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Long-range temporal correlations of ocean surface currents
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[1] We study the temporal correlations of sea surface currents at the Gulf of Eilat

(also known as Gulf of Aqaba) and find long-range temporal correlations, from a timescale
of several hours to a timescale of several months. This is done using the Fourier
transform and the Detrended Fluctuation Analysis methods. We also find weak volatility
correlations that indicate nonlinearity of surface currents. We use the time-dependent
surface Ekman layer model to test whether the source of these correlations is the wind. It is
found that the wind by itself actually leads to stronger temporal correlations than observed,
as well as enhanced diurnal periodicity; other nonlinear terms as well as tides, convection,
and spatial variability may weaken the temporal correlations imposed by the wind. Our

results show significant spatial variability of correlation exponents even in this small
region (6 x 10 km); in addition, stronger correlations are observed during winter.

Citation: Ashkenazy, Y., and H. Gildor (2009), Long-range temporal correlations of ocean surface currents, J. Geophys. Res., 114,

C09009, doi:10.1029/2008JC005235.

1. Introduction

[2] Temporal long-range correlations have been detected
in many geophysical time series [e.g., Mandelbrot and
Wallis, 1969], covering timescales from minutes [e.g.,
Govindan and Kantz, 2004] to hundreds of thousands of
years [e.g., Pelletier, 1997; Ashkenazy et al., 2003a; Huybers
and Curry, 2006]. These include wind data [Schulz et al.,
2001; Kocak, 2008; Roman et al., 2008], temperature
records [Govindan et al., 2002; Fraedrich and Blender,
2003; Fraedrich et al., 2004; Bunde et al., 2004], river
fluxes [Hurst, 1951; Turcotte and Greene, 1993; Tessier et
al., 1996; Pandey et al., 1998; Livina et al., 2003], precip-
itation [Kantelhardt et al., 2006] etc. The majority of these
examples are associated with the atmosphere or with land
surface while the ocean variables, in spite of their impor-
tance to the climate system, have received only minor
attention from this prospective. Recent remote sensing
instruments and techniques can provide continuous tempo-
ral and spatial resolution data from the ocean surface. The
study of such data sets may improve our understanding of
the ocean-atmosphere coupling and of the mixing processes’
parameterization used in general circulation models.

[3] Here we study high temporal and spatial resolution
ocean surface (approximately the upper half meter) current
data set. The temporal resolution is half an hour and the
spatial resolution is approximately 300 m, while the time
span of the studied period is one year, from 1 October 2005
to 30 September 2006. The currents were measured using
high-frequency (HF) radar (see more details below) at the
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northern end of the Gulf of Eilat and they cover an area of
~6 km x ~10 km (Figure 1). The aims of this study are
(1) to report the temporal long-range correlations of surface
currents and (2) to investigate to what extent the wind’s
action underlies these correlations. Our results indicate that
the wind by itself is expected to bring upon an even stronger
correlations than the observed ones while other factors like
spatial variations (e.g., bathymetry), tides, convection pro-
cesses, and other linear/nonlinear factors (e.g., advection)
act to weaken these correlations. Moreover, we show that
while the wind seems to exhibit linearity, the surface current
exhibits nonlinearity as reflected by volatility correlations.
We also show that in spite of the relatively small studied
area, there are significant spatial differences in the correla-
tion properties of the surface currents.

[4] The northern terminus of the Gulf of Eilat is a nearly
rectangular, deep (~700 m), and semienclosed basin in the
northeast region of the Red Sea. The desert mountains
surrounding the Gulf of Eilat act like a tunnel roughly
elongated along the South-North axis and lead to the nearly
persistent northerly wind along its main axis [Berman et al.,
2003]; for the time period of October 2005 to September
2006 the wind blew 9%, 45%, and 12% of the time from the
N, NNE and NE directions, while during 34% of the time it
blew more or less uniformly from all other directions. The
circulation in the gulf has three main driving forces: winds,
tides, and buoyancy. The tides are dominated by the
semidiurnal peak associated with the water flux through
the Straits of Tiran [Genin and Paldor, 1998; Monismith
and Genin, 2004; Manasrah et al., 2006]. The tidal signal
mainly affects the upper ocean layer in the gulf and thus is
much stronger during summer (when the thermocline is
around 200 m) than during winter (when the water column
is mixed down to a few hundreds meters) [Monismith and
Genin, 2004; Berman et al., 2003].

[5] Surface currents in the northern Gulf of Eilat are
measured by two 42 MHz SeaSonde HF radar systems
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Figure 1. (a) A typical example of surface current field recorded at the Northern Gulf of Eilat on

25 February (18:30) 2006. The numbers “1” and “2” indicate the locations of the two HF radar stations,
while cross () indicates the location of the meteorological station from which we use the wind data. The
gray square indicates the location of the time series shown in Figure 2. (b) Annual mean current field
(October 2005 to September 2006). (c) Same as Figure 1b for the winter time period (January to March
20006). (d) Same as Figure 1b for the summer period (July to September 2006). In the presented current

fields, we skip every second grid point in both directions to allow a better visualization.

since August 2005; the locations of the HF radars as well as
the coastline of the gulf are shown in Figure 1. Each station
measures the current component toward or away of the
antenna, called ‘“‘radial”. There is one SeaSonde at the
Inter-University Institute in Eilat and another station at
the Port of Eilat. In order to approximate the current vector
at a certain point, we need to have radials measurements
from both stations and the two should observe this patch of
water from different angles. Ideally, we want an angle of
about 90 degrees between the two radials and, in any case,
at least 15 degrees [Barrick et al., 1985; Barrick, 2002]. In
addition to geometric considerations, such as the distance
from the radar stations and the angle between the radials, the

accuracy of the measurement is also subject to other factors
such sea conditions. When the amplitude of the surface
gravity waves is too small, as is often the case in the
northernmost few hundreds meters of the domain, there
are gaps in the data. For a detailed description regarding the
radar measurements and processing of the data, including
comparison to some observations, see studies by Gildor et
al. [2009] and Lekien and Gildor [2009]. The observed
surface current field often exhibits a complex pattern as
shown in Figure la, with mostly northerly currents and
weaker currents during winter.

[6] The work is presented as follows. In section 2 we
briefly describe the techniques that are used to quantify the
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long-range temporal correlations. These include the Fourier
transform, the Detrended Fluctuation Analysis (DFA), vol-
atility long-range correlations, as well as surrogate data tests
that are used to validate and estimate the uncertainty of the
observed correlations. The results are presented in section 3.
We then use a simple, time-dependent surface Ekman layer
model, to study the contribution of the winds to the
observed correlations (section 4). A summary and discus-
sion is followed (section 5).

2. Methods

[7] Below we briefly summarize the techniques that we
use to analyze the surface current data. These include
Fourier transform, Detrended Fluctuation Analysis, volatil-
ity correlations, and surrogate data tests to validate a power
law correlations of time series and the nonlinearity of time
series. Readers familiar with these methods can skip to
section 3.

2.1. Fourier Transform

[s] A basic way to estimate long-range temporal correla-
tions of a time series is through the autocorrelation function
[e.g., Makse et al., 1996; Kalisky et al., 2005]. The
autocorrelation function is related to the Fourier power
spectrum; if the autocorrelation function decays as a power
law, A(T) ~ 77, the power spectrum also decays as a power
law, P(f) ~ [ where 3=1 - yand 0 <y <1. =0
indicates white noise (i.e., all frequencies are equally
important), 5 = 2 indicates red noise (i.e., the low frequen-
cies are dominant) while 3 = —2 indicates blue noise (i.c.,
the high frequencies are dominant). The Fourier transform
technique has the advantage of efficient computation and a
wider range of scaling exponent 3, that is, it is possible to
detect scaling exponents that are larger than one or smaller
than zero (unlike the autocorrelation correlations technique
that is limited between 0 < ~ < 1). In addition, significant
periodicity in a time series (like the daily periodicity) may
drastically affect the autocorrelation function (and other
techniques like the DFA described below) as the periodicity
may be smeared over a range of scales.

[o] Tt is possible to estimate the power exponent (if it
exists) from a linear plot or from a log-log plot. The latter
choice is more suitable for the estimation of scaling (power
law) exponent since it provides evenly spaced points in
logarithmic scale. The presence of significant periodicity in
the power spectrum only slightly affects the estimation of
the scaling exponent since it is not smeared over a range of
frequencies. We thus estimate the scaling exponent 3 from a
log-log plot of the power spectrum.

2.2. Detrended Fluctuation Analysis (DFA)

[10] The estimation of the power law scaling exponent
using Fourier transform technique may be affected by trends
that often exist in natural time series [Peng et al., 1994,
1995]. In our particular example, the seasonal variations of
the surface currents may look like a long-range correlated
time series. The DFA technique aims to overcome such an
effect of trends. The DFA procedure can basically be
described as follows [Peng et al., 1994, 1995; Kantelhardt
et al., 2002]: the time series is considered as “steps” of a
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random walk. The time series is integrated, which results in
the “profile” of the random walk. Thus, for example, the
standard deviation of a profile of a white noise will grow
like the square root of the number of steps and the
corresponding scaling DFA (or Hurst) exponent will be o =
0.5. Then, for each segment (window scale) in the time
series a polynomial function is fitted and subtracted from
the profile. This is done to exclude trends that are not
necessarily associated with the power law characteristics of
the signal. The fluctuation function provides the mean
deviations around the fitted polynomial function. This
procedure is repeated for various window scales. In the
case of long-range correlated time series, the scaling expo-
nent o can be estimated from a log-log plot of the fluctu-
ation function F(n) versus the window scale, n. The relation
between the Fourier spectrum scaling exponent 3 and the
DFA scaling exponent « is 3 = 2a — 1.

[11] As mentioned in the previous subsection, when the
time series has a significant periodic component, the esti-
mation of the scaling exponent may be problematic since
such periodicity may be smeared over many window scales.
For the case of surface currents, the diurnal periodicity is
weak and does not result in serious artifacts. Yet, to be
cautious, we present both, the Fourier transform and the
DFA scaling exponents.

[12] In many cases, the Fourier transform scaling curves
(as well as the DFA curves) have “crossovers”, i.e., have
different scaling exponents for different frequency regimes.
Usually, for geophysical time series like the ones we handle
here, the scaling exponent is larger for the higher frequen-
cies (small scales) due to the relatively strong temporal
correlations of a few days of weather systems. In that case, it
is necessary to estimate the scaling exponent for these
different regimes. The time series we study here do not seem
to have such crossovers and thus we present a single scaling
exponent for the entire frequency (or window scale) regime.

2.3. Volatility Correlations

[13] It is possible to gain some information regarding the
nonlinearity of the time series by studying its “volatility”
correlations [Ashkenazy et al., 2001, 2003b; Kalisky et al.,
2005]. We define nonlinearity with respect to the Fourier
phases: when the statistical properties of the time series
remain unchanged after randomizing its Fourier phases the
time series is defined as linear, while otherwise it is defined
as nonlinear [Schreiber and Schmitz, 1996, 2000]. This is
motivated by the fact that (linear) autoregressive moving
average (ARMA) processes are independent of the Fourier
phases. By volatility we refer to temporal correlations in
time series of the absolute values of the increment time
series which reflect the way that fluctuations (either positive
or negative) are clustered together [4shkenazy et al., 2001,
2003b; Kalisky et al., 2005]. It has been shown that long-
range volatility correlations may be linked to nonlinearity
and multifractality of time series [Ashkenazy et al., 2001,
2003b; Kalisky et al., 2005]. It is necessary to validate that
indeed the volatility correlations are linked to the Fourier
phases and not to other factors like the probability distri-
bution function, using surrogate data tests described in the
next subsection.
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Surface currents at 34.969E 29.501N starting from Oct. 1st, 2005
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Figure 2. (a) An example of a time series of surface
current speed (in cm/s) as measured by the HF radar. The
time series spans 1 year starting 1 October 2005 and
represents the mean surface current of a grid point of
~300 m x =300 m located at 34.969°E and 29.501°N
(indicated by a gray square in Figure 1). Note that in this
location, the accuracy and coverage of the measurements
are near optimal. (b) An enlargement of the time series
presented in Figure 2a.

2.4. Surrogate Data Tests

[14] To asses the uncertainty of the estimated scaling
exponent and to study the nonlinearity of the volatility
correlations we use two surrogate data tests.

[15] 1. By randomly exchanging pairs of points of the
time series, the probability distribution function of the time
series remains unchanged while the temporal correlations
are destroyed. The mean and the standard deviation of the
scaling exponent of the randomized time series may indicate
how significant is the observed scaling exponent and what
are the error bars due to the finite size of the time series and
due to the probability distribution.

[16] 2.1t 1is possible to generate surrogate time series from
the original time series such that the probability distribution
function and the Fourier amplitude are kept almost as the
original ones while the Fourier phases are randomized
[Schreiber and Schmitz, 1996, 2000]. Using this surrogate
data technique, it is possible to reject a null hypothesis
regarding the nonlinearity of the time series since linear
(ARMA) processes are independent of the Fourier phases. If
a statistical measure of the original time series is signifi-
cantly different than the surrogate time series ones then the
null hypothesis of linearity is rejected and the time series
can be considered as nonlinear.

3. Results

[17] The surface currents in the Gulf of Eilat are highly
variable and at times quite complex. In Figure 1a we show
an example for a snapshot of surface current field which
exhibits rich spatial variability, even in such a small area.

ASHKENAZY AND GILDOR: SURFACE CURRENTS LONG-RANGE CORRELATIONS

C09009

The time series of a particular location (located in front of
the two stations, at a region with very few gaps in the data)
is also highly variable (Figure 2); weak seasonal and daily
variability is also present with reduced speeds during the
winter months. This pattern is a typical.

[18] A detailed analysis of the time series shown in Figure 2
is depicted in Figure 3. We first perform a conventional
Fourier transform (Figure 3a) from which it is clear that the
low frequencies dominant the signal where the daily peri-
odicity is relatively weak. This hints to long-range temporal
correlations. To asses this more accurately we plot the
power spectrum on a log-log plot (Figure 3b), both using
linear and logarithmic binning. The logarithmic binning is
more suitable for the estimation of the power law scaling
exponent 3. It is apparent that the scaling curves have
similar slope for the different frequency regimes. We
estimate the power law scaling exponent by least squares
fitting the power spectrum to a power law function and
obtain a power law exponent of § ~ 0.7, suggesting long-
range temporal correlations. This is a typical scaling curve
although grid points close to the shore may have crossovers.
We estimate the scaling exponent of 20 shuffled time series
of the time series shown in Figure 2a and obtain a mean
exponent of —0.01 and a standard deviation of 0.05,
suggesting that the long-range temporal correlations are
highly significant.

[19] We repeat the calculation of the scaling exponent
using the DFA method of order two (Figure 3c); that is,
linear trends in the time series are excluded. We obtain a
DFA exponent of a ~ 0.8 for annual, winter (January to

1 — linear bin.
— log. bin.

|

10
: 4F
0 107 E
0 05 1 1.5 2 25 0.0010.01 0.1 1 10
= Freq. (1/day) Freq. (1/day)
U;_ 10° e—eannual | o—oannual |
8= E(—ga—‘ ;ﬂmﬁ{cr ] (d)fe— :ﬂmlti{m ﬁw“"&'
&} 2 3 ™. e
= 10 ..~ ot 4
& 10’ ~0=0.8 1
= e ] s
E I[]t) Em FERTTTY B RRTTT B I[]-I tTul AERTITT R R TITT A W
g 10 100 1000 10 100 1000
o Window scale, n (1/2 h) Window scale, n (1/2 h)
Figure 3. (a) Frequency power spectrum of the time series

shown in Figure 2a. (b) Same as Figure 3a but on a log-log
plot with linear binning (black curve) and logarithmic
binning (red curve). The estimated power law exponent is
8 = 0.7. (c) The DFA scaling curves for the entire year
(black, October 2005 to September 2006), winter (red,
January to March 2006), and summer (blue, July to
September 2006). The estimated DFA exponent is a =~
0.8 with no apparent crossover. (d) Fluctuation function
curves for the volatility time series (i.e., absolute value of
the increment time series). The DFA curves indicate weak
volatility correlations of o, ~ 0.65.

4 of 10



C09009

March 2006), and summer (July to September 2006) time
series. This value is roughly consistent with the value of
the power spectrum scaling exponent 3 = 0.7, since theo-
retically 3 = 2a — 1 = 0.6; the difference of 0.1 may be
attributed to the presence of linear trends in the surface
speed time series. [Below we show that the DFA exponent
is consistent with the Fourier transform scaling exponent
when dealing with the basin mean exponent.] Also here the
DFA scaling curves do not seem to have crossovers. To
estimate the significance of the scaling exponent we gener-
ate 20 shuffled time series out of the original one and
obtain, as expected, a mean exponent of 0.51 and a standard
deviation of 0.015. Thus, the estimated temporal correla-
tions are highly significant and since we use the DFA they,
most probably, are not associated with linear trends or
seasonal variability as on the scales we consider here (days
to months) the mean seasonal cycle appears as linear curves.

[20] Finally we estimate the volatility correlations (Figure 3d)
using the DFA method. Here the temporal correlations are
marginal and the scaling exponent is «,, ~ 0.65 indicating
weak nonlinearity of the time series. Usually, such nonlin-
earity is expressed by clustering of large fluctuations (up or
down) followed by clustering of small fluctuations which
are arranged in a self-similar pattern. Such behavior may be
associated with storm activity followed by days with calm
winds. To asses that indeed the volatility correlations are not
an artifact of the shape of the distribution, we generate 20
surrogate time series out of the original (increment) time
series using the surrogate data test proposed by Schreiber and
Schmitz [2000]. The mean volatility exponent of the surrogate
time series is 0.5 and the standard deviation is 0.02, suggest-
ing that the observed volatility correlations are significant and
that the surface current time series is indeed nonlinear.

[21] Generally speaking, one would expect that the results
shown in Figure 3 would be similar to other time series in
nearby locations within the domain considered here (Figure 1)
due to the small basin dimensions and since the atmospheric
forces (like temperature and winds), which are the main
driving forces of ocean circulation, vary on much longer
scales. To check this hypothesis we estimate the different
scaling exponents (3, «, and ) for each of the available grid
points. The results are presented in Figure 4.

[22] We analyze the time series of an entire year (October
2005 to September 2006), winter (January to March 20006),
and summer (July to September 2006). We present (1) the
Fourier power spectrum scaling exponent, (3, that was
estimated based on logarithmic binning curves, (2) the
DFA (of order two) scaling exponent, «, and (3) the
volatility scaling exponent «,. A summary of the basin
mean and standard deviation of the different exponents is
given in Table 1. The surface currents are long-range
correlated with Fourier power spectrum exponent 5 ~ 0.7
and DFA exponent o« =~ 0.8. The correlations are stronger
during the winter and weaker during the summer. To
estimate the significance of the exponents we generate 20
shuffled time series for each of the grid points and estimate
the exponents. We obtain mean Fourier power spectrum
exponent of 0 and standard deviation that is less than 0.12,
and for the DFA we obtain a mean exponent of 0.5 and a
standard deviation that is less than 0.03. These values
indicate that the measured correlation exponents are highly
significant compare to the exponents of the shuffled time
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series, thus indicating long-range correlations. The similar-
ity between the [ and « exponents, both spatially (Figure 4)
and through the relation 5 =2a — 1 (Table 1), indicates that
the effect of trends on the estimation of the exponents is
small and that the weak daily periodicity does not really
affect the estimation of the scaling exponents.

[23] The spatial pattern of the 5 and « scaling exponents
is, in some cases, unique. More specifically, during the
winter time, the southern part has a larger exponent than
the northern part. There is a kind of “front” parallel to the
north-western to south-eastern axis. The origin of this
pattern is not clear to us. During the summer the situation
is different and the eastern part of the gulf seems to have a
larger exponent than the western part. Generally speaking,
the most northern region tends to have lower exponent
values. This region is the shallowest region of the gulf with
a relatively gradual slope. In addition, the HF radar cover-
age in this region is relatively poor (because when the wind
blow from the north, the waves are too weak in that region)
and most values there are derived using the Open-boundary
Modal analysis method applied to this region [Lekien and
Gildor, 2009]. We speculate that such shallow region is also
more drastically and readily affected by buoyancy fluxes (as
this is the coldest region in the gulf [Biton et al., 2008]) and
thus is more erratic and closer to white noise, as the nature
of this force; hence the lower exponent values.

[24] For the volatility scaling exponent the situation is a
bit different. While the volatility correlations are moderate
and the exponent is a,, ~ 0.65, there are no substantial
differences between the summer and winter (Figure 4 and
Table 1). Still, the volatility correlations, as expressed by the
volatility scaling exponent «,, are somehow weaker during
the summer, as for the Fourier and DFA scaling exponents,
« and 3. We validate that indeed the volatility correlations
indicate nonlinearity by generating 20 surrogate time series
for each of the available grid points, for which the Fourier
phases are random but the probability density function and
the Fourier power spectrum remain almost unchanged. We
apply this for the increment time series of the surface speed
current [see Ashkenazy et al., 2003b]. We then measure the
volatility scaling exponent of the surrogate time series using
the DFA technique. We find that the mean volatility
exponent is 0.494 and that the standard deviation is less
than 0.054, significantly lower than the measured volatility
exponent of 0.65. The volatility correlations thus represent
nonlinearity of the underlying process. Similar nonlinearity
has been found in other climate variables [e.g., Bartos and
Janosi, 2006; Govindan et al., 2003]. The spatial pattern of
the volatility exponent «, is not unique.

4. Time-Dependent Ekman Layer Model

[25] As mentioned above, there are three main factors/
forces that may affect the circulation in the Gulf of Eilat:
(1) wind, (2) tides, and (3) buoyancy fluxes. Since we are
dealing with surface currents, winds are likely to have the
largest influence. While winds are weaker during the winter
(Figure 5a), a convection process (deep water formation) is
active during the winter [Genin and Paldor, 1998; Biton et
al., 2008]; tides are more dominant during the summer due
to the shallower thermocline [Monismith and Genin, 2004].
While convection and tides act on at least several tens of
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Figure 4. A summary of the scaling exponents of surface current speed. The x/y axis denotes the
longitude/latitude. (left) Fourier transform scaling exponent /3. (middle) DFA scaling exponent «. (right)
Volatility scaling exponent «v,. Scaling exponents of the (top) annual (1 October 2005 to 30 September
2006), (middle) winter (1 January 2006 to 31 March 2006), and (bottom) summer (1 July 2006 to 30

September 2006) time period.

meters of depth, the wind’s action is maximal at the surface
and decreases exponentially with depth [Ekman, 1905; Gill,
1982]. We thus concentrate in the following on the wind
action as the source of the observations reported in the
previous section.

[26] Ekman [1905] studied the effect of winds on the
upper (and lower) layer of the ocean and showed that
surface currents are oriented to the right of the wind (in
the Northern Hemisphere, NH), that the currents’ speed
decreases exponentially with depth, and that the entire
transport due to wind is oriented 90 degrees to the right
of the wind (in the NH). The current vector rotates anti-
cyclonically (clockwise in the NH) with depth. The Ekman
model has two independent variables, time (¢) and depth (z)
where the model has analytical time-dependent and time-
independent solutions for constant winds [Ekman, 1905].
We numerically solve the time-dependent Ekman model that
is forced by the observed winds presented in Figure Sa.

[27] In particular, we solve the following set of equations:

Ou Ou
o —fv= V@7 (1)
ov . Py
E‘Fﬁl =Voa (2)

Table 1. Summary of the Scaling Exponents 3, o, and o,

Exponent Annual Winter Summer

¢ 0.69 + 0.09 0.74 + 0.14 0.59 £ 0.13
B+ 1)2 0.845 +0.045 0.87 +0.07 0.795 + 0.065
« 0.83 +0.04 0.91 £ 0.09 0.77 £ 0.06
, 0.67 +0.03 0.67 + 0.055 0.61 £ 0.04

“The mean + 1 SD of the available data is given. The DFA exponent that
is calculated from the relation 5 = 2a — 1 is also given to allow easier
comparison with the DFA « exponent.
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Wind speed at 34.95E 29.55N starting from Oct. 1st, 2005

180 270

Simulated surface currents

Figure 5. (a) Wind speed in m/s for the time period of
October 2005 to September 2006 at 34.95°E, 29.55°N (slightly
north to the Gulf of Eilat, from Eilat airport indicated by “X”
in Figure 1a). (b) Simulated surface currents (in cm/s).

where u and v are the zonal and meridional ocean velocities,
f is the Coriolis parameter, and v is the eddy viscosity
coefficient. Here we ignore the nonlinear advection terms,
the lateral (x and y) dynamics, and the basin topography,
while the density is assumed to be constant. The boundary
conditions are constant current, i, v, at some depth H and at
the surface the wind stress is related to the derivative of the
surface currents through

i 7
=0 = (3)

gz =0 = vp,

where p, = 1028 kg/m’ is the water density and 7 is the
wind stress vector given by

(Txv Ty) = paCDU(um Va): (4)

where U is the wind speed (usually at 10 m height), u, and
v, are the zonal and meridional winds, p, is the air density,
and Cp is the drag coefficient. The air density that we use is
pa = 1.3 kg/m® and the drag coefficient is Cp = 107> for
U< 6.2m/sand Cp,=(0.6094 +0.063U)10 " for U> 6.2 m/s
[after Gill, 1982]. The other parameters values are: v =
0.01 m%s and = 7.16 x 107> s~' corresponding to the
Coriolis parameter at the latitude of the Gulf of Eilat. We
assume a depth of H =50 m, a vertical resolution of Az =
0.5 m, and integration time step of Az = 10 s. The hourly
wind data (depicted in Figure 5a) were linearly interpolated
to provide the wind data at each time step. The deep ocean
currents are assumed to be zero.

[28] In Figures 6a—6c we show the Fourier power spec-
trum of the wind and simulated surface currents, both on
linear and log-log plots. The diurnal periodicity is pro-
nounced, much more than the periodicity of the surface
current presented in Figure 3a. We thus do not perform DFA
to measure the scaling exponent as artifacts may arise.
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Several studies have reported long-range correlations of
wind speed [Schulz et al., 2001; Kocak, 2008; Roman et
al., 2008]. We find a similar scaling exponent for the wind
speed of the Gulf Eilat, 3 = 0.86. The simulated surface
current speed exhibits much stronger correlations with
correlation exponent 5 = 1.25 compare to the data that
has a scaling exponent of 3 ~ 0.7. Moreover, unlike the
data which exhibits straight scaling curve (Figure 3b) the
simulated current curve has crossover where the high
frequencies has a larger exponent. This observation can be
supported analytically (see Appendix A). Deeper currents
have more pronounced crossover and thus less dominant
high frequencies which end up with smoother time series
(see Appendix A).

[29] The wind data does not seem to exhibit volatility
correlations (Figure 6d); the power spectrum of the absolute
values of the surface current speed increments is parallel to
the x axis with exponent 3 ~ 0 indicating absence of
correlations. The simulated surface current speed time series
does show volatility correlations as follows from the pro-
nounced power at the low-frequency regime. However the
volatility correlations of the simulated surface currents are
not indicative for nonlinearity as the NULL hypothesis of
linearity is not rejected as the volatility correlations of the
phase randomized data is similar to the original ones. The
absence of nonlinearity of the simulated currents is expected
due to the linearity of the model (equations (1), (2)).

5. Summary and Discussion

[30] We analyze the long-range correlations of surface
current speed of the Gulf of Eilat. The current field is

Simulated currents

Wind
2_5t5)|"|"1"l"1_

0.15H@a)"

| 0 L ] 1 1
0 05 1 15 2 25 0 05 1 15 2 25
Freq. (1/day) Freq. (1/day)
5 Volatility
10 o 1 100
=10 L 4E
210 % 1 107k
(=} ]0.5= ..'%. 1 []'5:
2 104F Wind y 3 10 ¥ . Nind
10_7 F = Simulated currents B Lk |0v6 g Simulated currents
10 !'—;Lhtl‘:l‘{l:l)lf.l S .....‘.‘:.! F_~— Phase-rand. currents
0.01 0.1 1 10 100 0.01 0.1 1 10
Freq. (1/day) Freq. (1/day)
Figure 6. (a) The Fourier power spectrum of the wind

speed time series shown in Figure 5a. (b) Same as Figure 6a
for the simulated surface current speed shown in Figure 5b.
(c) Log-log plot of the curves shown in Figures 6a and 6b
and the theoretical scaling curve as developed in the
Appendix A (equation (A6)). (d) Power spectrum of the
absolute values of the increments of the wind speed (black),
simulated surface current speed (red), and surrogate time,
phase-randomized time series of the simulated currents (blue).
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unique and has fine temporal (half an hour) and spatial
(=300 m) resolution. We find that the surface currents are
long-range correlated and have a Fourier power spectrum
scaling exponent of 3 ~ 0.7. The long-range correlations
are from timescales of hours to several months, thus
covering more than two orders of magnitudes. In addition,
the surface current field posses volatility correlations that
are an indication for nonlinear underlying dynamics. We
show that the observed correlations are significant using
surrogate data techniques.

[31] To track the source of the observed correlations we
simulate upper ocean currents using a time-dependent
Ekman layer model. The only forcing in this model is the
wind. We find that the simulated currents of this model are
much different from the observed ones as follows: (1) the
diurnal periodicity of the simulated current is much more
pronounced than the observed one, (2) the simulated cur-
rents are much more correlated than the observed currents,
(3) the scaling curves of the simulated current exhibit
crossover behavior with stronger correlations for the high
frequencies while the observed currents show approximate-
ly straight scaling curves, and (4) although the simulated
currents exhibit volatility correlations these are not indica-
tive for nonlinear behavior, in contrast to the observed
current for which the volatility correlations are indication
for nonlinearity.

[32] It is not expected that the simulated currents will
posses nonlinearity since the underlying model is linear;
note that the wind-forcing is also linear by our definition for
nonlinearity (Figure 6d). The differences between the linear
scaling features of the observed and simulated currents
suggest that other processes, in addition to the wind, may
have a significant effect on the scaling properties. The
convection process is, most probably, not the major one
since we observe the differences both in summer and winter,
while the convection process is much more significant
during winter. This is also true for the tides that are more
dominant during summer. Thus it might be that the nonlin-
ear terms of the governing equations, like the advection
terms, have some role in weakening the correlations and in
resulting in straight scaling curves. In addition, the bathym-
etry and the shape of the basin may also play some role in
the scaling properties. The unique pattern of the scaling
exponents during winter and summer suggests that convec-
tion and tides may also weaken the correlations, although
most probably less significantly than the nonlinear terms.
Preliminary simulations of an atmospheric mesoscale model
indicated the high spatial and temporal variability of the
wind field; such variability with/without interaction with
other processes may also affect the observed scaling.

[33] We observe stronger correlations during the winter.
We speculate that these are due to the much deeper
thermocline during winter which lead to slower response
to external forcing and thus to stronger correlations. How-
ever, the convection process which is active during winter,
may add noise into the system as it occurs in an erratic way
when the surface temperature is cold enough to cause the
sinking of surface water. Such extreme cold atmospheric
events are erratic in their nature. An additional speculation
is that white noise (or weakly correlated noise) is super-
imposed on the tidal signal; thus, in summer, when the tides
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are dominant the low-frequency regime is more affected by
these weaker correlations to result in weaker correlations in
the current speed time series while the opposite may cause
stronger correlations during winter.

[34] Many natural time series exhibit long-range temporal
correlations. Linear correlations may be reproduced by
simple linear stochastic processes like auto regression
moving average fractional Brownian motion processes.
The example of surface currents discussed here suggests
that nonlinear terms are involved in determining the linear
scaling properties of the studied time series.

[35] Our results might be influenced to some extent by the
observational technique and the method used to interpolate
the data. However, this influence is most probably not very
strong. In a large fraction of the domain, located in front of
the two stations, the temporal coverage exceeds 90%. In
addition, this region is hardly affected by the interpolated
method [Lekien and Gildor, 2009] and the accuracy of the
measurements there is optimal. Comparison of the measure-
ments at a specific location in that region to currents
measurements by an Acoustic Doppler Current Profiler
(ADCP) show very good correlations [Gildor et al.,
2009]. Even within this region, the scaling exponents are
inhomogeneous.

[36] The results reported here may be important for
testing state-of-the-art ocean simulations. Our preliminary
results based on ocean general circulation model show that
there are large differences between the scaling properties of
the measured surface currents and those simulated by the
model. These differences might be due to simplified forcing
fields (like taking monthly mean data instead of hourly
based data) that are usually used in such models, due to
simplified small-scale eddy parameterization (e.g., constant
eddy coefficient in fine resolution and small-scale basins,
which was shown to be incorrect in this region [Gildor et al.,
2009]), or due to the effect of tides that in many cases are not
taken into account. When forcing the time-dependent Ekman
model presented above with monthly mean wind data that are
linearly interpolated for each time step we obtain currents that
very slowly and linearly change from one month to another;
these currents are obviously very unrealistic. We believe that
a more complete GCM simulations that include the effect of
tides and spatial and temporal variability of the wind should
be carried out in order to uncover the origin of the scaling
properties reported here.

Appendix A: The Scaling Properties of Upper
Ocean Current Under the Action of Long-range
Correlated Wind

[37] Here we analytically derive the power spectrum of
upper ocean currents under the action of long-range corre-
lated wind.

[38] Given equations (1)—(2) it is possible to perform a
Fourier transform to obtain

Pglwz) w+f p

T—IT (W,Z):07 (Al)

where g(w, z) = u(w, z) + iW(w, z) and u, v are the Fourier
transform of the zonal and meridional currents, u, v. w is the
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frequency where we assume here that w > 0. The solution to
equation (Al) is

2(w,2) = Ael1+9/d | g=(1+)2/d

where d = \/2v/(w+f) is equivalent to the conventional
Ekman layer depth.

[39] It is possible to find the coefficients 4, B of equation
(A2) using the boundary conditions. Here we assume that at
large depths the currents are constant, thus the Fourier
transform of the currents for z — —oo is zero (for w > 0)
leading to g(w, z — —o0) = 0. Thus B = 0. For the surface,
z = 0, the boundary condition (3) holds leading to

(A2)

0g | PP
EE \Z:o—w(f + i),

(A3)
where 7 and 7 are the Fourier transform of the zonal and
meridional wind stresses, 7° and 7. From this relation we
find 4 and obtain the following solution

g(w,z) = (7 + lTy)ez/d

fﬁo v

[cos(z/d + m/4) + isin(z/d + 7/4)]. (A4)

Thus,

2
d
5 12— 7A_,xZ+ ,i_yZeZZ/d:il2+ {)2.
2l ( ﬁW> (17 I + 17 ) =l + 1151

(AS)

So far, we didn’t assume any specific form of the wind
stress.

[40] To find the scaling exponent of the simulate currents,
Bw), based on wind that follows a scaling law with a
scaling exponent (3, for the wind speed, we assume the
following: (1) the scaling of the wind stress is similar to
the scaling of the wind, (2) the scaling of the square of the
(wind/current) speed is similar to that of the speed itself, and
(3) the power spectrum (both of winds and currents) of the
zonal component is similar to the power sgectrum of the
merldlonal component (i.e., ||7||* ~ ||#|* and |it/?
|¥]|%). Assumptions (1) and (2) are base on the Conjecture
that static transformation [i.e., y; = f{x,) and y, # flx;, x;_1,
X;_2, ...)] does not drastically alter the temporal correla-
tions. It follows from Kalisky et al. [2005] that if a tlme
series, x, is a linear series that follows a scaling law ||X[|* ~
w w1th B> 0.5, the scaling exponent of the square of the
series, x° is [ = Zﬁx — 1. Then, using equation (A5) we
obtain

31< N 1 e/@mnien (A6)
W ()

This relation is plotted in Figure 6¢ (dashed line) using the
parameter values that we use to simulate the current speed
time series shown in Figure 5b; the agreement between the
theoretical curve and the simulated curve seems reasonable.
The differences between the two may be attribute to finite
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size effects, to the simplifying assumptions assumed above,
and to generalization of 3,» =23, — 1 relation to time series
with crossovers in the power spectrum.

[41] For the surface z = 0 equation (A6) leads to 3. —
Ow + 2 for w>> fand to 5. — [ for w < f, supporting the
observed crossover at w & f with much larger scaling
exponent at the high-frequency regime. For larger depths
this crossover becomes even more pronounced due to the
action of the exponential function in equation (A6), i.c.,
with suppressed high frequency and thus smoother currents.
We observed these two characteristics for simulated currents
from larger depths (data not shown).
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