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We demonstrate by use of' a simple one-dimensional model o f  a square barrier 
imbedded in an infinite potential well that decoherence is enhanced by chaotic-like 
behavior. We, moreover, show that the transition h ~ 0 is singular. Finally it is" 
argued that the time scale on which decoherence occurs depends on the degree o f  
complexity o f  the underlying quantum mechanical sTstem, i.e., more complex 
systems decohere relatively faster than less complex ones. 

Chaos is expected, at least in some cases, to lead to irreversibility. This in 
spite of the fact that chaos is deterministic although noncomputable.  The 
noncomputabil i ty is due to the exponential divergence of neighboring 
trajectories which necessitates the computat ion of the trajectory of every 
single particle in an ensemble in order to know the dynamics of the ensem- 
ble, a task which in practice is impossible. 

In order to find a quantum mechanical paraphrase to the definition of 
classical chaos as being the exponential divergence in time of neighboring 
points in phase space, we recognize that the fast spreading of the wave 
function can be considered as an indication for chaotic like behavior/ l )  
This is not a rigorous definition but rests on the fact that the wave function 
may be thought of  as representing an ensemble of points in phase space 
and that its spread with time is a measure for the divergence of those 
points. 

One evidence for chaos is the exponential decay of the autocorrelation 
function of the form 

(At), f(o)) 
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We shall in the following consider the time development of a quasi-station- 
ary state by studying barrier penetration. The study of resonance transmis- 
sion provides us with an example of the exponential decay, although only 
to an approximation. 

The quantum mechanical description for the decay of quasi-stationary 
states is based on the evolution under the action of the full Hamiltonian of 
an eigenstate [q~0) of the unperturbed Hamiltonian. The probability 
amplitude for the persistence of the unperturbed state is given by 

A ( t ) = ( ~ 0 l e  ira1050 ) (1) 

and the probability P(t)  that the system has not decayed by time t is the 
square of the survival amplitude 

e ( t )= l (q~o[  e em i~bo)l 2 (2) 

Wigner and Weisskopf (2) showed that this probability is approximately 
exponential for t not to large and not too small. It is clear that it is not 
exponential for very small t, since for hermitic H, when H [q~o) is defined 

d p( t )  = 0 (3) 
,=0 

There is also a large time deviation from the exponential mode~cal led  the 
long time tai l--due to the boundness from below of the energy spectrum. (3~ 

Let H be a Hilbert space embedded in a larger Hilbert space 

H = Hu  �9 H8 (4) 

H U being the Hilbert space of undecayed states and H o the space of the 
decay products. Let further Z( t )  be a family of operators in H. The semi- 
group law 

z ( t , )  z( t~)  = z ( t ,  + t~) (5) 

which ensures exact exponential decay, can only be valid--as proved inde- 
pendently by Horwitz et al. ~4~ and Williams~5~if the generator of U(t) = 
exp(-- iHt)  has the whole real line as its spectrum. 

For  an unstable quantum system for which the unperturbed 
Hamiltonian has discrete states embedded in a continuous spectrum on 
( -  ~ ,  ~ )  the time dependence of the decay is a sum of exponential con- 
tributions plus a background contribution which may be arbitrarily small 
for any positive t. For  small times it is the expectation value of ( H -  ( H ) )  2 
in the initial state ]~b0) which leads to a measure for the deviation from the 
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pure exponentialJ 6) It should noticed that the boundness of the 
Hamiltonian on Iq~0) also is crucial for the short time deviation. 

The existence of an exact semigroup law for the contracted evolution 
Z(t) implies that there is no regeneration. (4~ This establishes the connection 
between exact exponential decay and irreversibility. 

It can be shown that the initial quadratic behavior of the decay is 
possibly followed by an oscillating period of enhanced and hindered decay 
before the state enters the exponential m o d e s  ) 

A broad state goes more smoothly to the exponential mode, while in 
the case of a narrow state there is a relative big interval between the time 
where the quadratic behavior terminates and the time where the exponen- 
tial sets in. 

We conjecture that the onset of the exponential era corresponds to the 
onset of chaotic-like behavior in the system and that the initial non- 
exponential era may be understood as the preparation time for the 
manifestation of this behavior. Such a conjecture implies that a broad state 
should exhibit a faster approach to and possibly also a higher degree of 
complex behavior. This behavior is verified in the observations of the time 
evolution of a broad and a narrow state below. 

We shall also demonstrate that the time scale on which decoherence 
takes place depends on the degree of complexity of the underlying quantum 
mechanical system, i.e., more complex systems decohere faster than less 
complex ones. This is in accordance with the expectation that decoherence 
effects suppress the possibility of interference and hence reduce the off- 
diagonal elements of the reduced density matrix. <s) The Schr6dinger evolu- 
tion cannot transform a pure state into a mixture and hence not make the 
off-diagonal elements vanish completely. Although a precise definition of 
quantum chaos has not been established, we study here phenomena which 
appear to be closely related to this concept. Quantum chaos, if it exists 
even in some approximate sense, on the other hand is expected to lead at 
least, very closely, to irreversibility and hence also to manifest itself by 
implying that the nondiagonal elements vanish (or become small), so it 
appears that quantum chaos facilitates decoherence. This is demonstrated 
by a rapid entropy production; see also Ref. 9 and 10. 

We have recently utilized a simple one-dimensional model of a square 
barrier embedded in an infinite potential well in order to demonstrate that 
tunneling leads to very complex behavior of the wave function. ~lj) Many 
parallels to the well-known characteristics of classical chaos emerge, for 
example, an exponential decreasing correlation function of the peak- 
to-peak time series, a phase space plot of the expectation values (x)(t) 
and (p)(t) revealing a phenomenon similar to period doubling and 
attractor-like behavior of a chaotic double-well system such as a driven 
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Duffing oscillator. Another indication of chaotic-like behavior are the level 
statistics slightly above the barrier which show signs of Wigner statistics. 
Time-dependent adiabatic modulation of the barrier, which is tantamount 
to coupling the system to the environment, enhances the complex, chaotic- 
like behavior, which is obvious from the increased correspondence to 
Wigner statistics when an ensemble of slightly different barrier heights is 
considered.(l~ 

But most striking is the behavior of the spatial entropy function 

S(t)=f 17t(x, t)[2 In ]~(x, t)[2 dx (6) 

This entropy shows a rapid rise at early times to a nonperiodic fluctuating 
function around a smooth almost constant asymptotic value, illustrating 
the early burst of chaotic-like behavior. 

In order to obtain an exponential decay of the initial wave packet and 
hence both chaotic-like and irreversible behavior, the energy spectrum 
must be continuous. For a finite bounded quantum system of the form 

~[t(X, t) = E aNUn(X) e ie,,t/h (7) 
N 

where E, and Un(x ) are the eigenvalues and the eigenfunctions, the spec- 
trum is discrete. The wave function is almost periodic, i.e, ~P makes near 
returns to every achieved value. This excludes true decay of correlations. (12) 
However, those near periods are relevant only for long time behavior of the 
system. On laboratory time scales the system mimics a chaotic time evolu- 
tion. Moreover, one can, by enlarging the extension of the double-well 
system, delay the onset of the reversible behavior ad infinitum. 

By displacing the barrier in the double-well system to the right or to 
the left, certain positions are passed where the system becomes almost 
degenerate. These positions occur at almost commensurate intervals. It is 
exactly for those positions that one may find significant tunneling accom- 
panied by chaotic-like behavior. (~3~ We have recently shown that, in cases 
of high-degeneracy, tunneling from the left to the right has exponential 
decay for times not too small and not too large, while at other positions, 
where almost degenerate conditions are somewhat weaker, the transition 
curve is nonexponential and develops strong oscillations. (13~ 

Taking into account that chaos should facilitate tunneling and vice 
versa, together with the fact that tunneling is enhanced by a high degree of 
almost degeneracy, we conclude that systems with a higher degree of com- 
plex, chaotic-like, behavior have a sharper increase of the entropy, i.e., 
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higher entropy production, and a faster approach to equilibrium than 
systems with lower complexity. 

Ballentine et  al. have shown that Ehrenfest's theorem is neither 
necessary nor sufficient in order to identify the classical regime and argued 
that the classical limit of  a quantum state is not  a single classical trajectory 
but rather an ensemble of classical trajectories However,  Ehrenfest's 
theorem breaks down much sooner for a chaotic ensemble than for a 
regular o n e .  (14) 

One can use the present model  to illustrate some crucial differences 
between classical and quantum dynamics. Let us start with a wave packet 
initially located on the left-hand side of the square barrier placed in the 
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Fig. 1. The entropy function as a function of time for different locations in 
the well (Xe  [ 55, 55l). (a) The center of the barrier in the middle of the 
well X =  0; (b) the center of the barrier in X =  - 1 0 ,  89; (c) the center of the 
barrier in X =  - 3 ,  63; (d) the center of the barrier in J ( =  - 1 .  (The inset 
shows an enlargement of typical periodic oscillations). 
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infinite potential  well. The parameters  are as follows: the barrier height 
V =  5, the half-width of  the well l =  55, the width of  the Gaussian wave 
packet  of  the form ]7~] ~ ~ c exp[ - ( x  - Xo)2/2az],  a = 5, the barrier width 
2 a - - 2 ,  and the mass m = 1/2. The Gaussian wave packet  is constructed 
from the first 30 energy levels, and the s tandard deviation from an exact 
(normalized) Gaussian is 8.81 �9 10 5. The computa t ion  preserves the n o r m  
to high accuracy, 0.999997. The problem is solved analytically as a function 
of  time. There is no addit ional error  for large t, since t enters in periodic 
exponential  form. 
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Fig. 2. The ent ropy function as a function of  time for the classical case (solid line) 
an the q u a n t u m  case (dotted), for different values of h. The barrier is placed in the 
middle of the potential well and the mean energy of the incoming particle { E )  is 
equal to the barrier  height V, V = 5 .  (a) h = 2 ;  (b) h =  1; (c) h = 0 . 5 ;  (d) h =0.25. 
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The motion and time evolution for the spatial entropy function of this 
quantum state is compared to those of a classical ensemble whose initial 
position and momentum distributions are equal to those of the quantum 
state, the initial state being the product of the position and momentum 
distributions (this method is introduced and worked out in Ref. 14). 

In Figs. 2a-2d we have compared the time evolution of the spatial 
entropy functions S(t) for the quantum case and the classical case for 
decreasing values of h for an energy of the incoming particle high relative 
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Fig. 3. The entropy function as a function of time for the classical case (solid line) 
an the quantum case (dotted), for different values of h. The barrier is placed in the 
middle of the potential well and the mean energy of the incoming particle 
( E )  =0.05 is low relative to the barrier height V, V=5.  (a) h = 2 ;  (b) h = l ;  
(c) h =0.5; (d) h=0.25.  
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to the barrier height, ( E ) - - 5 .  In Figs. 3a-3d the same comparison is 
performed for an energy of the particle low relative to the barrier height, 
( E )  = 0.005. 

In neither of the two cases--high energy relative to the barrier height 
(respectively low energy relative to the barrier height)--does a decreasing 
value of h lead to a true recovering of the classical time evolution, although 
it is noticed that significant tunneling ( ( E ) ~  V) leads to increased 
similarity between the classical case and the quantum case. 

We are therefore led to the conclusions, that 

(1) h ~ 0 is a singular transition 

(2) tunneling and thus chaotic-like behavior weakens the difference 
between classical and quantum mechanics 

We remark that in order to investigate the possible existence of a 
connection between chaos and decoherence in a rigorous way one needs to 
couple the system to the environment. This may be obtained by a harmonic 
modulation of the barrier height. 

One can show that for an adiabatic harmonic perturbation of the 
barrier one can obtain enhanced as well as diminished tunneling. It 
appears, however, that enhancement is much prevailing (for a detailed 
discussion of this problem see Refs. 15-17, and it can be concluded that 
such a perturbation tends to increase the complex behavior. 

The conclusion that tunneling and hence chaotic-like behavior tends 
to erase the differences between classical and quantum behavior becomes 
even more apparent by comparing the classical and the quantum case in 
connection with the position of the barrier inside the potential well. In 
Ref. 12 it is shown that placing the barrier in the center of the well results 
in a strong complex behavior of the wave function, whereas placing the 
barrier off center leads to a less complex, almost regular behavior. Indeed, 
by comparing for fixed h the two positions of the barrier--centered in 
Figs. 2a 2d and off center in Figs. 4a-4d, one observes that a similarity in 
the time development between the classical case and the quantum analog 
is reached much more quickly when the barrier is placed in the center, 
i.e, when there is a higher degree of almost degeneracy and hence more 
chaotic-like behavior. We therefore conjecture that the time scale on which 
decoherence takes place depends on the degree of complexity of the under- 
lying quantum mechanical system, i.e., more complex systems decohere 
relatively faster than less complex ones. 

In Fig. 5 we compare the time development of the spatial entropy 
function for a (relatively) narrow state and a (relatively) broad state. It is 
seen that the "uniform" behavior of the entropy function is an excellent 
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Fig. 4. The entropy function as a function of time for the classical case (solid line) 
an the quantum case (dotted), for different values of  h. The barrier is placed off 
center, X =  - 1, and the mean energy of the incoming particle ~ E)  = 0.05 is equal 
to the barrier height V, V=5.  (a} h = 2 ;  (b) h =  l; (c) h=0.5 ;  (d) h=0.25.  

indicator for the onset of exponential decay. The broad state has, as men- 
tioned above, a faster approach to exponential "irreversible"~behavior. 
This is accompanied by a strong increase of S(t), i.e., a fast entropy 
production and hence a faster approach to equilibrium. A narrow state has 
a slower approach to the exponential with alternating intervals of enhanced 
and hindered decay. This is matched by the oscillating nature of S(t) for 
the narrow state. This type of behavior is connected with a lower degree of 
complexity, which becomes eminent by comparison with Figs. la-ld.  
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Fig. 5. The entropy function as a function of time for a relatively broad state and 
a relatively narrow state. (a) The wave packet constructed form the first 64 energy 
levels; (b) the wave packet constructed from the first t6 energy levels. 
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We have established the connection between tunneling and chaotic- 
like behavior in Ref. 1. We have, moreover, shown that the behavior of the 
spatial entropy function is a good measure for the degree of complexity. 
It is well known that barrier penetration provides a possibility to study the 
approach to exponential decay. (6' 15. ~) It is striking that for short times 
before the exponential region is reached, oscillations occur in accordance 
with our description of the short-time behavior above. We have, finally 
established the link between a fast approach to exponential decay--and 
hence approach to irreversibility--of a broad state and of the fast entropy 
production. A broad state decays faster (enters the exponential mode 
sooner), has a sharper entropy increase, and shows more chaotic-like 
behavior than a narrower one. Taking into account that fast entropy 
production is an indicator of chaos we provide evidence for our conjecture 
that chaos and irreversibility are linked together. It also appears that 
decoherence is enhanced by an increased complexity of the system. 

Although it does not appear that chaos is a sufficient condition for 
irreversibility it seems that it may be a necessary condition. It is, moreover, 
made plausible that the irreversible transition from a coherent quantum 
description to the observed decoherent classicality is mediated by the 
agency of quantum chaos. 
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