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Characterization of sleep stages by correlations in the magnitude and sign of heartbeat increments
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We study correlation properties of the magnitude and the sign of the increments in the time intervals between
successive heartbeats during light sleep, deep sleep, and rapid eye motREMNEleep using the detrended
fluctuation analysis method. We find short-range anticorrelations in the sign time series, which are strong
during deep sleep, weaker during light sleep, and even weaker during REM sleep. In contrast, we find
long-range positive correlations in the magnitude time series, which are strong during REM sleep and weaker
during light sleep. We observe uncorrelated behavior for the magnitude during deep sleep. Since the magnitude
series relates to the nonlinear properties of the original time series, while the sign series relates to the linear
properties, our findings suggest that the nonlinear properties of the heartbeat dynamics are more pronounced
during REM sleep. Thus, the sign and the magnitude series provide information which is useful in distinguish-
ing between the sleep stages.
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[. INTRODUCTION and nonlinear properties of heartbeat dynamics change dur-
ing different stages of sleep. We focus on the correlations of
Healthy sleep consists of cycles of approximately 1-2 hthe sign and the magnitude of the heartbeat increménts
duration. Each cycle is characterized by a sequence of sleepr,— 7;_; obtained from recordings of interbeat intervajs
stages usually starting with light sleep, followed by deepfrom healthy subjects during sle€pig. 1), wherei indexes
sleep, and rapid eye movemeiREM) sleep[1]. While the  each heartbeat interval. We apply the detrended fluctuation
specific functions of the different sleep stages are not yeanalysis(DFA) method on both the sign and the magnitude
well understood, many believe that deep sleep is essential fgime series. We find that the sign series exhibits anticorre-
physical rest, while REM sleep is important for memory con-|ated behavior at short time scales which is characterized by
solidation[1]. It is known that changes in the physiological 5 correlation exponent with smallest value for deep sleep,
processes are associated with circadian rhytitweske or  |arger value for light sleep, and largest value for REM sleep.
sleep stateand with different sleep stagg8-9]. The magnitude series, on the other hand, exhibits uncorre-
Here we investigate how the heart rhythms of healthy\ieq pehavior for deep sleep, and long-range correlations are
subjects change within the different sleep stages. Typ'ca"¥0und for light and REM sleep, with a larger exponent for

the d|ﬁerence§ n cgrdlac dynamics during wake or SfleeR-QEM sleep. The observed increase in the values of both the
states and during different sleep stages are reflected in the

average and standard deviation of the interbeat interval timg' 9" and magnitude correlation exponents from deep through

series|5,6]. However, heartbeat dynamics exhibit complexﬁght to REM sleep is systematic and significant. We also find

behavior which is also characterized by long-range powerghat the values of the sign and magnitude exponents for REM

law correlationd7—9], and recent studies show that changesSIGep are very close to the values of these exponents for the

in cardiac control due to circadian rhythms or different sleepVake state. _

stages can lead to systematic changes in the correlaibaih Recent studies suggest thak long-range correlated be-

ing) properties of the heartbeat dynamics. In particular, ithavior of the magnitude series obtained from a long-range

was found that the long-range correlation in heartbeat dyanticorrelated increment serigg; relates to the nonlinear

namics change during wake and sleep peridds, indicat-  properties of the signal, while the sign series reflects the

ing different regimes of intrinsic neuroautonomic regulationlinear propertie$12,13, and(ii) the increments in the heart-

of the cardiac dynamics, which may switch on and off with beat intervals are long-range anticorrelai8dl and exhibit

the circadian rhythms. Moreover, different sleep stages dumonlinear propertief12—16. Thus, our finding of positive

ing nocturnal sleep were found to relate to a specific type opower-law correlations for the magnitude of the heartbeat

correlations in the heartbeat intervdl$l], suggesting a increments during REM sleep and of loss of these correla-

change in the mechanism of cardiac regulation in the procedons during deep sleep indicates a different degree of non-

of sleep. linearity in the cardiac dynamics associated with different
We employ a recently proposed approach of magnitudsleep stages. Our results may be useful, when combined with

and sign analysigl2,13 to further investigate how the linear earlier studies of interbeat interval correlations in different

1063-651X/2002/66)/0519086)/$20.00 65 051908-1 ©2002 The American Physical Society



JAN W. KANTELHARDT et al. PHYSICAL REVIEW E 65 051908

14l tion function and the power spectrum are not suited for non-
) (@) stationary time serietsee, €.9.[39]).
1.2 The DFA procedure consists of four steps.
® 10 Step 1 Determine the “profile”
0.8 i
ek sages Y(|)Ekzl Xe—(x), i=1,...L, (1
REM sleep
light sleep ‘ M H H ‘ H of the data seriesy of lengthL. Subtraction of the meafx)
deep sleep |U is not compulsory, since it would be eliminated by the later
1 2 : s detrending in the third step.
tlmet[h] Step 2 Divide the profileY(i) into L,=[L/n] nonover-
lapping segments of equal lengthSince the length of the
1.2 series is often not a multiple of the considered time soale
D a short part at the end of the profile may remain. In order not
e 10 W%J é@%@%ﬁ @@@?@ﬁ to disregard this part of the series, the same procedure is
0.8 repeated starting from the opposite end. Therelhy, 2eg-
_ 01 ] ments are obtained altogether.
£ o AR ﬂ‘ﬁ MallMAa @“fg% Step 3 Calculate the local trend for each of the,2seg-

ments by a least-squares fit of the data. Then we determine
the variance

D IVTEY VIV

sgn(ot,)

SIH

2 (Yr=Dntil-p,}* @

|57

for each segment,v=1,...,2,. Here,p,(i) is the fitting
0 deartbeat n41(1)mber 60 polynomial in segment. Linear, quadratic, cubic, or higher
order polynomials can be used in the fitting procedem-

FIG. 1. () One-night record for a healthy subject. The interme- ventionally called DFA1, DFA2, DFA3, etc[11]. Since the
diate wake states as well as REM sleep, light sleep, and deep slegetrending of the time series is done by the subtraction of
stages have been determined by visual evaluation of brain, eye, aie polynomial fits from the profile, different order DFA's
muscle activity[41]. (b) Heartbeat intervalsr;, incrementsér; differ in their capability of eliminating trends in the data. In
=7,—7i_1, Signs of the increments sghf;), and absolute incre- DFAm, mth order DFA, trends of ordem in the profile
ments|&7;| for a subset of the record shown (a). (or, equivalently, of ordem—1 in the original serigsare

eliminated. Thus a comparison of the results for different
sleep stagegl1], for distinguishing the different sleep stages orders of DFA allows one to estimate the type of the poly-
using electrocardiogram records. nomial trend in the time serid20,21].

The paper is organized as follows. In Sec. Il we review Step 4Average over all segments and take the square root
the DFA method. In Sec. Ill we apply the DFA to analyze theto obtain the fluctuation functiop#0],
sign and magnitude time series of healthy subjects. In Sec.

IV the significance of the results and interpretations are dis-
cussed. E(n)=

()

2L, }1/2

1
2Ln; Fi»)

Il. DETRENDED FLUCTUATION ANALYSIS We are interested in how(n) depends on the time scate

In recent years the DFA methdd7,18,9,11 is becoming Hence, we have to repeat steps 2—4 for several time seales
a widely used technique for the detection of long-range corit is apparent thaf(n) will increase with increasing. If
relations in noisy, nonstationary time seri¢s9-22,9— gatax; are long-range power-law correlatde(n) increases,
13 23— 38 It has Successfully been applled to diverse f|e|dsfor |arge Va|ues o'h as a power |aW
such as DNA sequencgd3,24], heart rate dynamid9—13,
neuron spiking 25,26, human gaif27], long-time weather _ -
records[28—30, cloud structurd31], geology[32], ethnol- F(n)~n®. (4)
ogy [33], economics time serieg34—36, and solid state
physics[37,38. One reason we employ the DFA method is For long-range correlated or anticorrelated data, random
to avoid spurious detection of correlations that are artifactsvalk theory implies that the scaling behavior#n) is re-
of nonstationarities in the heartbeat time series. Other tecHated to the autocorrelation function and the power spectrum.
niques for the detection of correlations like the autocorrelaif the time series is stationary, we can apply standard spectral
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analysis techniques and calculate the power spec8(finas  Following the DFA procedure as described above, we obtain
a function of the frequency. Then, the exponeng in the  a fluctuation functior(n) described by a scaling law as in

scaling law Eq. (4), but with an exponentr=a+1,

S(f)~f77 ©) F(n)~no=n“*1, (10

Thus, the scaling behavior can be accurately determined
is related to the mean fluctuation function exponerty even ifa is smaller than zer¢but larger than-1). We note
thatF(n)/n corresponds to the conventiorigln) in Eq. (4).

B=2a—1 ©6) If we do_ not_subtract the_ average v_alues in each step of_ the
' summation in Eq.(9), this summation leads to quadratic
trends in the profileY(i). In this case we must employ at
~ ) least the second order DFA to eliminate these artificial
If 0.5<a<1, the correlation exponent trends.
7:2_2'& (7) IIl. CORRELATION ANALYSIS OF SIGN AND

MAGNITUDE TIME SERIES

describes the decay of the autocorrelation function To study the correlation properties of the sig

=sgn(S7;) and magnitudem,=|57;| obtained from the
C(n)=(XiXj1ny~n 7. (8) original interbeat increment time seriés;, we investigate
in parallel the corresponding double profi[sge Eq(9)] for
We plot E(n) as a function ofn on double logarithmic  Xi=S; and x;=m;. We calculate the fluctuation function

scales and calculaie by a linear fit. For uncorrelated data, Eérzzb%e?: (')A\dZtLOr;: drizgfootze“mz ?2'8?553; i)[zogg.tenggree
the ErofiIeY(i) corresponds to the profile of a random walk, of detrending in an earlier studii1]. In the following we
and «=1/2 corresponds to the behavior of the root-means; yse the notationug,, for the valuea= &+ 1 of the sign
square displacemeRtof the walk,R(t) ~t'% wheret is the  soriog andy, . for the valuea of the magnitude series.

time (number of steps the walker make&or shortrange ™ \ve consider 24 records of interbeat intervals obtained

correlated data, a crossoverde- 0.5 is observed asymptoti- from 12 healthy individuals during sleep. The records have
cally for large scales. If a power-law behavior witha an approximate duration of 7.5 h. Figuréa)ll shows the
<0.5 is observed, the profile corresponds to anticorrelatetieartbeat interval time series for a typical healthy subject
fractional Brownian motion, and the data are long-range with periods of light sleep, deep sleep, REM sleep, and short
anticorrelated(antipersistent Power-law behavior withor intermediate wake phases. The annotation and duration of
>0.5 indicates persistent fractional Brownian motion, andth® sleep stages were determined based on standard proce-
the datax; are positively long-range correlated. In particular, dures{41]. Figure 1b) shows a subset of the heartbeat inter-
for Gaussian distributed white noise with zero m¢ancor-  val series7; and the increment series7; as well as the

related signal we obtaina=0.5 from the DFA method. In corresponding series of sigh and magnitudan .

addition, DFA can also be used to determine the scaling ex;. In order to analyze the correlation properties during th?
) . . C : different sleep stages separately, we split each heartbeat in-
ponent for a wide variety of self-affine series, if the first step

[Eq. ()] is skipped and the data are used directly instead Orferval sgrr;]es |r]2to subseq_uelngess hcorre.spondmgbto- the sleelp
the profile. In this way, the analysis is related to standar tages. Thus, from a typica C SEries, we o t‘f’“n severa
' : subsequences of heartbeat intervals corresponding to light

self-affine and fractal analysis. | d | d REM s I | subse-

However, the DFA method cannot deteegativefluctua- Sleep, deep sieep, an M sleep, as well as several Subse
i ~ , i guences corresponding to intermediate wake states. In order
tion exponentse, and it already becomes inaccurate fory, gliminate the effect of transitions between subsequent
strongly anticorrelated signals whenis close to zero. Since sleep stages, and because the determination of the sleep
strongly anticorrelated behavidicorresponding toa~0)  stages is done in intervals of 30 s, we disregard the first and
was previously reported for the heartbeat sign series, we udast 50 s of each individual subsequence. Then, to apply the
a modified DFA techniqugl2]. The simplest way to analyze DFA method, we calculate the profile for each subsequence
such data is to integrate the time series before the standafgitep 1, cut each of these profiles into segme(step 3, and
DFA procedure. Hence, we replace tsiagle summation in  calculate the variance for each segméstep 3. In step 4,
Eg. (1), which describes the determination of the profile fromwe calculate the fluctuation functioR(n) for each sleep
the original data,, by adoublesummation, stage by averaging over all segments corresponding)to
light sleep(ii) deep sleep, andii) REM sleep, as well as for
the intermediate wake states.

Figure 2 shows the normalized fluctuation functions

F(n)/n [corresponding toF(n)] versus the segment size

Y(i)zg1 [Y(k)—(Y)1. (9)
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‘o 9 Surprisingly, we find that in contrast to REM and light sleep,
(a) sign ok urprisingly, we Ti i s ight sleep

the magnitude series for deep sleep is uncorrelated, since the
profile is characterized by 5~ 1.5 after the double integra-
tion. This finding is consistent with stronger multifractality
during REM sleep than during deep sldé3], since previ-
ous studies have related positive long-range correlations in
the magnitude series with multifractal and nonlinear features
present in the signdll2,13,18. Following Refs[44,45 we
define a time series to be linear if its scaling properties are
not modified by randomizing its Fourier phases. In contrast,
when applied to a nonlinear series, the surrogate data test for
nonlinearity, which is based on Fourier phase randomization
[44,45, generates a linear series with different scaling prop-
erties for the magnitude series.

The nonlinearity of a time series is related to its multifrac-
" . tality. The partition functiorz,(n) of a time series; may be
10" interval n [beats] 10 defined ag46],

FIG. 2. The normalized fluctuation functiofg{n)/n of the in- z (n)=<|x- —x-|q> (12)
tegrated series of sigrss (a) and magnitudes; (b) of the heartbeat q t+n A/

increments for a representative healthy subje.the time scale in where (-) denotes the average over the indexin some

beat numbers. Before applying the DFA2 the profiles were split .
according to the sleep stages. The fluctuation functions for the Seé:_asequ(n) obeys scaling laws

ments corresponding to the same type of sleep have been averaged

with weights according to the number of intervals in each segment. Zq(n)~n7(q). (12
The different symbols correspond to the different sleep stages, light
sleep, deep sleep, and REM sleep. If the exponents(q) are linearly dependent amthe series

) ) ) X; is monofractal, otherwise; is multifractal. Monofractal
(time scalg n for the sign and the magnitude for a represen-geries fall under the category of linear series while multifrac-
tative subject. We find short-range anticorrelated behaviogy series are classified as nonlinear sef#d. A possible
for the sign of the incrementgFig. 2(&)]. Our analysis is \yay to test this classification is to apply the surrogate data
performed for time scales=7 beats—just above the breath- {esi[44,45. When this test is applied to a multifractal series,
ing peak[42]. In the intermediate regime</n=<20 beats, jt generates a linear series with a linear dependence gy
we observe significant differences in the behavior of the flucy, g in contrast to the nonlinear dependence for the original
tuation functionF(n) for the different sleep stages. For deep geries. On the other hand, applying the surrogate data test to
sleep the~(n)/n curve bends down, characterized by a cor-3 monofractal series does not affect its linegq) depen-
relation exponentrgg,<<1, for light sleep the=(n)/n curve  dence.
remains flat sjg~1), and for REM sleeff(n)/n increases In [12,13 it was shown that the long-range correlations in
with n(asigr>1). At n~20, F(n)/n exhibits a crossover, the magnitude series indicate nonlinear behavior. Specifi-
and at larger time scales the observed anticorrelations slowlya|ly, the results suggested that the correlation expomggy
decay. Forn>100 beats, we find uncorrelated behaviorof the magnitude series is a monotonically increasing func-
(characterized bygg,= 1.5 for the profile after double inte- tjon of the multifractal spectrum width of the original series.
gration for all sleep stages. For the sign series we also 0bThjs conclusion was obtained based upon several examples
serve that the value of the fluctuation functibign) at the  of artificial multifractal serie$12,13.
position of the crossovern(=20) is significantly different Thus, the long-range magnitude correlations we find for
for deep sleep, light sleep, and REM sldéjig. 2a)]. This  REM sleep indicate nonlinear contributions to the heartbeat
observation, as well as the finding that a different correlationregulation, which are reduced during light and deep sleep.
exponentag;g, Characterizes the behavior B{n) for differ-  |ndeed, a multifractal analysis of heartbeat intervals during
ent sleep stages in the intermediate reginsen%20, could  daytime[16] indicated the presence of multifractality. In a
be of practical use in developing an algorithm that can autorecent study we also found stronger multifractality during
matically distinguish between different sleep stages baseREM sleep than during deep slef483] which is consistent

solely on heartbeat records. with the scaling behavior of the magnitude series reported in
In Fig. 2(b) we present our results of the DFA2 method the present study.

for the magnitude of the heartbeat increments. In contrast to

t_he short-range cqrrelation:'s observed for the_ sign series', WE\/ SIGNIFICANCE OF THE RESULTS AND SUMMARY

find that the magnitude series for REM sleep is characterized

by a scaling exponent,,,>1.5 for time scales> 10, cor- The mean values of the effective fluctuation scaling expo-
responding to positive long-range power-law correlationsnents and their standard deviations are shown in Fig. 3 for
For light sleep, we find a smaller scaling exponegtgsthan  the different sleep stages. We estimate the exponeffitsm

for REM sleep, indicating weaker long-range correlations.the slopes in the log-log plot &f(n) versusn for all records.
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FIG. 3. The average values of the fluctuation exponegjg, for L 1 3 45678 910112

the integrated magnitude series angg, for the integrated sign
series for the different phasésake state, REM sleep, light sleep,
and deep slegpFor each of the 24 records from 12 healthy subjects  FIG. 4. The values of the effective fluctuation exponemtfor
the corresponding second order DFA fluctuation functi&i{®)  the integrated sign seri¢a) and the integrated magnitude seribs
have been fitted by Eq4) in the range of &n=<13 and 1%¥n  are shown for all 12 healthy subjedtsecond night of recording
<150 heartbeats fottsig, and ayag, respectively, where the most Wwhile the o values fluctuate, for REM sleep theis larger than the
significant differences between the sleep stages occur. « for light sleep, which is larger than thefor deep sleefthe three

) o ) _arrows indicate the cases that are not ordered in the same way as the
Since the most significant differences for the short-range siggajority). The exponent values were determined over the fitting
correlations occur in the range oikt<13 heartbeats, we ranges as described in the caption of Fig. 3.

use this fitting range for the exponents,,. For the expo-

nent of the integrated magnitude serieg.q, We use the |ikely followed by large(smal) increments. Our present re-
range 1:xn<150, since the long-range correlations occur-sults suggest that this empirical “rule” also applies to REM
ring in light and REM sleep can be observed best in thissleep, while in deep sleep small and large increments seem to
region. We find that there is a significant difference in theappear in a random fashion. On the other hand, the stronger
integrated sign series exponedy;y, observed for all three sign anticorrelations in deep sleep indicate that a positive
sleep stagesthe p value, obtained by Studentstest, is  increment is more likely—even more likely than in REM
below 0.001), and thus we confirm the conclusions drawrsleep—to be followed by a negative increment. Thus, the
from Fig. 2. The magnitude correlation exponents for REMcorrelation behavior of the heartbeat increments and their
sleep and for intermediate wake states are significantly largedigns and magnitudes during daytime activity is similar to
than those for the non-REM stagégyht and deep slegp  the behavior we find in REM sleep, but quite different from
Here also thep values are less than 0.001. Note that we dothe behavior we observe in deep sleep. This is consistent
not find a significant difference between the average expowith our finding (Fig. 3) of average exponent values for the
nents for REM sleep and for the intermediate wake statesvake episodes similar to the exponent values for REM sleep.
This is not surprising because heartbeat activity during REM  In summary, we analyzed, for healthy subjects, interbeat
sleep is very close to heartbeat activity during the wake statinterval fluctuations during different sleep stages which are
and the heartbeat time series during REM and waking exhibiassociated with different brain activity. We find that the
similar scaling propertiegl0,11]. short-range anticorrelations in the sign of the increments are
More significant than the differences for the average exstronger during deep sleep, weaker during light sleep, and
ponents are the differences between the exponents for eaeven weaker during REM sleep. In contrast, the magnitude
individual. Figure 4 shows the values for REM, light, and of the increments is long-range correlated with a larger ex-
deep sleep for all 12 healthy subje¢s&cond night only In ponent during REM sleep, suggesting stronger nonlinear
almost all cases the exponent of the REM sleep is the largestontributions to the heartbeat dynamics in this stage com-
the exponent of the light sleep is intermediate, and the expgaared with weaker nonlinear contributions in the non-REM
nent of the deep sleep is smallétere are three exceptions, stages.
indicated by arrows In our group of 24 records from 12

subject number
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