CHAOS AND DECOHERENCE IN A QUANTUM SYSTEM
WITH A REGULAR CLASSICAL COUNTERPART
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We show that chaotic like behavior in a quantum system facilitates deco-
herence. It appears that the time scale on which decoherence takes place
depends on the degree of complexity of the underlying quantum system, i.e.,
more complex systems decohere relatively faster than less complex ones.
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Bohr’s correspondence principle states that quantum mechanical results be-
come ‘classical’ when Planck’s constant becomes very small. Ehrenfest’s
theorem, that the mean position of a quantum state will follow a classical
trajectory, is generally taken as an argumentation for the correspondence
principle, at least as far as dynamics is concerned. However, Ehrenfest’s the-
orem is neither sufficient nor necessary to characterize the classical regime
[1]. Ehrenfest’s theorem breaks down sooner for a chaotic system than for
a regular one [1,2]. Zurek and Paz showed [3] that a significantly non linear
potential causes a rapid spread of the wave function implying that classical
and quantum dynamics begin to differ.

In order to find a quantum mechanical paraphrase to the celebrated
definition of classical chaos as being the exponential divergence in time of
neighboring points in phase space we recognize the fast spreading of the wave
function as an indication for chaotic-like behaviour. This is not a rigorous
definition but rests on the fact that the wave function may be thought of as
representing an ensemble of points in phase space and that its spread with
time is a measure for the divergence of those points.

We have recently utilized a simple one dimensional model of a square
barrier embedded in an infinite potential well to demonstrate that tunneling
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leads to very complex behaviour of the wave function [2]. There are many
parallels to the well-known characteristics of classical chaos, e.g., an expo-
nential decreasing correlation function of the peak-to-peak time series [2], a
phase space plot of the )expectation values < z > (t) and its time deriva-
tive < p > (t), revealing a phenomenon similar to period doubling and
attractor-like behaviour of a double well chaotic system such as a driven
Duffing oscillator [2] and level statistics for levels slightly above the barrier
showing signs of Wigner statistics [4].

But most striking is the behaviour of the spatial entropy function
S(t) = — [ |¥(z,t)|*In|y(z,t)|>dz. This entropy function shows a rapid rise
at early times to a non periodic fluctuating function around a smooth almost
constant asymptotic value illustrating the early burst of chaotic behaviour.

By displacing the barrier in the double well system to the right or
to the left certain positions are passed where the system becomes almost
degenerated [5]. It is exactly for those positions that one may find significant
tunneling.

Fig. 1 shows S(t) for different positions of the barrier in the well. In
Fig. 1a the barrier is placed at the centre of the double well where the highest
degree of the ‘almost degeneracy’ for the levels is found. Changing the site
of the barrier and thus going through positions of less and less ’almost
degeneracy’ a slower and slower approach to equilibrium and a faster and
faster approach to recurrence of S(t) is noted (see Fig. 1b-1d and also [5]).

A time dependent adiabatic modulation of the barrier which is tanta-
mount to coupling of the system to the environment enhances the complex,
chaotic-like behaviour. A first indication of this is rendered by an increased
correspondence to Wigner statistics when an ensemble of slightly different
barrier heights is considered.

Considering that chaos facilitates tunneling and vice versa [2,5] and
that tunneling is enhanced by a high degree of ‘almost degeneracy,’” we con-
clude (see Fig. 1a-1d) that systems with a higher degree of complex, chaotic
like, behaviour have a sharper increase of the entropy (higher entropy pro-
duction) and a faster approach to equilibrium than systems with lower com-
plexity.

One can use the model to illustrate some differences between classical
and quantum dynamics. We start with a wave packet initially located on
the left hand side of the square barrier placed in the infinite potential well.
The parameters are as follows: The barrier height V = 5, the half-width
of the well £ = 55, the width of the Gaussian wave packet of the form
|9|? & cexp[—(z — z0)?/20?],0 = 5, and the barrier width 2a = 2, and the
mass m = 1/2. The Gaussian wave packet is constructed from the first 30
energy levels and the standard deviation from an exact (normed) Gaussian is
8.81-10~%. The computation preserves the norm to high accuracy, 0.999997.
The problem is solved analytically as a function of time. Note that there is
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Fig. 1. The entropy function as a function of time for different locations in
the well (X € [-55,55]). (a) the center of the barrier in the middle of the
well X=0, (b) the center of the barrier in X = —10,89, (c) the center of the
barrier in X = —3,63, (d) the center of the barrier in X = —1. (The inset
shows an enlargement of typical periodic oscillations.)

no additional error for large ¢, since t enters in periodic exponential form.

The motion of this quantum state is compared to that of a classical
ensemble whose initial position and momentum distributions are equal to
those of the quantum state, the initial phase space distribution being the
product of the position and the momentum distributions (this method is
introduced and worked out in [1]).

In Figs. 2a-2d we have compared the time evolution of the spatial
entropy function S(t) for the quantum case and the classical case for de-
creasing values of the energy of the incoming particle high relative to the
barrier height, < E >= 5. In Fig. 3a-3d the same comparison is performed
for a low energy of the incoming particle (low relative to the barrier height),
< E >=0.05.

For both ratios < E > /V it becomes obvious that decreasing h does
not recover the classical behaviour of the entropy by merely letting & — 0,
even though significant tunneling (< E >~ V) leads to some similarity
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Fig. 2. The entropy function as a function of time for the classical case
(solid line) and the quantum case (dotted), for different values of k.
The barrier is placed in the middle of the potential well and the mean
energy of the incoming particle — < E > — is equal to the barrier height
V,V=5 (a)h=2,(b)h=1,(c) h=0.5(d) h =0.25.

between the classical and the quantum case.
Therefore, we stress that:

(1) A — 0 is a singular transition.
(2) Tunneling and thus chaotic-like behaviour weakens the differences
between classical and quantum mechanics.

This second conclusion becomes even more apparent by comparing the clas-
sical case with the quantum case in connection with the position of the
barrier inside the potential well. In [5] it is shown that placing the bar-
rier at the center of the well results in a strong complex behaviour of the
wave-function whereas placing the barrier off centre leads to a less complex,
almost regular behaviour. Indeed, by comparing the two positions of the
barrier, centered in Figs. 2a-2d and off center in Figs. 4a-4d, one observes
that a similarity in the time development between the classical case and
the quantum analogue is obtained much faster when the barrier is placed
in the center, i.e., when there is a higher degree of ‘almost degeneracy’ and
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Fig. 3. The entropy function as a function of time for the classical case
(solid line) and the quantum case (dotted), for different values of . The
barrier is placed in the middle of the potential well and the mean energy
of the incoming particle— < E >= 0.05— is low relative to the barrier
height V,V = 5. (a) h =2, (b) h =1, (c) h = 0.5, (d) h = 0.25.

hence more chaotic like behaviour. We therefore conjecture that the time
scale on which decoherence takes place depends on the degree of complexity
of the underlying quantum mechanical system, i.e., more complex systems
decohere relatively faster than less complex ones.

This is in accordance with the expectation that decoherence effects
should suppress the possibility of interference and hence reduce the off di-
agonal elements of the reduced density matrix. The Schrédinger evolution
cannot transform a pure state into a mixture and hence not make the off
diagonal elements vanish completely (see also [6,7]). Quantum chaos on the
other hand is expected to lead to irreversibility and hence also to mani-
fest itself by implying that the non diagonal elements vanish (or become
very small) [6-9], so it is understandable that quantum chaos will facilitate
decoherence. This is illustrated in the present model by a fast increasing
spatial entropy function (rapid entropy production) and is in accordance
with previous results obtained in studies of decohering systems [6-8].
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Fig. 4. The entropy function as a function of time for the classical
case (solid line) and the quantum case (dotted) for different values of .
The barrier is placed off center, X = —1, and the mean energy of the
incoming particle — < E > — is equal to the barrier height V,V = 5.
(@)h=2,(b)h=1,(c) h=0.5,(d) h = 0.25.
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