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We study the tunneling through an oscillating delta barrier. Using time periodicity 
o f  the model, the time-dependent Sehr6dinger equation is reduced to a simple, but 
infinite matrix equation. Employing Toeplitz matrix methods, the infinite matrix 
is' replaced by a 3 x 3 matrix, alh)wing an analytical solution. Looking at the 
j?equency dependence o f  the transmission amplitudes, one observes a new time 
scale whieh dominates" the tunneling dynamics. This time scale differs J?om the one 
previously introduced by Biittiker and Landauer. The relation between these two 
is discussed. 

1. I N T R O D U C T I O N  

The question regarding the actual time spent during tunneling through a 
barrier has been in discussion for over half a century. (1 6) The introduction 
of high-speed tunneling-based semiconductor devices in recent years (v) has 
brought new urgency to the problem. However, in spite of the long history 
of this subject, it still remains controversial. 

Most of the opinions on this matter can be classified into three 
categories. The most apparent way to define and calculate tunneling times 
is through the dynamics of the wave packet. Some suggestions use the 
stationary phase approximation and obtained the time the peak of the 
wave packet spent in the barrier regionJ 2) In a more recent version of this 
approach, the peak is replaced by the centroid of the packet. (8~ Never- 
theless, this approach is problematic. It has been shown (9) by an explicit 
example that a tunneling situation can be set up such that the peak or cen- 
troid of the transmitted packet emerges before the peak or centroid of the 
incident packet has even arrived at the barrier, leading to negative time 
and demonstrating the lack of causal relationship. 
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A more sophisticated way involves the introduction of a physical clock 
which is used to determine the time elapsed during tunneling. One can look 
at either the effect of the clock on the tunneling particle or at the clock 
variable itself. Mainly, three versions of clocks have been proposed and 
investigated in the literature. The first clock approach studies the preces- 
sion of the spin of the tunneling particle due to a uniform infinitesimal 
magnetic field confined to the barrier region, u~ It was later noted that in 
addition to the precession in the plane perpendicular to the magnetic field, 
the spin-up component in the magnetic field direction tunnels preferentially 
due to the Zeeman splitting.it1> These two processes caused by the field can 
be used as physical clocks. One gets two different time scales from these 
two. The two time scales are equal to the real and imaginary parts of the 
complex time obtained using the Feynman approach/12~ A second clock 
approach uses an incident wave composed of two interfering waves/13) If 
these two are of opposite spin direction, the total incident particle flux is 
uniform in time with an oscillatory spin. 

Bfittiker and Landauer (BL) studied tunneling through a rectangular 
barrier with a small oscillating component added to the height. ~3) The inci- 
dent particles with energy E can absorb or emit modulation quanta hg2 
during tunneling, leading to the appearance of sidebands with energies 
E+_ nhg2 and corresponding intensities I+,,. Looking at the g2 dependence 
of these quantities, BL determined the critical frequency as that in which 
the transition between the behavior at the two limits of quasi-static barrier 
and the average barrier occurs. The inverse of this frequency is an indica- 
tion of the time scale of the tunneling process. 

Third, there are many who object to the question in the first place/14~ 
It is often said that the concept of tunneling time is not well defined in the 
context of quantum mechanics, and does not correspond to any observable. 
This is related to the absence of a time operator in quantum mechanics. 
This problem can be bypassed using an operator which measures whether 
the particle is in the barrier or not, and then (in time-dependent problems) 
averaging over time. The result, divided by the incident flux, is termed the 
"dwell time. ''~1~ Nevertheless, this solution is far from being satisfactory, 
since taking expectation values, one cannot distinguish between the trans- 
mitted and reflected particles, and thus the time obtained is just an average 
over two (possibly different) times related to these two processes. This 
problem follows from the absence of a well-defined history of a quantum 
particle. ~tS~ As far as the particle was not measured in the barrier, it was 
not there at all and thus formally the time spent in the barrier is zero. ~16) 

In this paper we do not want to take a stand in this debate, but rather 
to point out that even if one argues that the actual time spent inside the 
barrier region is not defined or zero, it is agreed that the wave function 
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spent a finite time inside the barrier. The question about the time scales 
related to the wave function transition through the barrier is at least as 
important as the (maybe more fundamental) former one. After all, the 
quantum dynamics is determined by the wave function, and thus many 
questions in which time scales are relevant are really not related to the 
actual time as measured experimentally, but rather to the time in which 
the wave packet~describing the particle in times it is not measured--was 
in the regime in interest. This approach is motivated by the physical clocks 
approach. Again, even if the application of the proposed experiments to the 
"strong" question of tunneling time is arguable, one cannot deny the need 
for tunneling time scales while considering the process in a time-dependent 
environment such as considered in the BL approach. In what follows we 
use the same approach and consider the tunneling process through an 
oscillating delta barrier 

V(x, t) = V0 &(x)( 1 + e cos(f2t)) (I) 

As in the BL case, the tunneling particle can absorb or emit any number 
of energy quanta hQ while being transmitted or reflected (see Fig. 1 ). Using 
the time periodicity of the Hamiltonian, the SchrSdinger equation is 
reduced to the inversion of an infinite tridiagonal matrix. In practice, the 
matrix can be truncated very efficiently and reliable numerical solutions are 
easily obtained. In the large quantum numbers regime the three-diagonals 
elements become almost constant, and the matrix is approximately a 
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Toeplitz matrix. (17, 18) In this case one can reduce the problem to the-inver- 
sion of a 3 x 3 matrix, and obtain analytical expressions. 

Following Refs. 3 and 13, we study the frequency dependence of the 
transmission amplitudes in the limit of small oscillation amplitude e. We 
show that there exists a time scale r, such that the side-band asymmetry 
(studied by BL) is a function of Or. This time scale is not the same as the 
one defined by BL which vanishes in the delta barrier limit. This indicates 
the possibility of more than one time scale for the tunneling process. 

2. MODEL 

2.1. Analytical Solution 

We consider a time periodic potential (1) where F0 is the barrier 
strength, e (0 < e < 1 ) is the modulation strength amplitude, and ~ is the 
barrier frequency. 

We first note that since the problem is periodic the general solution of 
the wave equation is a superposition of eigenstates of the Floquet operator, 
i.e., the operator which shifts the solution in time by one period. Thus we 
can solve for each such eigenstate separately. Since the frequency of the 
incoming part of the asymptotic behavior of the solution is determined by 
the incident energy, this energy fixes the corresponding eigenvalue to be 
e re, r/h, where E i stands for the incident energy. The outgoing parts of the 
asymptotic solution correspond to the transmitted and reflected particles, 
and their frequencies must match the same eigenvalue, i.e., e -mJr /h= 
e -mir/h, where Ef  is the final energy, after transmission or reflection. We 
thus conclude that the frequency of all the asymptotic outgoing waves 
should differ from the initial frequency by an integer multiple of s i.e., the 
energy change is an integer number of energy quanta bY/. 

The corresponding Schr6dinger equation is 

ih ~ • = 2m ~x 2 ~- V(x, t) ~9 (2) 

On both sides of the barrier the solution of Eq. (2) is just a free particle 
solution. We thus separate the solution, and write it on both sides as a 
superposition of free particle functions, satisfying the scattering boundary 
conditions, and having appropriate frequencies: 

It~t(x, t) = e ~ikox i,~,oo + V r e ~ ik, x t,J~,o ~.~ ~ , x < O  

~(x, t)---- " (3) 

n 
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where r,, and t, are the reflection and transmission coefficients, ~o~ = 
(E + nhg2)/h, k,  = ~ ,  and the summations are over every integer n. 
For  negative o)n, k,, become imaginary, k~, = i~%. The corresponding wave 
functions cannot  be extended to the whole space, but still can contribute to 
the wave function on one side. One picks the decaying solution to ensure 
integrability. 

Continuity of the wave function requires 0l(0, t ) =  0r(0, t), implying 
the following relations: 

rn=t , ,  n r  
(4) 

1 + r 0 = t 0 ,  n = 0  

Integrating Eq. (2) over the barrier region one obtains a tridiagonal matrix 
equation: 

( 2 i k n / B - 1 ) r ~ - 2 ( r ~ + ~ + r  ~ 1)=(~O,n-~-~((~O,n+l~-60, n_l) (5 )  

where B = 2m Vo/h 2. 
In order to solve Eq. (5) we need to invert an infinite matrix. Practi- 

cally, it is enough to truncate the matrix after about  a dozen rows around 
the center (n = 0), since the far r,,'s approach zero quickly (we denote this 
solution by FS, for full solution). Moreover,  it is easy to show that for 
]nr > 1 the matrix elements are approximately constant. In this case we can 
treat our matrix as a Toeplitz matrix, (17) and assume that the solution 
decays exponentially. The solution is then obtained by inversion of a 3 x 3 
matrix (we call this solution TS for Toeplitz solution). 

Let us now focus on the TS. The method of reduction of an infinite 
approximate Toeplitz matrix into a small finite one has been described else- 
where3 is) We thus only briefly sketch the solution. We have to substitute 
the exponential correction to the 3 x 3 matrix; the new matrix equation is 

e e 0 + ~ k  - 1  e 0 

2i  k0 - 1 
2 B 2 

2i e e e 0 + + ~ k l _ l  
0 2 2 
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~3 
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Fig. 2. Correspondence between FS (full solution) and TS (Toeplitz solution). 
h = 2 m = l ,  ~ 2 = e = l ,  Vo=10. (a) E=2 .5>2D;  (b) Q < E = l . 5 < 2 f 2 ;  (c) 
E=0.5 < ~ ;  (d) same as (a), but for e=0.5. 
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where 0 and 0+ are complex exponents characterizing the (exponential) decay 
of the tn's on both sides of the central energy band, n = 0 (9~(0) ,  9 t (0+)>  0). 
These exponents can be found by assuming that rn=r l exp( (n+  1)0  ) 
for n ~ < - I  and r , = r l e x p ( - ( n - 1 ) O + )  for n~> 1, and substituting into 
Eq. (5). We discuss three regimes: (a) E >  2hf2(k 1 and k 2 are positive), 
(b) hs  1 positive and k 2 imaginary), and (c) E<hg2(k 1 
and k 2 are imaginary). In the first regime the solution is 

c o s ( ~ ( 0 + ) ) = ~ e 2 ( l +  2 4 

~/(1__e2)2 16k4 2 8 )1/2 - + B  ~ w + ~ ( 1 + e R )  k2+2 

1 
cosh(91(0_+)) = - -  cos(3(0+))  1 (7) 

while similar solutions can obtained for cases (b) and (c). 
It is clear from Eq. (7) that as e becomes smaller, the correspondence 

between FS and TS improves. Since we are interested in the limit e ~ 0, we 
regard the TS as an exact one. Figure 2 compares the FS and TS in all 
three cases mentioned before (a-c) when e = 1, which is the worst case. 
There is a good agreement for the three central coefficients even in the 
extreme case of E ~  (2m/h 2) V 2. Significant relative deviations are obtained 
only for the levels whose population is exponentially small. Much better 
correspondence is achieved for smaller e; see Fig. 2d. Since in what follows 
we use only these three coefficients, this figure confirms the accuracy of the 
Toeplitz method for the following derivation. 

2.2. Numerical Results 

We verify the above derivation by solving numerically the dynamical 
time-dependent Schr6dinger equation and comparing the results to the FS. 
In order to simplify the numerical calculation, the delta function barrier is 
placed in the center of an infinite well. The algorithm we use is as follows. 
First, we find the eigenfunctions and eigenvalues of the static problem, for 
each time. Once these are given, the numerical calculation becomes much 
simpler using adiabatic perturbation theory, leading to a set of first-order 
differential equations. Due to symmetry, half of the matrix elements vanish. 
In the case of the delta function the odd eigenfunctions are time indepen- 
dent, and thus the effective number of equations is reduced)  The numerical 

2 The number of levels taken in the computation should include at least the first few energy 
bands ( E )  +_ nh(2. 
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Fig. 3. Tunneling probability as a function of f2. Comparison of FS and 
dynamical computation. The units taken are such that h = 2 m  = 1, ( E ) =  5, 

V0 - 5, e = 0.9. The inset zooms on the maximun region. 

solution is performed using the adaptive time step fifth-order Cash-Karp 
Runge Kutta method. (19) The initial wave function is a Gaussian wave 
packet located in the center of the left side of the barrier, moving toward 
the oscillating barrier. The wave packet collides with the barrier and splits 
to reflecting and transmitted parts. We measure the probability to be on 
the right side of the barrier after a collision. 

The same probability is calculated using FS in the following way. We 
average the transmitted probability current given by FS over the energy, 
using the weights obtained from the energy components of the initial wave 
packet taken above. The results of the analytic and numeric results are 
presented in Fig. 3. The agreement between the two calculations is very 
good, confirming our derivation. 

3. TUNNELING TIME SCALES 

In order to investigate the tunneling time problem, one follows the 
strategy explained above, inspired by BL, and studies the frequency 
dependence of the transmission intensities in the limit of small e. In par- 
ticular, one looks at the relative sideband asymmetry 

I 1 - -  I 1 
F ( ~ )  - - -  ( 8 )  

I i + I  i 
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where I n = [tn[ 2. BL show that for an opaque rectangular barrier, in the 
high-frequency 

(mtrg2~ = tanh(f2ZBL ) F(g2) = tanh \ h d  ] - (9) 

where re/~ is defined as the tunneling time. The frequency s rBL1 is the 
transition frequency below which the behavior is determined by the low- 
frequency limit. 

In the low-frequency limit, BL obtained the relation 

I+ = (e Vr/2h2) 2 (10) 

for an opaque finite barrier, whose height is V. Using this equation as a 
definition of r, they got the following result for a general barrier: 

(K - -  k 2 )  2 K 2 d 2 + k04( 1 + K2d 2) sinh 2 Kd 1 

( r n )  +k2Kd(K2-k2) sinh2Kd 
r = ~ 4k2tr 2 + k 4 sinh 2 Kd ( 11 ) 

-- 1/2 

where K=(2m/h2)l/2xflV~-E, ko=(2mV/h2) 1/2, k=(2mE/h2) 1/2, and d is 
the barrier width. In the delta barrier limit this expression vanishes. 
The same result is obtained for the general rectangular barrier using the 
Larmor clock approach. Ill) 

In what follows we use the first approach of BL, namely, looking at 
the asymmetry, and show that for a delta barrier in the deep tunneling 
regime E~(2m/h 2) V 2, the frequency behavior depends on a new time 
scale. Using the above-described Toeplitz method, we obtained for the 
asymmetry function F( f2)=  --f2za, where 

2h 3 
% = m V  2 (12) 

This holds only in the regimes (a-b), i.e., when E >  hs In the other regime 
the behavior is also a function of Ova, f(f2)  = ~ - To, where T o is the 
tunneling probability in the absence of oscillations. Similar results for 
the model (1) were obtained by Stovneng and Hauge without using the 
Toeplitz approach. (2~ 

One thus sees that following the approach taken by BL, one finds a 
new and different time scale than the one obtained via the Larmor clock, 
which was also given in BL's original work using the low-frequency limit. 
The interpretation of this result is not yet clear. We suggest that there are 
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more  than  one t ime scale in the tunnel ing t h rough  a genera l  barr ier .  BL 
c la imed tha t  since, for the o p a q u e  barr ier ,  in the h igh-frequency regime one 
gets a clear  defini t ion of  ~ = r~L [Eq.  (9) ]  this r is the tunneling t ime for 
the opaque  barr ier .  Therefore,  l ook ing  at  the  low-frequency regime and  
knowing  the tunnel ing time, one can  ext rac t  a connec t ion  be tween the low- 
frequency behav io r  and  the tunnel ing  t ime 

2h2  / / ~  - ' 

Z = e V V ~ + _  (13) 

This  re la t ion  was then used (13~ to define the tunnel ing t ime in the genera l  
case. Now,  if there  is more  tha t  one t ime scale in the process,  there  is no  
reason  to  t ake  the t ime scale which  domina te s  the h igh-frequency regime 
and  connect  it to  the low-frequency behav io r  which m a y  be d o m i n a t e d  b y  
a different t ime scale. L o o k i n g  at  a del ta  barr ier ,  in which the first t ime 
scale rB/~ vanishes and  only  the  second t ime scale p lays  a role, one indeed 
sees tha t  bo th  the high-  and  low-frequency regimes are d o m i n a t e d  by  the 
same (second)  t ime scale ra.  
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