eigenfunctions, i.e., the coefficients of the representation
is clear that the strength of a RE depends on the numbe
almost degenerate states that have a large overlap with
initial state. Thus, in order to get strong RE, there must e
at least one pair of eigenstates,u j21., u j., which fulfill
two conditions:~1! Near degeneracy of levels (Ej21;Ej ),
and ~2! the scalar product of the eigenstate with the init
state is large enough@i.e., in our case,„c(0),f j… appreciable
compared to unity#. Condition~1! forms a general underlying
symmetry of the system, while condition~2! is a requirement
for the symmetry effects to be realized.

In fact, near degeneracy of levels@condition ~1!#,
Ej21;Ej , implies symmetry properties of a pair of eige
states,u j21& and u j &. Let us denote the part of the eigen
function on the left side of the barrier asfL , and on the right
side of the barrier asfR ~we neglect the function under th
barrier, since the eigenfunctions are small in this regio!.
Near degeneracy of levels and orthogonality implies that
eigenfunctions are almost the same on one side of the bar
and opposite in sign on the other side of the barrier, i
fL, j21;fL, j[fL and fR, j21;2fR, j[2fR , or vice
versa. Moreover, the eigenvalue condition requires t
*LufLu2;*RufRu2, while the normalization condition re

quires *LufLu21*RufRu2;1. Thus,*LufLu2;*RufRu2; 1
2 .

These properties imply symmetry and antisymmetry in
central position. We conjecture that this symmetry is the
sential property of the central position (c50).

The wave function for the main, central RE exhibits
complex behavior for the evolution. This complexity is du
to the large number of almost degenerate levels. When
measure a physical quantity, the difference between le
determines the time dependence~the time-dependent phase
computed according toDEi j ). The very small frequency due
to near degeneracy implies a very large recurrence time.
the other hand, large energy differences are associated
short time scales. The influence of these types of frequen
can be seen in most of the results. However, this beha
does not occur for the total probability in the left side of t
well as a function of time, as seen in Fig. 3~a!. The curves
are smooth and do not reflect the influence of the short t
scale. As explained before, at RE locations there exist
least, one pair of eigenfunctionsf j21, f j which are approxi-
mately the same on the left side and*

2 l
x1 f j21f j is appre-

ciable ~approximately 1
2!. The influence of other~non-

neighboring! eigenfunctions onPleft , tends to be small. The
result is a combination of periodic functions~the number of
these functions corresponds to the number of pairs that fu
the two conditions for RE!, with very small frequency dif-
ferences.

The transition from one side to another, whenc5c050,
exhibits approximate exponential behavior for times not
short or too long@ ~Fig. 3~a!#. We observe similar behavior
but less clear, in other locations that have very strong
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~locations such asc;254/3 andc;254/2). It appears tha
this exponential decay is due to the behavior of a sum
periodic functions with very small different frequencies,
can be seen in Fig. 3~a!. After this interval of decay,Pleft
enters a domain of large oscillations.

In Fig. 3~a!, we show also the results of the same calc
lation for some other RE locations. As expected, we fin
periodic ~or almost periodic! behavior. The Fourier trans
form @Fig. 3~b!# shows very strong frequency peaks that
the most dominant near degenerate energy levels, and s
clearly that very small frequencies dominate the motion.

The near degeneracy of levels that produces a high l
of complexity, i.e., chaoticlike behavior, occurs in the pre
ence of strong tunneling. We have observed this effec
Ref. @6#. We study here one of the most clear ways to disp
this connection. We compare, in Fig. 3~a!, results of four
positions. Forc15210.89, there is a large RE with thre
pairs of dominant, near degenerate, eigenstates, and
c2523.63 there is a smaller RE with one pair of domina
almost degenerate eigenstates. The choice ofc3521 results
in no RE, no degeneracy, and no tunneling at all. The m
RE, at c5c050, reflects a very complex behavior, as w
have shown in Ref.@6#.

In Fig. 4 the entropy defined by S(t)
52*uc(x,t)u2lnuc(x,t)u2dx is computed. Forc0, shown in Fig.
4~a!, the entropy rises sharply accompanied by hig
frequency oscillations and then remains a long time in
‘‘quasiequilibrium state.’’ The second RE,c1, shown in Fig.
4~b!, shows a tendency to recurrence after 280 000 t
units, while c2, shown in Fig. 4~c!, returns to almost the

FIG. 3. ~a! Probability to be to the left of the barrier as a fun
tion of time for three largest RE’s@in the interval (2 l /5,l /5)#. ~b!
The power spectrum of~a!.
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initial condition after approximately 80 000 time units. Th
entropy for non-RE locations shows almost periodic beh
ior @Fig. 4~d!; the inset shows the structure at increas
scale#. A similar behavior can be seen forr(t)
5^^x2&2^x&2&.

Comparison between different locations shows that o
can characterize the behavior by two time scales. The firs
the time of approach to equilibrium (Dteq), and the second is
the recurrence time (Dt rc). The approach to equilibrium time
corresponds to averaging small frequencies~i.e., ^DE& over
all energies that satisfy near degeneracy!. One can easily
identify Dteq from Fig. 3~a! ~for c0) and from Fig. 4~a!,
while Dt rc can be calculated analytically from the know
eigenvalues. It appears thatDteq /Dt rc can give a measure
for the complexity of the behavior of the system, as seen
these results. In all casesDteq is approximately the same
while Dt rc is changed drastically fromc0 to c3 ~one cannot
recognize recurrence in thec0 location, whilec1 andc2 ex-
hibit near recurrence as mentioned in the previous pa
graph!. Thus, the ratio of these two time scales is largest
c3 ~largest RE and maximum complexity!, and decreases
when the RE’s become stronger~or when the complexity
becomes stronger!.

In Fig. 5, we compare thêp&:^x& maps, sampled at pea
times ~times at which the wave function forms peaks!. For
each location of the barrier (c0 ,c1 , . . . ), we measure the
time between peaks ofuc(x1 ,t)u2. At c0 ~a! the map moves
toward the center and then accumulates in the central reg
The map ofc1 ~b! shows some ordered lines, and it is easy
see that the wave packet stays most of the time in the
side. More ordered behavior appears in the map ofc2 ~c!,
where the lines appear as semiperiodic paths.~The mapping

FIG. 4. The entropy function as a function of time for differe
locations.~a! c5c050 ~b! c5c15210.89,~c! c5c2523.63,~d!
c5c3521; the inset shows an enlargement of typical perio
oscillations.
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FIG. 5. The accumulation of
points in thê x&:^p& plane accord-
ing to peak times for different lo-
cations. ~a! c5c050, ~b! c5c1
5210.89, ~c! c5c2523.63, ~d!
c5c3521. The dotted line indi-
cates the position of the center o
the barrier.
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oscillates back and forth, each time adding points to pat!
Finally, c3 ~d! provides ordered maps, as expected. The sa
pattern can be seen also in^p&:^r& (p5dr/dt), at peak
times, and from the Poincare´ maps^p&:^x& sampled when
r(t) is minimum@i.e.,p(t)50 anddp/dt.0# @2#. A period
doubling behavior~small circles within large circles! can be
seen in the^p&:^x& plane, and in thê p&:^r& plane, as
shown in Ref.@6#. The behavior becomes more ordered
the RE height decreases, while forc3 there are just large
circles.

We have shown in this study that tunneling in the pr
ence of near degeneracy of levels provides necessary
sufficient conditions for the development of complex beh
n,
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ior of the wave functions of a quantum system. A large nu
ber of near degenerate levels induces a high level of c
plexity. In general, a pair of near degenerate levels has a
of equivalent eigenfunctions for which one is nonalternat
and the other alternating. Moreover, in this case, the pr
ability to be to the left side is approximately equal to t
probability to be to the right side, without connection to t
barrier position. These conditions suggest an underly
symmetry property which depends strongly on the geome
of the system.
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