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Characterization of sleep stages by correlations in the magnitude and sign of heartbeat incremen
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We study correlation properties of the magnitude and the sign of the increments in the time intervals between
successive heartbeats during light sleep, deep sleep, and rapid eye movement~REM! sleep using the detrended
fluctuation analysis method. We find short-range anticorrelations in the sign time series, which are strong
during deep sleep, weaker during light sleep, and even weaker during REM sleep. In contrast, we find
long-range positive correlations in the magnitude time series, which are strong during REM sleep and weaker
during light sleep. We observe uncorrelated behavior for the magnitude during deep sleep. Since the magnitude
series relates to the nonlinear properties of the original time series, while the sign series relates to the linear
properties, our findings suggest that the nonlinear properties of the heartbeat dynamics are more pronounced
during REM sleep. Thus, the sign and the magnitude series provide information which is useful in distinguish-
ing between the sleep stages.
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I. INTRODUCTION

Healthy sleep consists of cycles of approximately 1–2
duration. Each cycle is characterized by a sequence of s
stages usually starting with light sleep, followed by de
sleep, and rapid eye movement~REM! sleep@1#. While the
specific functions of the different sleep stages are not
well understood, many believe that deep sleep is essentia
physical rest, while REM sleep is important for memory co
solidation@1#. It is known that changes in the physiologic
processes are associated with circadian rhythms~wake or
sleep state! and with different sleep stages@2–5#.

Here we investigate how the heart rhythms of heal
subjects change within the different sleep stages. Typic
the differences in cardiac dynamics during wake or sle
states and during different sleep stages are reflected in
average and standard deviation of the interbeat interval t
series@5,6#. However, heartbeat dynamics exhibit compl
behavior which is also characterized by long-range pow
law correlations@7–9#, and recent studies show that chang
in cardiac control due to circadian rhythms or different sle
stages can lead to systematic changes in the correlation~scal-
ing! properties of the heartbeat dynamics. In particular
was found that the long-range correlation in heartbeat
namics change during wake and sleep periods@10#, indicat-
ing different regimes of intrinsic neuroautonomic regulati
of the cardiac dynamics, which may switch on and off w
the circadian rhythms. Moreover, different sleep stages d
ing nocturnal sleep were found to relate to a specific type
correlations in the heartbeat intervals@11#, suggesting a
change in the mechanism of cardiac regulation in the proc
of sleep.

We employ a recently proposed approach of magnit
and sign analysis@12,13# to further investigate how the linea
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and nonlinear properties of heartbeat dynamics change
ing different stages of sleep. We focus on the correlations
the sign and the magnitude of the heartbeat incrementsdt i

[t i2t i 21 obtained from recordings of interbeat intervalst i

from healthy subjects during sleep~Fig. 1!, wherei indexes
each heartbeat interval. We apply the detrended fluctua
analysis~DFA! method on both the sign and the magnitu
time series. We find that the sign series exhibits antico
lated behavior at short time scales which is characterized
a correlation exponent with smallest value for deep sle
larger value for light sleep, and largest value for REM sle
The magnitude series, on the other hand, exhibits unco
lated behavior for deep sleep, and long-range correlations
found for light and REM sleep, with a larger exponent f
REM sleep. The observed increase in the values of both
sign and magnitude correlation exponents from deep thro
light to REM sleep is systematic and significant. We also fi
that the values of the sign and magnitude exponents for R
sleep are very close to the values of these exponents fo
wake state.

Recent studies suggest that~i! long-range correlated be
havior of the magnitude series obtained from a long-ran
anticorrelated increment seriesdt i relates to the nonlinea
properties of the signal, while the sign series reflects
linear properties@12,13#, and~ii ! the increments in the heart
beat intervals are long-range anticorrelated@8# and exhibit
nonlinear properties@12–16#. Thus, our finding of positive
power-law correlations for the magnitude of the heartb
increments during REM sleep and of loss of these corre
tions during deep sleep indicates a different degree of n
linearity in the cardiac dynamics associated with differe
sleep stages. Our results may be useful, when combined
earlier studies of interbeat interval correlations in differe
©2002 The American Physical Society08-1
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JAN W. KANTELHARDT et al. PHYSICAL REVIEW E 65 051908
sleep stages@11#, for distinguishing the different sleep stag
using electrocardiogram records.

The paper is organized as follows. In Sec. II we revi
the DFA method. In Sec. III we apply the DFA to analyze t
sign and magnitude time series of healthy subjects. In S
IV the significance of the results and interpretations are
cussed.

II. DETRENDED FLUCTUATION ANALYSIS

In recent years the DFA method@17,18,9,11# is becoming
a widely used technique for the detection of long-range c
relations in noisy, nonstationary time series@19–22,9–
13,23–38#. It has successfully been applied to diverse fie
such as DNA sequences@23,24#, heart rate dynamics@9–13#,
neuron spiking@25,26#, human gait@27#, long-time weather
records@28–30#, cloud structure@31#, geology@32#, ethnol-
ogy @33#, economics time series@34–36#, and solid state
physics@37,38#. One reason we employ the DFA method
to avoid spurious detection of correlations that are artifa
of nonstationarities in the heartbeat time series. Other te
niques for the detection of correlations like the autocorre

FIG. 1. ~a! One-night record for a healthy subject. The interm
diate wake states as well as REM sleep, light sleep, and deep
stages have been determined by visual evaluation of brain, eye
muscle activity @41#. ~b! Heartbeat intervalst i , incrementsdt i

[t i2t i 21, signs of the increments sgn(dt i), and absolute incre-
mentsudt i u for a subset of the record shown in~a!.
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tion function and the power spectrum are not suited for n
stationary time series~see, e.g.,@39#!.

The DFA procedure consists of four steps.
Step 1. Determine the ‘‘profile’’

Ỹ~ i ![(
k51

i

xk2^x&, i 51, . . . ,L, ~1!

of the data seriesxk of lengthL. Subtraction of the mean̂x&
is not compulsory, since it would be eliminated by the la
detrending in the third step.

Step 2. Divide the profileỸ( i ) into Ln[@L/n# nonover-
lapping segments of equal lengthn. Since the lengthL of the
series is often not a multiple of the considered time scalen,
a short part at the end of the profile may remain. In order
to disregard this part of the series, the same procedur
repeated starting from the opposite end. Thereby, 2Ln seg-
ments are obtained altogether.

Step 3. Calculate the local trend for each of the 2Ln seg-
ments by a least-squares fit of the data. Then we determ
the variance

F̃n
2~n![

1

n (
i 51

n

$Ỹ@~n21!n1 i #2pn~ i !%2 ~2!

for each segmentn,n51, . . . ,2Ln . Here,pn( i ) is the fitting
polynomial in segmentn. Linear, quadratic, cubic, or highe
order polynomials can be used in the fitting procedure~con-
ventionally called DFA1, DFA2, DFA3, etc.! @11#. Since the
detrending of the time series is done by the subtraction
the polynomial fits from the profile, different order DFA’
differ in their capability of eliminating trends in the data. I
DFA m, mth order DFA, trends of orderm in the profile
~or, equivalently, of orderm21 in the original series! are
eliminated. Thus a comparison of the results for differe
orders of DFA allows one to estimate the type of the po
nomial trend in the time series@20,21#.

Step 4. Average over all segments and take the square
to obtain the fluctuation function@40#,

F̃~n![F 1

2Ln
(
n51

2Ln

F̃n
2~n!G1/2

. ~3!

We are interested in howF̃(n) depends on the time scalen.
Hence, we have to repeat steps 2–4 for several time scaln.
It is apparent thatF̃(n) will increase with increasingn. If
dataxi are long-range power-law correlated,F̃(n) increases,
for large values ofn, as a power law,

F̃~n!;nã. ~4!

For long-range correlated or anticorrelated data, rand
walk theory implies that the scaling behavior ofF̃(n) is re-
lated to the autocorrelation function and the power spectr
If the time series is stationary, we can apply standard spec

-
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CHARACTERIZATION OF SLEEP STAGES BY . . . PHYSICAL REVIEW E65 051908
analysis techniques and calculate the power spectrumS( f ) as
a function of the frequencyf. Then, the exponentb in the
scaling law

S~ f !; f 2b ~5!

is related to the mean fluctuation function exponentã by

b52ã21. ~6!

If 0.5,ã,1, the correlation exponent

g5222ã ~7!

describes the decay of the autocorrelation function

C~n![^xixi 1n&;n2g. ~8!

We plot F̃(n) as a function ofn on double logarithmic
scales and calculateã by a linear fit. For uncorrelated data
the profileỸ( i ) corresponds to the profile of a random wa
and ã51/2 corresponds to the behavior of the root-me
square displacementR of the walk,R(t);t1/2, wheret is the
time ~number of steps the walker makes!. For short-range
correlated data, a crossover toã50.5 is observed asymptoti
cally for large scalesn. If a power-law behavior withã
,0.5 is observed, the profile corresponds to anticorrela
fractional Brownian motion, and the dataxi are long-range
anticorrelated~antipersistent!. Power-law behavior withã
.0.5 indicates persistent fractional Brownian motion, a
the dataxi are positively long-range correlated. In particul
for Gaussian distributed white noise with zero mean~uncor-
related signal!, we obtainã50.5 from the DFA method. In
addition, DFA can also be used to determine the scaling
ponent for a wide variety of self-affine series, if the first st
@Eq. ~1!# is skipped and the data are used directly instead
the profile. In this way, the analysis is related to stand
self-affine and fractal analysis.

However, the DFA method cannot detectnegativefluctua-
tion exponentsã, and it already becomes inaccurate f
strongly anticorrelated signals whenã is close to zero. Since
strongly anticorrelated behavior~corresponding toã'0)
was previously reported for the heartbeat sign series, we
a modified DFA technique@12#. The simplest way to analyz
such data is to integrate the time series before the stan
DFA procedure. Hence, we replace thesinglesummation in
Eq. ~1!, which describes the determination of the profile fro
the original dataxk , by adoublesummation,

Y~ i ![(
k51

i

@Ỹ~k!2^Ỹ&#. ~9!
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Following the DFA procedure as described above, we ob
a fluctuation functionF(n) described by a scaling law as i
Eq. ~4!, but with an exponenta5ã11,

F~n!;na[nã11. ~10!

Thus, the scaling behavior can be accurately determi
even if ã is smaller than zero~but larger than21). We note
thatF(n)/n corresponds to the conventionalF̃(n) in Eq. ~4!.
If we do not subtract the average values in each step of
summation in Eq.~9!, this summation leads to quadrat
trends in the profileY( i ). In this case we must employ a
least the second order DFA to eliminate these artific
trends.

III. CORRELATION ANALYSIS OF SIGN AND
MAGNITUDE TIME SERIES

To study the correlation properties of the signsi
[sgn(dt i) and magnitudemi[udt i u obtained from the
original interbeat increment time seriesdt i , we investigate
in parallel the corresponding double profiles@see Eq.~9!# for
xi5si and xi5mi . We calculate the fluctuation functio
F(n) by DFA2 for a range of time scales 4<n<200. The
DFA2 method turned out to be the most appropriate deg
of detrending in an earlier study@11#. In the following we
will use the notationasign for the valuea5ã11 of the sign
series andamag for the valuea of the magnitude series.

We consider 24 records of interbeat intervals obtain
from 12 healthy individuals during sleep. The records ha
an approximate duration of 7.5 h. Figure 1~a! shows the
heartbeat interval time series for a typical healthy subj
with periods of light sleep, deep sleep, REM sleep, and sh
intermediate wake phases. The annotation and duratio
the sleep stages were determined based on standard p
dures@41#. Figure 1~b! shows a subset of the heartbeat inte
val seriest i and the increment seriesdt i as well as the
corresponding series of signsi and magnitudemi .

In order to analyze the correlation properties during
different sleep stages separately, we split each heartbea
terval series into subsequences corresponding to the s
stages. Thus, from a typical 7.5 h series, we obtain sev
subsequences of heartbeat intervals corresponding to
sleep, deep sleep, and REM sleep, as well as several su
quences corresponding to intermediate wake states. In o
to eliminate the effect of transitions between subsequ
sleep stages, and because the determination of the s
stages is done in intervals of 30 s, we disregard the first
last 50 s of each individual subsequence. Then, to apply
DFA method, we calculate the profile for each subseque
~step 1!, cut each of these profiles into segments~step 2!, and
calculate the variance for each segment~step 3!. In step 4,
we calculate the fluctuation functionF(n) for each sleep
stage by averaging over all segments corresponding to~i!
light sleep,~ii ! deep sleep, and~iii ! REM sleep, as well as for
the intermediate wake states.

Figure 2 shows the normalized fluctuation functio
F(n)/n @corresponding toF̃(n)# versus the segment siz
8-3
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JAN W. KANTELHARDT et al. PHYSICAL REVIEW E 65 051908
~time scale! n for the sign and the magnitude for a represe
tative subject. We find short-range anticorrelated beha
for the sign of the increments@Fig. 2~a!#. Our analysis is
performed for time scalesn>7 beats—just above the breat
ing peak@42#. In the intermediate regime 7<n<20 beats,
we observe significant differences in the behavior of the fl
tuation functionF(n) for the different sleep stages. For de
sleep theF(n)/n curve bends down, characterized by a c
relation exponentasign,1, for light sleep theF(n)/n curve
remains flat (asign'1), and for REM sleepF(n)/n increases
with n(asign.1). At n'20, F(n)/n exhibits a crossover
and at larger time scales the observed anticorrelations slo
decay. Forn.100 beats, we find uncorrelated behav
~characterized byasign51.5 for the profile after double inte
gration! for all sleep stages. For the sign series we also
serve that the value of the fluctuation functionF(n) at the
position of the crossover (n'20) is significantly different
for deep sleep, light sleep, and REM sleep@Fig. 2~a!#. This
observation, as well as the finding that a different correlat
exponentasign characterizes the behavior ofF(n) for differ-
ent sleep stages in the intermediate regime 7<n<20, could
be of practical use in developing an algorithm that can au
matically distinguish between different sleep stages ba
solely on heartbeat records.

In Fig. 2~b! we present our results of the DFA2 metho
for the magnitude of the heartbeat increments. In contras
the short-range correlations observed for the sign series
find that the magnitude series for REM sleep is character
by a scaling exponentamag.1.5 for time scalesn.10, cor-
responding to positive long-range power-law correlatio
For light sleep, we find a smaller scaling exponentamag than
for REM sleep, indicating weaker long-range correlatio

FIG. 2. The normalized fluctuation functionsF(n)/n of the in-
tegrated series of signssi ~a! and magnitudesmi ~b! of the heartbeat
increments for a representative healthy subject.n is the time scale in
beat numbers. Before applying the DFA2 the profiles were s
according to the sleep stages. The fluctuation functions for the
ments corresponding to the same type of sleep have been ave
with weights according to the number of intervals in each segm
The different symbols correspond to the different sleep stages,
sleep, deep sleep, and REM sleep.
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Surprisingly, we find that in contrast to REM and light slee
the magnitude series for deep sleep is uncorrelated, since
profile is characterized byamag51.5 after the double integra
tion. This finding is consistent with stronger multifractali
during REM sleep than during deep sleep@43#, since previ-
ous studies have related positive long-range correlation
the magnitude series with multifractal and nonlinear featu
present in the signal@12,13,16#. Following Refs.@44,45# we
define a time series to be linear if its scaling properties
not modified by randomizing its Fourier phases. In contra
when applied to a nonlinear series, the surrogate data tes
nonlinearity, which is based on Fourier phase randomiza
@44,45#, generates a linear series with different scaling pro
erties for the magnitude series.

The nonlinearity of a time series is related to its multifra
tality. The partition functionZq(n) of a time seriesxi may be
defined as@46#,

Zq~n!5^uxi 1n2xi uq&, ~11!

where ^•& denotes the average over the indexi. In some
casesZq(n) obeys scaling laws

Zq~n!;nt(q). ~12!

If the exponentst(q) are linearly dependent onq the series
xi is monofractal, otherwisexi is multifractal. Monofractal
series fall under the category of linear series while multifra
tal series are classified as nonlinear series@47#. A possible
way to test this classification is to apply the surrogate d
test@44,45#. When this test is applied to a multifractal serie
it generates a linear series with a linear dependence oft(q)
on q in contrast to the nonlinear dependence for the origi
series. On the other hand, applying the surrogate data te
a monofractal series does not affect its lineart(q) depen-
dence.

In @12,13# it was shown that the long-range correlations
the magnitude series indicate nonlinear behavior. Spe
cally, the results suggested that the correlation exponentamag
of the magnitude series is a monotonically increasing fu
tion of the multifractal spectrum width of the original serie
This conclusion was obtained based upon several exam
of artificial multifractal series@12,13#.

Thus, the long-range magnitude correlations we find
REM sleep indicate nonlinear contributions to the heartb
regulation, which are reduced during light and deep sle
Indeed, a multifractal analysis of heartbeat intervals dur
daytime @16# indicated the presence of multifractality. In
recent study we also found stronger multifractality duri
REM sleep than during deep sleep@43# which is consistent
with the scaling behavior of the magnitude series reporte
the present study.

IV. SIGNIFICANCE OF THE RESULTS AND SUMMARY

The mean values of the effective fluctuation scaling ex
nents and their standard deviations are shown in Fig. 3
the different sleep stages. We estimate the exponentsa from
the slopes in the log-log plot ofF(n) versusn for all records.
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Since the most significant differences for the short-range s
correlations occur in the range of 8<n<13 heartbeats, we
use this fitting range for the exponentsasign. For the expo-
nent of the integrated magnitude seriesamag, we use the
range 11<n<150, since the long-range correlations occ
ring in light and REM sleep can be observed best in t
region. We find that there is a significant difference in t
integrated sign series exponentasign observed for all three
sleep stages~the p value, obtained by Student’st test, is
below 0.001), and thus we confirm the conclusions dra
from Fig. 2. The magnitude correlation exponents for RE
sleep and for intermediate wake states are significantly la
than those for the non-REM stages~light and deep sleep!.
Here also thep values are less than 0.001. Note that we
not find a significant difference between the average ex
nents for REM sleep and for the intermediate wake sta
This is not surprising because heartbeat activity during R
sleep is very close to heartbeat activity during the wake s
and the heartbeat time series during REM and waking exh
similar scaling properties@10,11#.

More significant than the differences for the average
ponents are the differences between the exponents for
individual. Figure 4 shows thea values for REM, light, and
deep sleep for all 12 healthy subjects~second night only!. In
almost all cases the exponent of the REM sleep is the larg
the exponent of the light sleep is intermediate, and the ex
nent of the deep sleep is smallest~there are three exception
indicated by arrows!. In our group of 24 records from 12
healthy individuals, we find larger exponents in REM sle
than in deep sleep for 100% of the sign series and for 8
of the magnitude series.

In a previous study of heartbeat records from healthy s
jects during daytime activity, we found that the magnitu
series is long-range correlated, while the sign series is sh
range anticorrelated for all subjects in the database@12,48#.
This finding suggests an empirical ‘‘rule,’’ namely, that
large ~small! heartbeat increment in the positive direction
most likely to be followed by a large~small! increment in the
negative direction, and that a large~small! increment is most

FIG. 3. The average values of the fluctuation exponentsamag for
the integrated magnitude series andasign for the integrated sign
series for the different phases~wake state, REM sleep, light sleep
and deep sleep!. For each of the 24 records from 12 healthy subje
the corresponding second order DFA fluctuation functionsF(n)
have been fitted by Eq.~4! in the range of 8<n<13 and 11<n
<150 heartbeats forasign and amag, respectively, where the mos
significant differences between the sleep stages occur.
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likely followed by large~small! increments. Our present re
sults suggest that this empirical ‘‘rule’’ also applies to RE
sleep, while in deep sleep small and large increments see
appear in a random fashion. On the other hand, the stro
sign anticorrelations in deep sleep indicate that a posi
increment is more likely—even more likely than in REM
sleep—to be followed by a negative increment. Thus,
correlation behavior of the heartbeat increments and t
signs and magnitudes during daytime activity is similar
the behavior we find in REM sleep, but quite different fro
the behavior we observe in deep sleep. This is consis
with our finding ~Fig. 3! of average exponent values for th
wake episodes similar to the exponent values for REM sle

In summary, we analyzed, for healthy subjects, interb
interval fluctuations during different sleep stages which
associated with different brain activity. We find that th
short-range anticorrelations in the sign of the increments
stronger during deep sleep, weaker during light sleep,
even weaker during REM sleep. In contrast, the magnit
of the increments is long-range correlated with a larger
ponent during REM sleep, suggesting stronger nonlin
contributions to the heartbeat dynamics in this stage co
pared with weaker nonlinear contributions in the non-RE
stages.

ACKNOWLEDGMENTS

J.K. would like to thank the Minerva Foundation and t
Deutscher Akademischer Austauschdienst~DAAD ! for fi-
nancial support. S.H. would like to thank the Bination
USA-Israel Science Foundation. We also would like to tha
A. L. Goldberger for discussions, and the NIH/National Ce
ter for Research Resources~Grant No. P41 RR13622! for
financial support. The healthy volunteers were recorded
part of the SIESTA project funded by the European Uni
Grant No. Biomed-2-BMH4-CT97-2040.
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are shown for all 12 healthy subjects~second night of recording!.
While thea values fluctuate, for REM sleep thea is larger than the
a for light sleep, which is larger than thea for deep sleep~the three
arrows indicate the cases that are not ordered in the same way a
majority!. The exponent values were determined over the fitt
ranges as described in the caption of Fig. 3.
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