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Abstract. – We analyze daily prices of 29 commodities and 2449 stocks, each over a period
of ≈ 15 years. We find that the price fluctuations for commodities have a significantly broader
multifractal spectrum than for stocks. We also propose that multifractal properties of both
stocks and commodities can be attributed mainly to the broad probability distribution of
price fluctuations and secondarily to their temporal organization. Furthermore, we propose
that, for commodities, stronger higher-order correlations in price fluctuations result in broader
multifractal spectra.

The study of economic markets has recently become an area of active research for physi-
cists [1], in part because of the large amount of data that can be accessed for statistical
analysis. Markets are complex systems for which the variables characterizing the state of the
system —e.g., the price of the goods, the number of trades, and the number of agents, are
easily quantified. These variables serve as fundamental examples of scale-invariant behavior
—the scaling laws are valid for time scales from seconds to decades.

Much interest has concentrated on stocks, where a number of empirical findings have been
established, such as [2] i) the distribution of price changes is approximately symmetric and
decays with power law tails with an exponent α + 1 ≈ 4 for the probability density function;
ii) the price changes are exponentially (short-range) correlated while the absolute values of
price changes (“volatility”) are power law (long-range) correlated.

Unlike stock and foreign exchange markets, commodity markets have received little atten-
tion. Recently, it was found [3] that commodity markets have qualitative features similar to
those of the stock market. This similarity is intriguing because the commodity market has
special features such as: i) most commodities require storage; ii) most commodities require
transportation to bring them to the market from where they are produced; and iii) it is plau-
sible that commodities may exhibit a slower response to change in demand because the price
depends on the supply of the actual object.
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The multifractal (MF) spectrum [4] reflects the n-point correlations [5] and thus provides
more information about the temporal organization of price fluctuations than 2-point corre-
lations. Previous work reports a broad MF spectrum of stock indices and foreign exchange
markets [6–14]. Two recent models [15, 16] explain the observed MF properties by assuming
that price changes are the product of two stochastic variables, one being uncorrelated and
normally distributed and the other being correlated and log-normally distributed. The price
changes predicted by these models do not have the power law probability distribution [2, 3]
observed empirically, and thus shuffling the price changes significantly narrows the MF spec-
trum.

Here we show that the MF properties of commodities and stocks result partly from the
temporal organization and partly from the power law distribution of price fluctuations. We
also conjecture that it is feature iii) of commodity markets that leads to a broader MF spectrum
of commodities compared to stocks.

We define the normalized price fluctuation (“return”) as

g(t) ≡ ln S(t + ∆t) − ln S(t)
σ

, (1)

where here ∆t = 1 day, S(t) is the price, and σ is the standard deviation of ln S(t+∆t)−ln S(t)
over the duration of the time series (typically 15 years). We use the multifractal detrended
fluctuation analysis (MF-DFA) method [17] to study the MF properties of the returns for
stocks and commodities. Following [17], given a time series xk we execute the following steps:
i) Calculate the profile; Yi ≡

∑i
k=1[xk − 〈x〉] i = 1, . . . , N , where N is the length of the time

series, and 〈x〉 is the mean. ii) Divide Yi into Ns ≡ int(N/s) segments. iii) Calculate the
local trend yν(i) for segments ν = 1, . . . , Ns by least-square polynomial fit. iv) Determine
the mean-square fluctuation in each segment F2(s, ν) ≡ 1

s

∑s
i=1(|Y(ν−1)s+i − yν(i)|)2. v)

Evaluate Fq(s) ≡ 1
Ns

∑Ns

ν=1 F2(s, ν)q/2. The scaling function of moment q, Fq(s) [17] follows
the scaling law

Fq(s) ∼ sτ(q). (2)

Negative q values weight more small fluctuations, while positive values of q give more weight
to large fluctuations.

When the contribution of the small fluctuations is comparable to the contribution of
the large fluctuations, the series is monofractal and τ(q) = hq, where h = const is the
Hurst exponent. If τ(q) nonlinearly depends on q, the series is MF. The Legendre transform
of τ(q) is

f(h) ≡ qh − τ(q), where h ≡ dτ(q)
dq

. (3)

Monofractal series have only one value of h, unlike MF series which have a distribution of h
values.

We analyze a database consisting of daily prices of 29 commodities [18] and 2449 stocks [19]
spread over time periods ranging from 10 to 30 years (the average period is ≈ 15 years).
Figure 1 shows the price of a typical commodity, corn, and a typical stock, IBM, and their
corresponding returns. One striking difference between the commodity and the stock is that
the commodity returns are more “clustered” into patches of small and large fluctuations.
This feature is not reflected in the distribution and the autocorrelation function of the price
fluctuations [3].
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Fig. 1 – Analysis of 2048 daily returns covering the time period May 1993–June 2001. Price of (a)
corn, a typical commodity, and (b) IBM, a typical stock. Returns for (c) corn and (d) IBM; unlike
stocks, commodity returns appear more clustered into “patches” of small and large fluctuations, even
though there are no 2-point correlations (fig. 2). Returns for (e) corn and (f) IBM after shuffling the
returns; because all n-point correlations are now removed, stocks and commodities look similar and
do not appear to cluster into “patches”.

To emphasize the clustering of commodities, we shuffle the returns by randomly exchanging
pairs, a procedure that preserves the distribution of the returns but destroys any temporal
correlations. Specifically, the shuffling procedure consists of the following steps:

i) Generate pairs (m,n) of random integer numbers (with m,n ≤ N), where N is the total
length of the time series to be shuffled.

ii) Interchange entries m and n.

iii) Repeat steps i) and ii) for 20N steps. (This step ensures that ordering of entries in the
time series is fully shuffled.)

To avoid systematic errors caused by the random number generators, the shuffling procedure is
repeated with different random number seeds for each of the 2449 stocks and 29 commodities.
The shuffled commodity series of necessity loses its clustering [20] (fig. 1(e)). On the other
hand, the shuffled stock series resembles the original one.

First, we compare the 2-point correlations using DFA [22] of the shuffled and the unshuffled
returns for commodities and stocks (fig. 2). Both corn (and all other commodities analyzed)
and IBM (and all other stocks analyzed) have returns uncorrelated for time scales larger than
one day [2,3]. Thus, studying the 2-point correlations is not sufficient to uncover the clustering
of the commodity returns.
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Fig. 2 – DFA analysis of two-point correlations of returns of (a) a typical commodity (corn) and
(b) a typical stock (IBM), before and after shuffling. The exponent of 0.5 indicates that both the
commodity and the stock are uncorrelated in time, so the two-point correlation function does not
provide information regarding the clustering into patches (fig. 1).

Next, we analyze the MF properties of the returns of stocks and commodities. Figure 3(a)
displays separately the averages

τav(q) ≡ 1
N

N∑

i=1

τi(q), (4)

for N = 29 commodities, and for N = 2449 stocks. Note that i) the scaling exponents,
τav(q)|q<0 for commodities and stocks significantly differ, whereas τav(q)|q>0 are similar, sug-
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Fig. 3 – (a) τav(q) for returns and shuffled returns for 29 commodities and 2449 stocks. To better
visualize the results, we plot τav(q) − q/2 instead of τav(q). The exponents τav(q) are calculated for
window scales of 10–100 days. After shuffling τav(q) are comparable for both stocks and commodi-
ties. (b) τav(q) spectrum of the returns and shuffled returns for stocks, compared with uncorrelated
surrogate data with Gaussian probability distributions and power law probability distributions (with
power law exponent α ≈ 3). After shuffling, τav(q) for stocks becomes comparable with τav(q) of the
surrogate data obtained for the power law probability distribution.
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Fig. 4 – fav(h) vs. h computed from the τav(q) vs. q for commodities and stocks. Shown are also both
unshuffled and shuffled returns. For commodities, the unshuffled returns show a broader MF spectrum
than for the shuffled returns, consistent with the hypothesis that the broad MF spectrum arises due
to temporal organization and the broad power law distribution of price fluctuations (cf. fig. 3(b)).

gesting that commodities are similar to stocks for the large fluctuations and they differ for the
small fluctuations [23]; ii) we observe that after shuffling the returns, τav(q) for stocks hardly
changes for q < 0, but τav(q) for commodities changes and becomes comparable to stocks for
the entire range of q [25].

In order to study the contribution of the power law tails of the returns on the MF spectrum,
we generate surrogate data sets i) with a normal distribution and ii) with power law tails with
α ≈ 3 (as is observed empirically [2, 3]). Figure 3(b) displays τav(q) averaged over 2449
realizations of surrogate data, each with 3000 data points. The τav(q) of the surrogate power
law distributed data is very close to the τav(q) of stocks after shuffling. This indicates that
a significant part of the τav(q) spectrum of stocks and commodities comes from the power
law distribution of the returns. Note that there is a small difference in τav(q) of stocks before
and after shuffling, indicating that the power law distribution of the returns is not the only
source of multifractality, but that there is also a relatively small contribution due to temporal
organization of returns. For commodities this temporal organization is more dominant.

Figure 4 displays the MF spectrum of the unshuffled and shuffled returns for commodities
and stocks. The temporal organization of commodity returns is reflected in the fact that the
MF spectrum for unshuffled commodities is broader than for shuffled commodities and stocks.

Demand fluctuations drive price fluctuations, and it is plausible that stocks respond more
quickly than commodities to demand changes. Stochastic perturbations, together with the
immediate price response to demand changes, may weaken the existing higher-order temporal
organization, which may be the reason for less clustering for stocks (fig. 1). Commodities, on
the other hand, have a slower response. Thus, small or short-time perturbations are “felt” less
by commodities than by stocks. This scenario is consistent with the appearance of patches
of small commodity fluctuations followed by patches of large commodity fluctuations (fig. 1).
We conjecture that the more homogeneous returns of stocks explain the difference between
the MF properties of stocks and commodities.

In summary, we find that commodities have a broader MF spectrum than stocks. A major
contribution to multifractality is the power law tail of the probability distribution of the re-
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turns. Moreover, the MF spectra of stocks and commodities are partly related to the power law
probability distribution of returns and partly to the higher-order temporal correlations present.
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