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[1] Ice flow over a Snowball ocean was shown in recent years to be capable of very
effectively homogenizing ice thickness globally. Previous studies all used local or
one-dimensional global (latitude-only) models, formulated in a way that is difficult to
extend to two-dimensional global configuration. This paper uses a two-dimensional
global ice flow model to study the effects of continental constriction on ice flow and ice
thickness in a Snowball-Earth scenario using reconstructed Neoproterozoic landmass
configuration. Numerical simulations and scaling arguments are used to show that various
configurations of continents and marginal seas which are not represented by one
dimensional models lead to large ice thickness variations, including narrow areas between
sub-continents and marginal seas whose entrance is constricted. This study ignores
many known important factors such as thermodynamic, optical effects, dust and dust
transport, and is therefore meant as a process study focusing on one specific effect, rather
than a realistic simulation of Neoproterozoic ice thickness. The model formulation
developed here generalizes and extends previous results in several ways, including the
introduction of corrections due to spherical coordinates and lateral geometry. This study is
therefore a step toward coupling Snowball ice flow models to general circulation ocean and
atmospheric models and allowing a more quantitative simulation of Neoproterozoic
Snowball ice thickness.
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1. Introduction

[2] Between 750 and 580 million years (Myr) ago, during
the Neoproterozoic era, Earth experienced multiple ice ages,
some of which deposited glaciogenic sediments in equatorial
seas indicating possible global ice cover [Harland, 1964;
Kirschvink, 1992; Hoffman et al., 1998]. Understanding
these events is an interesting challenge to our knowledge of

climate dynamics. Some of the related issues and contro-
versies are described in a recent review by Pierrehumbert
et al. [2011].
[3] The flow of ice over the ocean in a Snowball Earth

scenario has received significant attention over the past few
years. It was demonstrated by Goodman and Pierrehumbert
[2003], that ice flow effectively homogenizes ice thickness
in a Snowball Earth scenario. Ice thickness, in turn, plays a
potentially important role in the question of the survival of
photosynthetic life during a Snowball event [Hoffman and
Schrag, 2002; Pollard and Kasting, 2005; McKay, 2000;
Campbell et al., 2011], and an ice cover of more than tens of
meters could be too thick for photosynthesis [McKay, 2000].
[4] Related work has so far dealt with the consequences of

ice flow [Goodman and Pierrehumbert, 2003], with the
optical properties of ice [McKay, 2000;Warren et al., 2002],
with the effect of different optical properties of frozen sea-
water vs. accumulated snow [Pollard and Kasting, 2005,
2006; Warren and Brandt, 2006; Goodman, 2006], with the
role of dynamic vs. thermodynamic sea ice [Lewis et al.,
2007], and with dust accumulation over the Snowball ice
cover [Abbot and Pierrehumbert, 2010; Le Hir et al., 2010]
and dust transport [Li and Pierrehumbert, 2011].
[5] Warren et al. [2002] and Pollard and Kasting [2005]

suggested that constricted marginal seas may lead to large
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ice thickness variations because the ice flow into the sea is
limited by friction with the sidewalls of the leading passage,
and may not be able to balance the ablation/melting within
the sea. In a recent work, especially relevant to the work
presented here, Campbell et al. [2011] considered the inva-
sion of an elongated rectangular-shaped marginal sea by ice
flow, under the influence of friction by the sidewalls of the
sea. They derived a formula for the invasion length based on
an analytic solution of Nye [1965].
[6] All calculations of Snowball ice flow that have so far

been carried out used either one-dimensional (in latitude)
global models, or an idealized local rectangular marginal
sea. Furthermore, the formulation of global one dimensional
(latitude only) models was based on a formula for ice shelf
deformation rate [Weertman, 1957], which, unfortunately,
cannot be extended to two dimensions (longitude and
latitude).
[7] This paper has two main objectives. The first objective

is to study the ice flow on a sphere in the presence of con-
tinents, and the possibility of large ice thickness variations
developing due to the existence of constricted seas. We
show numerical solutions based on reconstructed continental
configuration for the Neoproterozoic, as well as scaling
relationships for ice thickness variations. We derive scaling
relationships for both a global continent-free ocean, and for a
constricted sea with a channel connecting it to the ocean.
[8] Our second objective is to formulate the ice flow

problem on a sphere, including both horizontal dimensions.
To do this, we introduce several novel aspects and introduce
physical processes and mathematical terms so far neglected
in the Snowball literature. Importantly, we derive the equa-
tions directly from the Stokes equations. This allows the
formulation of a two-dimensional horizontal flow problem,
which is not possible using the approach of pioneering
studies of Snowball ice flow [Goodman and Pierrehumbert,
2003; Pollard and Kasting, 2005] because they started from
the ice shelf strain rate formula of Weertman [1957]. In
particular, we employ the ice shelf momentum budget of
Morland [1987] [see also MacAyeal and Barcilon, 1988;
MacAyeal, 1989, 1997], as well as spherical coordinates, and
show that both of these factors lead to additional terms even
in a one-dimensional formulation.
[9] Many factors are now known to play a role in setting

ice thickness on a Snowball Earth, and some of them (ice
optical properties, different ice sources, dust and dust
transport) have been studied in the papers mentioned above.
In this paper, we focus on the effects of the ice flow and its
interaction with continental configuration, and ignore, for
now, all other feedbacks. This has the advantage of
allowing us to isolate and carefully study the related flow
dynamics, but necessarily makes this study idealized and
over-simplified. We feel this is a useful approach, yet
emphasize that as a result we do not expect the numerical
values of the ice thickness calculated here to be a reliable
quantitative predictor of Snowball ice thickness. This work
should therefore be viewed as a process study rather than an
attempt at a realistic Snowball simulation. In particular, we
assume that the ocean is entirely covered with thick ice
(termed “sea glaciers” by Warren et al. [2002]), and our
results cannot be used to confirm or reject the possibility of
ice-free conditions or thin ice developing in the tropics as
suggested in some previous works [e.g., Chandler and Sohl,

2000; Hyde et al., 2000; Pollard and Kasting, 2005; Liu and
Peltier, 2010; Abbot et al., 2011].
[10] In the following sections we present an outline deri-

vation of the model equations (section 2). These equations
are a simple extension to spherical coordinates of well-
known ice shelf equations used for a long time in glaciology
[Morland, 1987; MacAyeal, 1997]. We then show the model
results (section 3), derive scaling laws for ice thickness in an
axisymmetric global case without continents and in the case
of a constricted sea (section 4), and conclude in section 5.
The appendices present a detailed derivation of the model
equations.

2. The Model: Two-Dimensional Ice Shelf Flow
on a Sphere

[11] We provide an outline of the model derivation here,
with full details given in Appendix A. Let the coordinates
(longitude, co-latitude, vertical) be denoted by (f, q, z) and
the corresponding velocities be (u, v, w). The momentum
equations are,

0 ¼ � 1

r sinq
∂fpþ ðr ⋅ tÞ ⋅ êf

0 ¼ � 1

r
∂qpþ ðr ⋅ tÞ ⋅ êq

0 ¼ �∂zp� grI þ ðr ⋅ tÞ ⋅ êz;

ð1Þ

where r is the Earth radius taken to be constant; p is the
pressure; g gravitational acceleration; rI the ice density;
t = {tij} is the stress tensor, and it is important to note that
the divergence r ⋅ of a second order tensor in curvilinear
coordinates contains some metric terms in addition to those
appearing in the divergence of a vector (Appendix B). Unit
vectors in the directions of the three coordinates are denoted
êf, êq and êz. We use Glen’s flow law [Glen, 1955] to relate
the stress to the rate of strain _�ij,

tij ¼ AðTÞ�1
3 _�

1
3�1 _�ij

_�2 ¼ _�mn _�mn=2;

where T is the ice temperature and A(T) is the temperature
dependence of ice viscosity, which we take to be that used
by Goodman and Pierrehumbert [2003]. We assume the
temperature varies linearly in depth from a prescribed sur-
face temperature to the freezing temperature at the base of
the ice, which we assume constant. We use two different
prescribed surface temperature latitudinal profiles which we
refer to as the “warm” and “cold” profiles. These surface
temperatures are a smooth fit to those calculated by the
NCAR Community Atmospheric Model assuming a surface
albedo of 0.6 at high (105 ppm) and low (100 ppm) CO2

values (D. Abbot et al, SNOWMIP2: Deep Snowball and
Snowball deglaciation model intercomparison, manuscript
in preparation, 2012). The boundary conditions are that the
dot product of stress with the normal vector vanishes at the
top of the ice, and is equal to the hydrostatic pressure force
normal to the bottom of the ice [MacAyeal, 1997],

ðt � pIÞ ⋅ n̂s ¼ 0;

ðt � pIÞ ⋅ n̂b ¼ �n̂bpw;
ð2Þ
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where n̂s and n̂b are normal vectors to the ice surface and
bottom, and I is the unit tensor (matrix). Because the com-
ponent of the stress parallel to the ice surface vanishes at the
top and bottom (friction with the ocean and atmosphere is
negligible), a very good approximation is to assume that the
horizontal ice velocities are independent of depth [e.g.,
Weertman, 1957; MacAyeal and Barcilon, 1988]. Addi-
tionally, the vertical scale of the floating ice is much smaller
than Earth’s radius r, and we therefore employ the “thin
shell” approximation, in which r is assumed to be constant.
The very large aspect ratio (thousands of km in the hori-
zontal dimension, vs hundreds of meters in the vertical)
implies that the vertical velocities may be assumed to be
very small relative to the horizontal ones. These assumptions
lead to the following approximation for the symmetric rate
of strain tensor in spherical coordinates (Appendix A),

_� ≈

1

r sin q
∂fuþ v cos q
� �

: :

1

2r

1

sin q
∂fvþ sin q ∂qðu= sin qÞ

� �
1

r
∂qv :

0 0 ∂zw

0
BBBBB@

1
CCCCCA
; ð3Þ

where entries marked by dots above the diagonal are equal to
their symmetric counterparts below the diagonal. Note in
particular that _�qz ¼ _�fz ≈ 0 so that tqz ≈ 0, tfz ≈ 0 as well.
[12] Following Morland [1987] and MacAyeal [1997], we

integrate the above momentum equations from top to bottom
and use the boundary conditions (2) to find the final set of
ice shelf equations in spherical coordinates (Appendix A2),

0 ¼ 1

sin q
∂f B 2

1

sin q
∂fuþ v cos q
� �þ ∂qv

� �� �

þ 1

sin q
∂q B

1

2
∂fvþ sin2 q∂q u= sin qð Þ� �� �

þ cot q B
1

2

1

sin q
∂fvþ sin q ∂q u= sin qð Þ

� �

� 1

sin q
grI ð1� mÞhhf ð4Þ

0 ¼ 1

sin q
∂f B

1

2

1

sin q
∂fvþ sin q ∂q u= sin qð Þ

� �� �

þ 1

sin q
∂q B sin q∂qvð Þ þ ∂q B

1

sin q
∂q v sin qð Þ

� �� �

þ ∂q B
1

sin q
∂fu

� �
� cot q B

1

sin q
∂fuþ v cos q
� �

� grI 1� mð Þhhq ð5Þ

B ¼ 1

r
h A Tð Þ�1

3

D E
_�
1
3�1 ð6Þ

_�2 ¼ 1

2
_�2ff þ _�2qq þ ð_�ff þ _�qqÞ2 þ 2_�2fq

� 	
ð7Þ

ht þ 1

r sin q
∂fðuhÞ þ 1

r sin q
∂qð sin q vhÞ ¼ kr2hþ Sðf; qÞ; ð8Þ

where m = rI /rw, and 〈〉 denotes an average over the vertical
dimension, where the temperature varies linearly in depth as

explained above [Goodman and Pierrehumbert, 2003]. An
improved and more consistent treatment of the vertical
averaging procedure is described by Campbell et al. [2011].
The above thickness equation is a statement of mass con-
servation, and the diffusion term is included for numerical
reasons to make sure the solution is smooth. While we use
the diffusion term merely as a numerical aid, it may also
crudely represent snowdrift at the surface, which would tend
to smooth thickness variations (although snow fall rate
should be extremely small in a Snowball scenario). We keep
the diffusion coefficient as small as allowed by the numerics,
and the diffusion term is accordingly negligible relative
to thickness advection throughout the domain. The forcing
S(f, q) represents the accumulated effect of surface and
internal melting and sublimation, as well as basal freezing
and melting of ice.
[13] The boundary conditions for the above equations are

no normal flow into the north and south boundaries, and
periodic boundary conditions in the east-west direction. In
addition we prescribe no normal-flow and no slip conditions
for the velocity field at continental boundaries, which is
equivalent to assuming coastal boundaries are vertical. Zero
normal derivatives of the thickness are prescribed for the
advection-diffusion thickness equation at the north and south
boundaries as well as at continental boundaries.
[14] It is useful to write explicitly the equations for the

axisymmetric one-dimensional model which ignores con-
tinents, in which case there is no dependence on f and the
zonal velocity u is assumed to vanish,

0 ¼ 1

sin q
∂q B sin q∂qvð Þ þ ∂q B

1

sin q
∂q v sin qð Þ

� �
� cot2 q Bv

� �

� grI ð1� mÞhhq ð9Þ

B ¼ 1

r
h AðTÞ�1

3

D E
_�
1
3�1 ð10Þ

_�2 ¼ �
_�2ff þ _�2qq þ _�2zz

�
=2 ð11Þ

_�zz ¼ �ð_�ff þ _�qqÞ ð12Þ

ht þ 1

r sin q
∂q sinqvhð Þ ¼ kr2hþ SðqÞ: ð13Þ

[15] This one-dimensional model is different from that
used in previous studies [e.g., Goodman and Pierrehumbert,
2003; Goodman, 2006; Pollard and Kasting, 2005, 2006].
First, it more accurately accounts for the lateral geometry
following the Morland [1987] and MacAyeal [1997] for-
mulation, which leads to the second term in the above
momentum equation. Second, it includes the spherical
coordinate correction to the divergence of the stress tensor
(third term in the momentum equation). The spherical
coordinate correction term arises mathematically from the
additional set of geometric correction terms in the expression
of the divergence of a second order tensor relative to that of a
vector (Appendix B). Physically this term is due to the
stress element tff appearing in the q (meridional) direc-
tion momentum balance (see term including tff in
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equation (A10)). This stress element represents the unit
force in the f direction, acting on a unit surface perpen-
dicular to this same direction. It is non zero even in the
axisymmetric case because _�ff does not vanish in this case
as explained below. To see why a stress element repre-
senting a force in the f direction appears in the momentum
equation for the q direction, consider a small volume ele-
ment in spherical coordinates, (df, dq, dr). Note that the
faces of this element that are perpendicular to the f direction
have a slightly different northward slope at longitudes f and
at f + df. As a result, the net force in the f direction due to
the sum of tff acting on these faces has a component in the
q direction, leading to the above term. Finally, this equation
includes the contribution of the non-vanishing _�ff element in
the effective viscosity, again due to the spherical coordinates
used as explained after equation (3). Goodman and
Pierrehumbert [2003], as well as Li and Pierrehumbert
[2011] noted the existence of this effect, but argued that it
was inconsequential in comparison with the much larger
effect of temperature on ice rheology, and the much larger
uncertainty in ice rheology coefficients. Unlike in Cartesian
coordinates, _�ff does not vanish in the axisymmetric case
where there is no dependence on f and where u = 0. It is
equal then to v cot q/r, representing the fact that a fluid line
element oriented in the east-west direction and advected by a
uniform northward flow will shrink due to the convergence
of the longitude lines. This modifies the effective viscosity as
seen in equations (10) and (11).
[16] This fuller treatment of spherical coordinates pre-

cludes the explicit integration of the velocity equation and
the derivation of a single equation for the thickness, as was
possible using the simpler equations of previous studies.
Nevertheless the fuller equations (9)–(13) are easily solved
numerically using a combination of a tri-diagonal solver for
the momentum equation (iterated to account for the nonlinear
effective viscosity [MacAyeal, 1997]), and time stepping of
the thickness equation.
[17] Eliminating the spherical corrections and the more

accurate treatment of the bottom and surface slopes and
boundary conditions (equivalent to making a small-slope
approximation at these boundaries), our 1-D equation reduces
to a simpler one, in which only the first term is left in the
square brackets in the momentum equation (9), in addition to
the pressure gradient term. Neglecting also the contribution of
_�ff to the rate of strain, we get a simpler equation which may
be integrated once in co-latitude to lead to the Goodman and
Pierrehumbert [2003] equation. The constant of integration
from this first integration then plays a parallel role to that of

the “body force” introduced by those authors to represent the
pressure force due to the collision of ice from the north and
south hemispheres, and to allow the velocity to vanish in the
case of symmetric forcing with respect to the equator. Instead
of postulating this force, we can use the constants of inte-
gration to satisfy the boundary conditions of vanishing
velocity at the north and south ends of the domain, and when
the forcing S(q) is symmetric in latitude, the equatorial
velocity vanishes as expected. Using a constant of integration
instead of a prescribed body force is also discussed in the
supplementary material of Li and Pierrehumbert [2011].
[18] We solve the 2-D and 1-D model equations numeri-

cally using finite difference approximation over a near-
global domain from 80�S to 80�N, prescribing no-normal
flow into the northern and southern boundaries. We use a
resolution of 176 � 176 grid points in the 2-D cases shown
in the figures below, and of 89 grid points in the 1-D case.
The finite difference formulation is based on an A-grid (all
variables defined at the same point) and center differencing.
In the grid points adjacent to landmasses, we estimate the
pressure gradient terms and the effective viscosity using the
one-sided finite difference approximation. The momentum
equations are solved following standard procedure by iter-
ating on the effective viscosity [MacAyeal, 1997].
[19] The prescribed time-independent, latitude-dependent,

net melting/freezing/sublimation are from the Pollard and
Kasting [2005, Figure 4c] model for the case of bubbly ice
(dashed lines, smoothed before used here). We do not dif-
ferentiate between surface and basal melting/freezing, and
therefore do not include feedbacks between basal melting/
freezing and ice thickness via the balance between heat
diffusion within the ice cover and geothermal heat flux
[Goodman and Pierrehumbert, 2003]. The global integral of
the specified source function vanishes, and the flow and
source function can therefore only redistribute thickness
across the domain. As expected in the absence of the
thickness-dependent basal melting, the domain-averaged
thickness is set by the initial conditions, and is therefore not
uniquely determined by the model parameters. We initialize
integrations with an average thickness of 1000 meters.
[20] Because our forcing corresponds to the bubbly

(reflecting) ice case of Pollard and Kasting [2005], the
thickness variations we calculate may be underestimating
those that could be calculated by including additional effects
involving the optical properties of the ice etc. Ignoring other
feedbacks, such as dependence of basal melting/freezing on
ice thickness may also significantly affect our solution.
Addressing these additional effects well would require a full
ocean general circulation model that would calculate the
ocean heat transports and temperature field and, from that,
the basal melting and freezing. This is left for a future study.
[21] The model code is written in Matlab and is available

at www.seas.harvard.edu/climate/eli/Downloads.

3. Numerical Results

[22] Table 1 lists the different model experiments we have
performed. All shown results represent the steady state model
solution, obtained by running the model for at least one
hundred thousand years. The results of the 1-D model, which
ignores land masses, are shown in Figure 1. Consistent with
previous studies and with the scaling arguments given in

Table 1. List of Model Experimentsa

Experiment Model Tsurf Land Figure

3 1-D warm - 1
4 1-D cold - 1
5 2-D warm - -
7 2-D warm 630Myr -
8 2-D cold 630Myr -
9 2-D X2 warm 630Myr 2
10 2-D X2 cold 630Myr 2

aX2 means resolution of 176 grid points, otherwise 89 points are used.
“Warm” refers to the prescribed surface temperature seen in Figure 1c,
while “cold” refers to that shown in Figure 1d.
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section 4.2, this model predicts a very small thickness dif-
ference between the pole and the equator when optical/dust
effect are not included (comparable to the (Pollard and
Kasting [2005, Figure 4f], dash line representing bubbly
ice); note the discussion in Li and Pierrehumbert [2011]
regarding the larger difference found in Goodman and
Pierrehumbert [2003]). The model results show an ice
thickness difference of about 100 meters between the equator
and pole for the cold case, and only 40 meters for the warm
case. The warmer temperatures make the ice softer, as
expected, and therefore lead to even smaller thickness gra-
dients. The small meridional ice thickness gradient in both
cases demonstrates the effectiveness of the ice flow in
effectively homogenizing ice thickness, as pointed out by
Goodman and Pierrehumbert [2003]. Such a uniformly thick
ice does not allow light penetration into the ocean, with
implications to photosynthesis as discussed in the introduc-
tion. Our two-dimensional model produces identical results
to the 1-D model when no continent is included (experiment
5, Table 1, not shown).
[23] The results of the two-dimensional model for a con-

tinental configuration roughly following a Neoproterozoic
reconstruction for 630 Myr [Li et al., 2008] are shown in
Figure 2. The land configuration was modified to eliminate
features such as single grid point openings in topography
that may lead to numerical problems. The figure shows the
flow, thickness and log10 of the effective viscosity,

neff ¼ AðTÞ�1
3

D E
_�
1
3�1 ð14Þ

for both a “warm” surface temperature corresponding to the
high-CO2 near-melting case and for the cold, low-CO2 case.

[24] The thickness variations are clearly much larger than
in the axisymmetric case. Because the constricted ocean area
is small, the zonally averaged thickness and velocity fields
may not be very different from those of the one dimensional
model, but the local thickness differences are clearly much
larger. This is especially evident in constricted areas such as
between the main landmass and the two small continents to
the east and west of it, and in particular between the global
ocean and the marginal (constricted) sea in the middle of the
major landmass. In this latter case the ice flow through the
narrow passages needs to balance to total ice melting and
evaporation within the constricted sea. Therefore the larger
the area of the sea and the narrower are the straits, the faster
is the ice flow expected to be. These results are consistent
with the general message of Campbell et al. [2011] [see also
Warren et al. 2002] that when the flow is limited by the
continental geometry, significant ice thickness differences
develop. We note that in addition to these constricted ocean
locations, Figure 2 also shows significant thickness varia-
tions south of the main continent, especially in the “cold”
case (Figure 2b). The thickness variations in this specific
location are likely affected by the artificial boundary at 80N
placed there in order to avoid the coordinate singularity at
the pole, yet these results demonstrate that thickness varia-
tions due to the interaction of geometry and flow occur in a
wider range of situations than was possible to discuss in
previous studies.
[25] The thickness variations are again larger for the

colder temperature case, when the ice is stiffer and requires
larger pressure (thickness) gradients to drive the flow needed
to balance net sublimation/melting within the constricted
sea. The next section provides a scaling expression for this
effect as well as for the global axisymmetric case. Note that

Figure 1. Steady state results of the 1-D model (equations (9)–(13)). (a, c, e) “Warm” (experiment 3 in
Table 1) and (b, d, f) “cold” case (experiment 4). (Figures 1a and 1b) Ice thickness and meridional velocity
as function of latitude. (Figures 1c and 1d) Specified surface temperature. (Figures 1e and 1f) Terms in the
continuity equation (13) (“rhs” in the legend denotes the sum of the advection and diffusion terms, which
should exactly balance the source S in a steady state).
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the velocity field is not very different between the warm and
cold runs (see maximum velocities indicated in Figure 2)
and this may be understood as follows. The specified source/
sink function S(f, q) needs to be balanced by ice transport
convergence, r ⋅ (uh). Given that the source function is
constant in our runs, and if the thickness fields are not very
different to zeroth order, this implies that the velocity field
is, to a good approximation, set by the source function.
Changes in the ice thickness between different runs would
lead to changes in the velocity set by the source function. In
turn, the thickness gradients that are required to drive this
velocity field do depend on the ice viscosity and therefore on
the temperature, as can be seen in Figures 1 and 2. It is
possible to use our model results to identify and analyze the
weak dependence of the flow field on the temperature,
because the model does not include many other processes
that could mask this result. This is an advantage of
neglecting effects such as the dependence of the basal
melting and freezing on the ice thickness and the effects of
non-bubbly ice on the absorption of radiation.

[26] The temperature field implied by our model formu-
lation is a three dimensional combination of the prescribed
meridional surface temperature profile shown in Figures 1c
and 1d, and the assumed linear vertical temperature profile
from the prescribed surface temperature to the (assumed
constant) melting temperature at the base of the ice. The ice
flow field advects this temperature field and should lead, in
principle, to a complex 3-D temperature distribution. This
advection effect is neglected here, as well as strain heating
generated within the ice, and horizontal diffusion. We can
estimate how important the advection might be in different
areas of the ice flow. Neglecting this advection is a sensible
approximation only if the timescale of changes to the tem-
perature due to vertical diffusion, which sets the linear ver-
tical temperature profile, is shorter than that due to
meridional advection. We therefore plot the following non-
dimensional ratio, effectively a Peclet number, in Figure 3,

Pe ¼ vðr sin qÞ�1∂ð sin qTÞ=∂q
ki∂2T=∂z2

≈
vðr sin qÞ�1∂ð sin qTÞ=∂q
kiðTsurface � TfreezingÞ=h2 ð15Þ

Figure 2. (a, b) Steady state results of the 2-D nonlinear model for ice thickness (in meters, shown by
color contours), and ice velocity field (arrows, m/year, only every fourth velocity vector is drawn). Results
are shown for a continental configuration motivated by a 630 Myr reconstruction, based on experiments 9
(warm, Figures 2a and 2c) and 10 (cold, Figures 2b and 2d), see Table 1. (c, d) The log10 of the
corresponding effective viscosity given by equation (14). Axes indicate degrees longitude and latitude.
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where ki is the molecular heat diffusivity in ice, different from
the (mostly numerical) horizontal diffusivity term appearing
above in the mass conservation/thickness equation. Figure 3
shows that while temperature advection may be neglected
in most areas (where the ratio is significantly smaller than
one), it is not negligible in some key areas, in particular in
narrow straights characterized by more rapid flow, where
the ratio may be closer to, or even larger than, one. While
these areas are quite isolated, it is clear that neglecting the
effects of advection on the ice temperature is not justified
there.
[27] Comparing the 2-D results based on a 176 � 176 grid

to a solution on an 89 � 89 grid (experiments 7, 8 vs 9, 10,
Table 1, figures not shown) shows that differences are not
large. Ice thickness within the constricted sea is about
50 meters thinner in the coarser runs, indicating that
numerical convergence of the solution as function of the
model resolution has not been completely reached (as is
often the case in global climate models). This is most likely
due to insufficient resolution within the channels leading to
the constricted sea. This problem, which often occurs in
ocean models that cannot resolve critical narrow straights
and sills (e.g., Straits of Gibraltar), may be resolved in
future studies by either local grid refinement or by a
parameterization of the channel flow, replacing the attempt
to explicitly resolve the flow there. These solutions are
beyond the scope of the present study.

4. Scaling Estimate of Ice Thickness Variations

[28] In this section we consider scaling estimate for
thickness variations in two cases: a constricted sea fed by a
long narrow channel, and a global, axisymmetric ocean.

4.1. Constricted Sea

[29] Consider a sea of area A, linked to the ocean via a
channel of length L and width W such that L ≫ W. The ice

thickness inside the sea, hs, may be assumed uniform as a
result of efficient ice flow equilibration, and we denote the
open ocean ice thickness outside of the channel ho. Denoting
the ice velocity in the channel as V and the average subli-
mation/melt rate within the sea as b, the mass balance scal-
ing for the ice cover of the sea is given by,

VhoW � Ab: ð16Þ

[30] Another relation may be obtained from the ice shelf
momentum balance equations [Morland, 1987; MacAyeal,
1997]. Let y be the along-channel coordinate and assume
that u = 0; let also n be the Glen’s flow law constant taken in
our model equations above to be 3. The ice shelf along-
channel (v) momentum equation,

0 ¼ ∂x B
1

2
uy þ vx
� �� �

þ ∂y B ux þ 2vy
� �� �� grI 1� mð Þhhy

B ≡ h A Tð Þ�1
n

D E
_�
1
n�1

_�2 ≈
1

2
u2x þ v2y þ ðux þ vyÞ2 þ 1

2
ðuy þ vxÞ2

� �
;

reduces to

0 ¼ ∂xðB 1

2
vxÞ þ ∂yðB2vyÞ � grI ð1� mÞhhy

B ≡ h A Tð Þ�1
n

D E
_�
1
n�1

_�2 ≈
1

2
2v2y þ

1

2
v2x

� �
≈

1

4
v2x ;

where the assumed large channel aspect ratio, L/W ≫ 1 leads
to _� ≈ vx=2 on the last line above. The second term in the

Figure 3. A nondimensional Peclet-like ratio of the temperature time rate of change due to horizontal
advection vs due to vertical diffusion (equation (15)). Axes indicate degrees longitude and latitude.
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y-momentum equation may be neglected if L ≫ W because
it scales with L�2 while the first terms scales with W�2.
Assuming the velocity vanishes at the sides of the channel
and is maximal at its center, we scale the cross-channel
shear as vx�V/(W/2), so that the momentum equation
scales as,

BV

2ðW=2Þ2 � grI ð1� mÞhoðho � hsÞ=L: ð17Þ

[31] Scaling the effective viscosity as

B � ho A Tð Þ�1
n

D E 1

2

V

W=2

� �1
n�1

; ð18Þ

and substituting the velocity scale from the mass balance
equation, we find an estimate for the thickness difference
along the channel,

ho � hs �
2L A Tð Þ�1

n

D E
WgrI 1� rI=rwð Þ

Ab

h0W 2

� �1
n

: ð19Þ

This scaling is to be compared with the formula for an ice
invasion length in rectangular-shaped (Red-Sea like) mar-
ginal sea used by Campbell et al. [2011] following Nye
[1965]. The advantage of their formulation is that it is
based on an exact formula rather than crude scaling as done
here. The scaling here, though, accounts for the case where
the constricted sea is not rectangular but has a wider area fed
by a narrow channel, as motivated by the Neoproterozoic
landmass reconstruction shown in Figure 2. It is clear from
this scaling estimate that a constricted sea located in the low-
latitudes where there is net ice sublimation and melting, will
lead to higher thickness variations (thinner ice in the con-
stricted sea) if the channel is longer (large L), narrower
(smallW), or if the sea itself has a larger area (A), larger melt
rate (b) or if the ice temperature is colder (via the depen-
dence on A(T), note that A(T) increases with temperature,

and therefore A Tð Þ�1
n

D E
gets smaller; that is, warmer tem-

peratures lead to softer ice and to smaller thickness
differences).
[32] Substituting order-of-magnitude values for the para-

meters based on the “warm” solution for constricted sea in
the Neoproterozoic land configuration (Figure 2), A ¼
ð4000⋅103Þ2 (m2); b = 6 ⋅ 10�3/(365 ⋅ 24 ⋅ 3600) (m/s);
L = 2500 ⋅ 103 (m); W = 1000 ⋅ 103 (m); ho = 1000 (m); g =
9.8 (m/s2); rI = 900 (kg/m3); rw = 1024 (kg/m3); Tf =
273.16 (K); Ts = Tf � 30 (K); n = 3; where we chose the
surface temperature to represent the location of the main
channel leading to the constricted sea in the warm case
shown in Figure 2a, we find ho � hs � 108 m. This estimate
is of the same order, yet smaller than that calculated by the
numerical solution (compare to the “warm” solution in
Figures 2a and 2c). Note that our assumption of L ≫ W isn’t
strictly satisfied. We calculated the thickness difference along
the channel assuming a single channel but the above land
configuration actually has two such channels, so that the
comparison is somewhat vague. It is possible that a marginal
grid resolution in the passages leading to the constricted sea

biases the resolution, and the scaling itself cannot be expec-
ted to yield exact results, of course. But the scaling does
make it clear that significantly larger thickness differences
are to be expected in the case of a constricted marginal sea
than when there are no marginal seas, e.g., because continents
are ignored. Scaling for the case of no continents is presented
in the following section.

4.2. Global Ocean, No Continents

[33] The 1-D momentum and steady mass conservation
equations (9) and (13) scale, correspondingly, as

2
1

r
h A Tð Þ�1

3

D E v

r

� 	1
n � grI ð1� rI=rwÞhDh=r

vh=r � DS

where the factor two on the left hand side of the momentum
equation accounts for the first two terms in (9) and
DS = Smax � Smin. Together, these lead to a scaling for the
thickness difference between the equator and the pole, Dh,

Dh �
2 A Tð Þ�1

3

D E
DS= h½ �ð Þ1n

grI ð1� rI=rwÞ
: ð20Þ

Substituting order of magnitude scales, DS = 12 ⋅ 10�3/yr
(m/s); [h] = 1000 (m); g = 9.8 (m/s2); rI = 900 (kg/m3);
rw = 1024 (kg/m3); Tf = 273.16 (K); Ts = Tf � 30 (K); n = 3
we find Dh � 34 m. This estimate is quite close to the
numerical solution of the “warm” 1-D case in Figure 1.
Rather than specifying the thickness scale as we did above,
one could calculate it by balancing the diffusive heat flux
through the ice with the geothermal heat flux Fgeo, such
that [h] = kDT/Fgeo. Overall, the scaling estimates of this
and the previous sections predict a much weaker thickness
difference if continents are neglected, consistent with the
numerical solutions.

5. Conclusions

[34] Ice flow over a Snowball ocean was shown to be an
important factor participating in the determination of ice
thickness over the ocean [Goodman and Pierrehumbert,
2003], and has received significant attention in recent years
[Warren et al., 2002; Pollard and Kasting, 2005; Goodman,
2006;Warren and Brandt, 2006; Pollard and Kasting, 2006;
Campbell et al., 2011; Li and Pierrehumbert, 2011]. These
studies all use local models or one-dimensional global
(latitude-only) models, formulated in a way that was difficult
to extend to two dimensions (both longitude and latitude).
This paper attempts to make progress on two different fronts
related to this ice flow problem. First, we study the effects of
continental constriction on ice flow and ice thickness in an
ice-covered ocean in a Snowball-Earth scenario using a
global model with reconstructed Neoproterozoic landmass
configuration. Second, we provide a formulation of the ice
flow problem in two dimensions on a sphere that should
allow coupling such ice flow models to ocean and atmo-
spheric general circulation models. This formulation is a
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very simple extension of the well known ice shelf equations
from glaciology [e.g., Morland, 1987; MacAyeal, 1997] to
spherical coordinates.
[35] Campbell et al. [2011] used a formula derived by Nye

[1965] to show that the invasion by ice into an idealized
rectangular-shaped marginal sea (Red-Sea like) is limited by
friction with the sidewalls and that this may lead to signifi-
cant ice thickness variations within such a sea in regions of
net sublimation. Our numerical simulations show that, con-
sistent with the original idea of Campbell et al. [2011],
continental constriction indeed leads to ice thickness varia-
tions in additional cases. This includes relatively narrow
areas between sub-continents, and marginal seas whose
entrance is constricted by landmass geometry. In addition to
numerical solutions, we present scaling estimates of the
thickness variations in both the case of a global ocean with
no continents and in the case of a marginal sea fed by a
relatively narrow channel. The scaling estimates are com-
pared to the numerical solutions and are found to somewhat
underestimate them, but are of the right order of magnitude.
[36] We formulated the ice flow problem starting with

the equations of motion (Stokes equation) rather than from
the Weertman [1957] estimate for the deformation rate of
ice shelves. This allowed us to extend the formulation to
two dimensions, which is not possible starting from the
Weertman deformation rate formula. In addition, we show
that in a model that depends on latitude only, a careful
formulation of the lateral geometry and boundary conditions
following Morland [1987], MacAyeal and Barcilon [1988],
and MacAyeal [1989, 1997], as well as the effects of
spherical coordinates, leads to additional terms in the model
equations which were not included in previous studies. In
particular, our formulation involves two integrations of the
momentum equations in order to solve for the ice velocity.
The constants of integration play a role parallel to that of the
body force introduced by Goodman and Pierrehumbert
[2003], allowing the meridional ice velocity to vanish at
the equator in a model that’s symmetric about the equator.
We emphasize that the main qualitative result of the works
which pioneered the study of ice flow in a Snowball ocean
is still valid: ice flow effectively homogenizes ice thickness
across the global ocean where the flow is not constricted by
continents.
[37] While we were able to make significant progress in

several ways, many related and important issues remain
open. Our model ignores the flow of land ice toward the
constricted sea. We anticipate that an attempt to simulate ice
flow in a global ocean into marginal seas whose opening is
small will run into numerical resolution limits. Rather than
increasing the global resolution, one would need to resort to
either local grid refinement, or to a parameterization of the
ice flow in narrow straights, as is routinely done in coarse
resolution ocean models that cannot resolve critical narrow
straights and sills (e.g., Straits of Gibraltar). The poles pose a
problem to the numerics in standard spherical coordinates as
they do in oceanic and atmospheric models, and one could
resort to alternative grids where the poles are moved to over
a landmass [e.g., Voigt et al. 2011], or where Earth’s surface
is mapped into a cube as is done in current state-of-the-art
ocean models [Adcroft et al., 2004].

[38] Having concentrated on ice flow alone, we ignored
all thermodynamic, dust and optical effects that are known to
be important processes in setting ice thickness in a Snowball
scenario [Warren et al., 2002; Goodman and Pierrehumbert,
2003; McKay, 2000; Pollard and Kasting, 2005, 2006;
Warren and Brandt, 2006; Goodman, 2006; Abbot and
Pierrehumbert, 2010; Li and Pierrehumbert, 2011;
Pierrehumbert et al., 2011]. Instead, we prescribed the net
source/sink of ice due to accumulation, freezing, melting and
sublimation as time independent forcing fields based on the
values calculated by Pollard and Kasting [2005]. While this
allowed us to isolate the effects of ice flow, the ignored
additional factors can make the thickness variations signifi-
cantly larger, possibly leading to thin ice cover over con-
stricted seas and low-latitudes, with implications for survival
of life discussed by Campbell et al. [2011]. We cannot dis-
cuss such implications given that we neglected these impor-
tant factors.
[39] It should be noted that the glaciological literature has

dealt extensively with ice shelves, their dynamics, collapse,
existence of rifting and fracturing during the flow through
channels [e.g., Doake et al., 1998; Doake and Vaughan,
1991; MacAyeal et al., 2003; Rott et al., 1996; Vieli et al.,
2006; Weis et al., 1999; van der Veen, 1999]. The resulting
lessons are of obvious relevance to the dynamics of ice flow
over a Snowball ocean, as well as to the existence of refuges
within ice shelf cracks.
[40] Given these many idealizations, we emphasize that

this study is meant to be a process study focusing on one
specific dynamical factor, not a realistic simulation of Neo-
proterozoic ice thickness. We also assume ice thickness to be
large everywhere, and the formulation here would need to be
extended if thin ice cover or ice-free ocean develops, or for a
study of transient Snowball initiation and an invasion of the
ocean by thick ice.
[41] In spite of its obvious limitations, this study is a first

step toward coupling Snowball ice flow models to general
circulation ocean and atmospheric models. This, in turn, will
allow an improved representation of the basal and surface
melting, freezing sublimation and snow accumulation and
should help making these models more accurate.

Appendix A: Derivation of Model Equations

A1. Surface and Bottom Boundary Conditions

[42] The upper and lower boundary momentum conditions
may be written [MacAyeal, 1997],

s ⋅ n̂s ¼ 0;
s ⋅ n̂b ¼ �n̂bpw;

ðA1Þ

where ns and nb are the outward-pointing normal vectors at
the surface and the bottom, respectively. The stress tensor
element sij is the force in the i direction acting on a face
perpendicular to the j direction, so that sijnj is the total force
in the i direction on a unit area along the ice surface. This
force vanishes at the surface and is equal to the hydro-
static water pressure pw at the bottom of the ice. Defining
the deviatoric stress as tij ¼ sij � dij 13skk ¼ sij þ pdij
(where dij is the Kronecker delta, and the pressure is defined
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as p ¼ � 1
3skk), leads to the equivalent form of the boundary

conditions

t � pIð Þ ⋅ n̂s ¼ 0;

t � pIð Þ ⋅ n̂b ¼ �n̂bpw:
ðA2Þ

The normal vector to the surface elevation s(f, q) is given
by the gradient of f(f, q, z) = z � s(f, q),

n̂ ¼ rf

k rf k ¼ ð� 1
r sinq sf;� 1

r sq; 1Þ
k ð� 1

r sinq sf;� 1
r sq; 1Þ k

: ðA3Þ

The boundary conditions (2) and (A2) in spherical coordi-
nates then take the form,

ðtff � pÞ 1

r sin q
sf þ tfq

1

r
sq � tfz ¼ 0 z ¼ s

tqf
1

r sin q
sf þ ðtqq � pÞ 1

r
sq � tqz ¼ 0 z ¼ s

tzf
1

r sin q
sf þ tzq

1

r
sq � ðtzz � pÞ ¼ 0 z ¼ s

ðtff � pÞ 1

r sin q
bf þ tfq

1

r
bq � tfz ¼ � 1

r sin q
bfgrwmh z ¼ b

tqf
1

r sin q
bf þ ðtqq � pÞ 1

r
bq � tqz ¼ � 1

r
bqgrwmh z ¼ b

tzf
1

r sin q
bf þ tzq

1

r
bq � ðtzz � pÞ ¼ grwmh z ¼ b

ðA4Þ

where m = rI /rw as above.

A2. Ice Shelf-Equations in Spherical Coordinates

[43] This derivation follows Morland [1987] and
MacAyeal [1997], except for the use of spherical coordinates
here (Alternatively, the same results can be derived by
starting from the invariant formulation of Schoof [2006] and
using expressions for the covariant derivatives in spherical
coordinates). Let the coordinates (longitude, co-latitude,
vertical) be denoted by (f, q, r) and the corresponding
velocities be (u, v, w). Below, when we make the “thin shell”
approximation, we switch to the coordinates (f, q, z) and
treat r as a constant. The gradient, divergence of a vector and
Laplacian are,

r ¼ 1

r sin q
∂f;

1

r
∂q; ∂r

� �

r ⋅ v ¼ 1

r sin q
∂fuþ 1

r sin q
∂q sin qvð Þ þ 1

r2
∂r r2w
� �

≈
1

r sin q
∂fuþ 1

r sin q
∂q sin qvð Þ þ ∂zw

Df ¼ 1

r2
∂
∂r

r2
∂f
∂r

� �
þ 1

r2 sin q
∂
∂q

sin q
∂f
∂q

� �
þ 1

r2 sin2 q
∂2f
∂f2

≈ ∂zzf þ 1

r2 sin q
∂q sin q∂qfð Þ þ 1

r2 sin2 q
∂fff ;

ðA5Þ

where we have made the approximation of a thin shell of ice
whose thickness is much smaller than Earth’s radius,

replacing r-derivatives with derivatives with respect to a
local vertical coordinate z and treating r as a constant equal
to Earth’s radius. The (symmetric) rate of strain is (its ele-
ments above the diagonal are omitted),

_����� ¼
_�ff _�fq _�fr

_�qf _�qq _�qr

_�rf _�rq _�rr

0
B@

1
CA

¼

1

r sin q
∂fuþ w sin qþ v cos q
� �

: :

1

2r

1

sin q
∂fvþ sin q∂q u= sin qð Þ

� �
1

r
∂qvþ wð Þ :

1

2

1

r sin q
∂fwþ r∂r u=rð Þ

� �
1

2

1

r
∂qwþ r∂rðv=rÞ

� �
∂rw

0
BBBBBBB@

1
CCCCCCCA
:

ðA6Þ

[44] Simplifying the rate of strain tensor using the thin
shell approximation (e.g., 1

r2 ∂rðr2wÞ ≈ ∂zw and neglecting
wq/r) as well as using the ice shelf approximation of
neglecting _�qz, _�fz, and assuming the horizontal velocities are
z-independent and much larger than the vertical velocity,

_����� ≈

1

r sin q
∂fuþ v cos q
� �

: :

1

2r

1

sin q
∂fvþ sin q∂qðu= sin qÞ

� �
1

r
∂qv :

0 0 ∂zw

0
BBBBB@

1
CCCCCA
: ðA7Þ

The momentum equations in vector form (1) are written
explicitly in component form in spherical coordinates as,

0 ¼ � 1

r sin q
∂fpþ 1

r sin q
∂ftff þ 1

r sin q
∂qð sin qtqfÞ

þ 1

r2
∂rðr2trfÞ þ trf

r
þ cot q

r
tqf

0 ¼ � 1

r
∂qpþ 1

r sin q
∂ftfq þ 1

r sin q
∂qð sin qtqqÞ þ 1

r2
∂rðr2trqÞ

þ trq
r

� cot q
r

tff

0 ¼ �∂rp� grI þ
1

r sin q
∂fðtrfÞ þ 1

r sin q
∂qð sin qtrqÞ

þ 1

r2
∂rðr2trrÞ � tqq þ tff

r
; ðA8Þ

where the divergence of a second order tensor in curvilinear
coordinates contains a set of metric corrections in addition to
those appearing in the divergence of a vector (see an outline
of the mathematical justification in Appendix B, and a
heuristic discussion within the paper after equations (9)–
(13)). These are the last two terms in the two horizontal
momentum equation and the last term in the vertical
momentum equation. Using the thin shell approximation and
the ice shelf approximation tqz ≈ 0, tfz ≈ 0,

0 ¼ � 1

r sin q
∂fpþ 1

r sin q
∂ftff þ 1

r sin q
∂qð sin qtqfÞ þ cot q

r
tqf

ðA9Þ
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0 ¼ � 1

r
∂qpþ 1

r sin q
∂ftfq þ 1

r sin q
∂qð sin qtqqÞ � cotq

r
tff

ðA10Þ

0 ¼ �∂zp� grI þ ∂ztzz � tqq þ tff
r

: ðA11Þ

[45] Next, integrate the two horizontal momentum equa-
tions from top to bottom and use the Leibniz rule, and
integrate the vertical equation first from top to z and then
from top to bottom (all such integrals

R
b
s are over depth, we

drop the dz for brevity) to find,

0 ¼ 1

r sin q
∂f

Z s

b
tff � p
� �þ 1

r sin q
∂q

Z s

b
ð sin qtqfÞ

� 1

r sin q
sf tff � p
� �js þ 1

r sin q
bf tff � p
� �jb � 1

r
sqtqf sð Þ

þ 1

r
bqtqf bð Þ þ cot q

r

Z s

b
tqf

0 ¼ � 1

r
∂q

Z s

b
pþ 1

r sin q
∂f

Z s

b
tfq þ 1

r sin q
∂q

Z s

b
sin qtqqð Þ

þ 1

r
sqp sð Þ � 1

r
bqp bð Þ � 1

r sin q
sftfq sð Þ þ 1

r sin q
bftfq bð Þ

� 1

r
sqtqq sð Þ þ 1

r
bqtqq bð Þ � cot q

r

Z s

b
tff

0 ¼
Z s

b
� p sð Þ � pð Þ � grI s� zð Þ þ tzz sð Þ � tzz zð Þ

� 	

� 1

r

Z s

b

Z s

z
tqq þ tff
� �

: ðA12Þ

Using the top and bottom boundary conditions (A4) as well
as that trace(tij) = 0,

0 ¼ 1

r sin q
∂f

Z s

b
tff � p
� �þ 1

r sin q
∂q

Z s

b
sin qtqf

� �

� 1

r sin q
bfgrwmhþ

cot q
r

Z s

b
tqf

0 ¼ � 1

r
∂q

Z s

b
pþ 1

r sin q
∂f

Z s

b
tfq þ 1

r sin q
∂q

Z s

b
sin qtqqð Þ

� 1

r
bqgrwmh�

cot q
r

Z s

b
tff

�
Z s

b
p ¼ �grI

1

2
h2 þ

Z s

b
tff þ tqq
� �� 1

r

Z s

b

Z s

z
tqq þ tff
� �

ðA13Þ

Neglecting the Oðh=rÞ terms in the third equation and sub-
stituting the remaining terms in the first two using h = s � b
and s = (1 � m)h,

0 ¼ 1

r sin q
∂f

Z s

b
2tff þ tqq
� �þ 1

r sin q
∂q

Z s

b
sin qtqf

� �

þ cot q
r

Z s

b
tqf � 1

r sin q
grI 1� mð Þhhf

0 ¼ 1

r sin q
∂f

Z s

b
tfq þ 1

r sin q
∂q

Z s

b
sin qtqq þ 1

r
∂q

Z s

b
tqq þ tff
� �

� cot q
r

Z s

b
tff � 1

r
grI 1� mð Þhhq: ðA14Þ

Using Glen’s flow law to express the stress components in
terms of the strain rates and therefore velocity components,

0 ¼ 1

sin q
∂f B 2

1

sin q
∂fuþ v cos q
� �þ ∂qv

� �� �

þ 1

sin q
∂q B

1

2
∂fvþ sin2 q∂q u= sin qð Þ

� 	� �

þ cot qB
1

2

1

sin q
∂fvþ sin q∂q u= sinqð Þ

� �

� 1

sin q
grI 1� mð Þhhf

0 ¼ 1

sin q
∂f B

1

2

1

sin q
∂fvþ sin q∂q u= sin qð Þ

� �� �

þ 1

sin q
∂q B sin q∂qvð Þ þ ∂q B

1

sin q
∂qðv sin qÞ

� �� �

þ ∂q B
1

sin q
∂fu

� �
� cot q

1

sin q
B ∂fuþ v cos q
� �

� grI 1� mð Þhhq
B ¼ 1

r
h AðTÞ�1

3

D E
_�
1
3�1

_�2 ¼ 1

2
_�2ff þ _�2qq þ _�ff þ _�qq

� �2 þ 2_�2fq

� 	

ht þ 1

r sin q
∂f uhð Þ þ 1

r sin q
∂q sin qvhð Þ ¼ kr2hþ S f; qð Þ; ðA15Þ

where 〈〉 denotes an average over the vertical dimension [see
Goodman and Pierrehumbert, 2003]. These final equations
appear in the text of the paper itself as equations (4)–(8).

Appendix B: Divergence of a Tensor

[46] Write the divergence operator as

r⋅ ¼ êf
1

r sinq
∂f þ êq

1

r
∂q þ êr∂r; ðB1Þ

and note that the unit vectors in spherical coordinates are not
constants, such that, for example, ∂qêq ¼ �êr [Greenberg,
1998].
[47] Applying the above divergence to a vector v,

r⋅v ¼ ðêf 1

r sinq
∂f þ êq

1

r
∂q þ êr∂rÞ⋅ðêfuþ êqvþ êrwÞ ðB2Þ

we find that the derivatives of the unit vectors introduce a set
of correction terms due to the non-Cartesian coordinates. To
derive the divergence of a tensor (which yields a vector),
write it as

r ⋅ t ¼ êf
1

r sinq
∂f þ êq

1

r
∂q þ êr∂r

� �

⋅ êf � êftff þ êf � êqtfq þ…
� � ðB3Þ

where êf � êq, for example, is a tensor whose only nonzero
element is at the (f, q) = (1, 2) position. Using the expres-
sions for the derivatives of unit vectors we find that the
derivatives now include those of the tensor elements (e.g.,
tfq), as well as the derivatives of both unit vectors multi-
plying each tensor element. We therefore expect two cor-
rection terms due to the derivatives of the unit vectors, rather
than just one in the case of the divergence of a vector. This
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leads to the additional terms in the momentum equation
discussed in the text.
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