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Abstract. The presence of chaos in traffic is studied using a car-following model
based on a system of delay-differential equations. We find that above a certain time
delay and for intermediate density values the system passes to chaos following the
Ruelle-Takens-Newhouse scenario (fixed point — limit cycles — two-tori — three-tori —
chaos). Exponential decay of the power spectrum and positive Lyapunov exponents
support the existence of chaos. We find that the chaotic attractors are multifractal.

1 Introduction

Traffic flow often exhibits irregular and complex behavior. It was observed
experimentally (e.g. [1]), that although for low and high cars density the
motion is relatively simple, for intermediate density values (in the so called
“synchronized flow phase” [1]) the motion is characterized by abrupt changes
in cars velocities and flow flux. Here we study a model based on a system of
delay-differential equations, which for sufficiently large delay and intermedi-
ate density values demonstrates complex behavior, attributed to the presence
of chaos.

The presence of chaotic phenomena in traffic models has been reported
in recent studies. Addison and Low [2] observed chaos in a single-lane car-
following model in which a leading car has oscillating velocity. Nagatani [3]
reported the presence of a chaotic jam phase in a lattice hydrodynamic model
derived from the optimal velocity model [4].

Unlike the above studies, our model is based on a system of autonomous
delay-differential equations, and the transition to chaos is possible only in
the presence of delay. We show that the system can pass to chaos via many
similar routes, and that many different non-chaotic and chaotic attractors
may coexist for the same parameter values. We also observe multifractality
of the chaotic attractor, which is novel in traffic studies.

We generalize the model proposed and studied in [5-7] by introducing
time delay 7 in the driver’s reaction. The preliminary results of the present
study can be found in [8].
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The model is based on the assumption that N cars move in a single lane
and the nth car motion is described by the delay-differential equation

d*z,(t) Azl (t — 1)
w4 (1 T Azy(t - T)> - (1)

Z%(—Avy (t — 7))
2(Az,(t — 1) — D)

where n = 1,..., N, z, is the car’s coordinate, v,, — its velocity, A and k —
sensitivity parameters, D — minimal distance between consecutive cars, vper
— permitted velocity, T - safety time gap, Az% = v, T+ D the safety distance,
Az, = Tpy1—2n and Avy, = Uy q1 —Vy. The function Z is defined as Z(z) = «
for > 0 and Z(z) = 0 for z < 0. In our computations we use the parameters
values vper = 25(m/s), T = 2(s), D = 5(m), A = 3(m/s?), k = 2(s7')
and N = 100. The boundary conditions are periodic, i. e. xny1 = 21 + L,
UN4+1 = U1, Where L is the road length.

In this study we find that for sufficiently large delay the system behaves
in a complex manner. We show numerically, that the above mentioned limit
cycles may bifurcate into two-dimensional tori. With further change of den-
sity the tori bifurcate into three-dimensional tori, which are subsequently de-
stroyed forming chaotic attractors. This scenario is known as Ruelle-Takens-
Newhouse route to chaos [9].

- kZ(vn(t - T) - vper)a

2 Transition to Chaos

To study the transition to chaos we first consider the following solution of
system (1)

A(1—Dp)+kvper < 1
ApT+k v P= DiTo,. n—1
0 _ .0 _ 20 = 4+ 09¢ (2)
Un =0T 1-D n ’
—Dp 1
oT P> B¥Tu,o0

where p = N/L is the cars density. This solution corresponds to the homoge-
neous flow, in which all cars have the same velocity and headways are equal.
We introduce a new variable &, = Az, — 1/p in Eq. (1). By this change of
variables the homogeneous flow solution (2) is mapped to zero. Its stability
can be analyzed using the linearization of Egs. (1)

&) = —pép(t — ) + q(E1(t—7) — &0 (t — 7)), 3)
where p= ATp+k, ¢ = W#W CAp?if p < ﬁ and p = ATp,

q = Ap otherwise.
Following [4,5], we look for a solution of equations (3) in the form

€0 = exp(iaen + At), (4)
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where a,; = 22k (k= 0,..., N — 1) and X is a complex number. Substituting
(4) into (3) we obtain a set of algebraic equations for A
2 4 [pA — g’ —1)]e > = 0. (5)

The solutions of Eqs. (5) are the eigenvalues of system (3). One of these
solutions (for k = 0) is zero. The others have negative real part for suffi-
ciently high and sufficiently low values of p, which indicates the stability of
the homogeneous flow solution. As p decreases (increases), pairs of complex
eigenvalues may cross the imaginary axis, causing the formation of small limit
cycles (Hopf bifurcations).

We study the formation of limit cycles with the density decreasing from
high to intermediate values. Let for some p = pg Egs. (5) with some k have
a pair of purely imaginary solutions (a Hopf bifurcation point). For p =
po — € we find the newly-born limit cycle in the form &, () ~ ££%(t), using
an approximate technique similar to that used in [7] for the non-delay case.
Obviously, the flow state corresponding to this limit cycle is a wave with the
wavelength equal to L/k (in length units) or N/« (in number of cars).

After the small limit cycle for density close to the Hopf bifurcation value
is found analytically, its global continuation is performed numerically in the
following manner. For p ~ py — € we take the analytically found approximate
periodic solution as an initial condition and solve Egs. (1) numerically. After
the solution has reached an attracting set, we decrease p with a small step and
solve the equations numerically again, taking the results from the previous
step as initial conditions. This procedure is iterated further. In this way we
keep the track of the particular limit cycle.

For the non-delay case [7] we have not found any other attracting sets
than limit cycles and fixed points. With a small delay the system’s behavior
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Fig. 1. A schematic bifurcation diagram, showing transition to chaos from six differ-
ent limit cycles. The figure shows that limit cycles, two-tori and chaotic attractors
can coexist for the same parameter values (see the vertical dashed line).
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does not change qualitatively. For higher values of 7 (above approximately
0.5(s)) the cycles may undergo bifurcations leading to the transition to chaos.

A bifurcation diagram obtained from global continuation of six different
limit cycles for 7 = 0.59(s) is sketched in Fig. 1. The figure shows the transi-
tion from each of these cycles to chaos via a two-torus phase. It is important
to note that chaotic and non-chaotic attractors coexist for the same param-
eters values.
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Fig. 2. a — £,(t) for n = 10, k = 15, 7 = 0.59(s) and p = 0.1387(m™'). b — the
corresponding power spectrum.

Fig. 2a shows the &,(t) time series for k = 15, p = 0.1387(m ') and an
arbitrarily chosen n. Fig. 2b presents the corresponding power spectrum. Its
exponential decay is a sign of chaotic behavior of our system [10].

Another indication of chaos is the existence of positive Lyapunov expo-
nents. A direct calculation of the largest Lyapunov exponent [11] and the
Lyapunov exponents spectrum [12] yields three positive Lyapunov exponents
of order 10~
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Fig. 3. Space-time diagrams of the traffic flow for k = 10 and p = 0.1(m™"). Left
- 7 = 0.4(s) (a limit cycle); right - 7 = 0.59(s) (chaos). Each dot corresponds to a
car.

As observed in real traffic, jams usually move in upstream direction. Our
model reproduces this phenomenon. Fig. 3 presents space-time diagrams for
the traffic flow for the cases of the system is on a limit cycle and on a chaotic
attractor. One can clearly observe jams moving upstream, but in the chaotic



Chaos and multifractality in a time-delay traffic model 5

case they are not regular and perhaps look more similar to what can be
observed on the road.

3 Multifractality Analysis

The chaoticity of an attractor can also be characterized by its fractal dimen-
sions. We consider the correlation function of the moment ¢

1 M 1 M g—1
Cy(r) = [MZ[MZ@(T— |xz-—xj|)]

where x; = (&,(t;), &0 (i + AL), ..., & (s + (d — 1) At)) are d-dimensional vec-
tors (d is called embedding dimension), At is the the first zero of the time
series autocorrelation function, @ is the Heaviside step function and M is
the time series length, which should be sufficiently large. The correlation di-
mension D, is defined by the relation C,,(r) ~ rPs (see [13,14] and references
therein for more details).

To find the correlation dimensions numerically we use the algorithm pro-
posed in [14]. Using these dimensions one can obtain the f(a) function [15],
which represents the spectrum of fractal dimensions of the attractor.
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Fig. 4. a. Results of measurement of the correlation dimension D, for ¢ = —7..7

and d = 7..11 (bottom to top). b. Approximate f(«) fits for these data.

Fig. 4a shows the results of measurements of D, for ¢ = —7..7 and d =
7..11. Fitting these data with a continuous function D(q) for each d, we find
the f(a) function according to the formula

f(a(q)) = qalq) — 7(q),

where 7(q) = (¢ — 1)D(q) and a(q) = dr/dq (see e.g. [15]).

As can be observed from Fig. 4a, the values of D, show weak convergence
with growing ¢, especially for d close to 0. Therefore, presented values of
dimensions may be underestimated. Nevertheless, shapes of f(a) for each d
enable us to claim the multifractality of the considered attractor.
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