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Scale-specific and scale-independent measures
of heart rate variability as risk indicators
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Abstract. – We study the correlation properties of heartbeat fluctuations using scale-specific
variance (root-mean-square fluctuation) and scaling (correlation) exponents as measures of
healthy and cardiac impaired individuals. Our results show that the variance and the scaling
exponent are uncorrelated. We find that the variance measure at certain scales is well suited
to separate healthy subjects from heart patients. However, for mortality prediction the scaling
exponents outperform the variance measure. Our study is based on a database containing
recordings from 428 individuals after myocardial infarct (MI) and on a database containing 105
healthy subjects and 11 heart patients. The results have been obtained by applying two re-
cently developed methods (DFA—Detrended Fluctuation Analysis and WAV—Multiresolution
Wavelet Analysis) which are shown to be highly correlated.

The study of heart rate variability (HRV) has been in use for the last two decades as
part of clinical and prognosis work; international guidelines for evaluating conventional HRV
parameters do exist [1]. The conventional parameters are power spectra [2] and standard devi-
ation [3,4]. Recently new methods of analyzing heart interbeat interval (RR) time series have
been developed, all of them showing signs of improved diagnostic performance. Two of these
methods are: Detrended Fluctuation Analysis (DFA) [5–9] and Multiresolution Wavelet Anal-
ysis (WAV) [10–16]. The question which method and which measure yield better separation
between cardiac impaired and healthy subjects has recently been debated [13,14,17].
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In this letter we show that variance (root-mean-square fluctuation), which is a scale-specific
measure, is well suited to separate between healthy subjects and heart patients. However,
for the myocardial infarct (MI) group the scaling (correlation) exponent, which is a scale-
independent measure, serves as a better risk indicator. Moreover, we show that the two
above-mentioned methods for both variance and scaling exponent are correlated and converge
to similar results while the variance and the scaling exponent are uncorrelated.

In our study we use two groups, the MI group, containing 428 heart patients after MI,
and a control group, consisting of 105 healthy individuals and 11 cardiac impaired patients
(9 diabetic patients, one diabetic patient after myocardial infarct, and one heart transplanted
patient). Our analysis is based on 24 hour heart interbeat interval time series [18]. We applied
the following methods.

The DFA method. The detrended fluctuation analysis was proposed by Peng et al. [5].
This method avoids spurious detection of correlations that are artifacts of nonstationarity.
The interbeat interval time series is integrated after subtracting the global average and then
divided into windows of equal length, n. In each window the data are fitted with a least-
square straight line which represents the local trend in that window. The integrated time
series, is detrended by subtracting the local trend in each window. The root-mean-square
fluctuation, the standard deviation σDFA(n) of the integrated and detrended time series is
calculated for different scales (window sizes); the standard deviation can be characterized by
a scaling exponent αDFA, defined as σ(n) ∼ nα.

The WAV method. In the WAV method [13,14,16] one finds the wavelet coefficients Wm,j ,
where m is a “scale parameter” and j is a “position” parameter (the scale m is related to
the number of data points in the window by n = 2m [18]), by means of a wavelet transform.
The wavelet transform has the ability to eliminate higher-order trends from the data (trends
which are not necessarily related to the cardiac activity). In this study we use discrete wavelet
transform —the Daubechies 10-tap wavelet transform which excludes 4th order polynomial
trends [19, 20]. The standard deviation σWAV(m) of the wavelet coefficients Wm,j across the
parameter j is used as a parameter to separate healthy from sick subjects. The corresponding
scaling exponent is denoted by αWAV.

The first suggestion to use a scale-independent measure of the HRV as a separation pa-
rameter was by Peng et al. [5] who found that a critical value of the DFA scaling exponent
αDFA can distinguish between healthy individuals and heart patients. Thurner et al. [13] used
the scale-specific WAV variance σWAV in order to better separate the same two groups. The
debate on which method performs better was continued in two recent letters [14, 17]. Later
on, another independent study on different database [16] yielded a better separation using
the scale-specific σWAV measure. The question which measure is more suitable for bedside
applications is important since: i) these measures may be used for diagnosis; ii) it may help to
focus on the main difference between healthy and cardiac impaired regulation and thus may
lead to better understanding the underlying mechanism of the heart regulation.

In fig. 1 we compare the conventional measures for HRV for the control group (105 healthy
subjects and 11 heart patients): the variance (which is calculated for a fixed scale) for the
WAV method (σWAV) and the scaling exponent (which is calculated for a range of scales) for
the DFA method (αDFA). In general, the heartbeat interval series is characterized by two
scaling exponents —short-range scaling exponent (4-16 heartbeats) and long-range scaling
exponent (16 up to thousands of heartbeats). Here we study the short-range scaling exponent
(rather than the long-range scaling exponent) since it was shown to be the best for clinical
use [5,7,8]. The variance measure is estimated at the crossover point between the short- and
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Fig. 1 – A comparison between different HRV methods (WAV and DFA). The 105 healthy subjects
are denoted by ©, while 11 heart patients are denoted by �. The error bars indicate the average ±1
standard deviation of each group. The σWAV is calculated at scale m = 4 (n = 24 = 16 heartbeats)
and αDFA for scales 1 ≤ m ≤ 4 (21 ≤ n ≤ 24 heartbeats); it was previously reported that this choice of
parameters yields the best separation between healthy group and heart failure group [5,13]. (a) The
scale-specific σWAV for the healthy and heart patient group; (b) the scale-independent αDFA; (c) the
probability distribution of (a); (d) the probability distribution of (b).

long-range scaling exponents (m = 4, n = 24 = 16 heartbeats) where the largest separation
between healthy and heart failure was observed [5]. One notes that the scale-specific measure,
σWAV, yields a nearly perfect separation between healthy and sick subjects (the p value of
Student’s t-test is less than 10−14), compared with the scale-independent measure αDFA which
yields less pronounced separation (the p value of Student’s t-test is less than 10−4).

This outcome is reversed when we applied the measures on the MI group. Since we have no
diagnostics on this group, but rather do know the follow-up history for 328 individuals from
the total 428 individuals of the larger group, we investigate the survival probability of these
subjects as expressed through the so-called survival curve [21]. In these curves one divides
the entire group by means of a specific value of the σ or α measure, called the critical value
σc or αc. Individuals with σ > σc (or α > αc) belong to the subgroup which is assumed
to have higher survival probability while individuals with σ < σc (or α < αc) belong to the
subgroup which is assumed to have lower survival probability. If the parameter (σ or α) is
a good risk parameter, the survival probability of the first sub-group should be significantly



712 EUROPHYSICS LETTERS

0 12 24 36 48 60

t - months

0.4

0.6

0.8

1

P(t)

0.4

0.6

0.8

1

P(t)

σwav>σc

σwav<σc

0 12 24 36 48 60

t - months

α wav>α c

α wav<α c

(a) (b)

(c) (d)

Fig. 2 – Cumulative survival probability curves using the WAV method. We divide the entire group
of 328 individuals into two groups according to a critical value σc (or αc) and calculate the survival
probability for each subgroup. The survival curves shown in the figure are the average of 10 different,
nearby, survival curves, corresponding to 10 different, nearby, critical values. We perform this average
procedure in order to check the sensitivity to the critical value. The error bars indicate the standard
deviation from the average. The average critical values (± standard deviation) are: (a) 〈log2 σc〉 =
−3.749± 0.02; (b) 〈αc〉 = 0.68± 0.008; (c) 〈log2 σc〉 = −5.485± 0.02; and (d) 〈αc〉 = 0.135± 0.008.

higher than the second sub-group. On the other hand, if the parameter is not a good risk
parameter, then the two subgroups will have similar survival probability. The cumulative
survival probability is given by P (t + ∆t) = P (t)[1−∆N/N(t)], where P (t) is the probability
to survive up to t days after the ECG recording, N(t) denotes the number of individuals alive
at t days after the examination, and ∆N is the number of individuals who died during the
time interval ∆t. P (t) is calculated recursively where the initial condition is P (0) = 1. In
fig. 2 we show a comparison of survival curves where the separating measure in panels (a) and
(c) is the critical standard deviation σc and in panels (b) and (d) the critical scaling exponent
αc. The upper panels of fig. 2 extract the subgroup with a high parameter value (high survival
probability), whereas the lower panels extract the subgroup with a low parameter value (low
survival probability). This comparison shows that the scale-independent scaling exponent α
serves as a better prognosis predictor than the scale-specific variance σ (although fig. 2a and b
are similar, the survival curves of fig. 2d are more separated than the survival curves of fig. 2c).

In fig. 2 we use the σ and α measures obtained through the WAV method. However,
as we show below the two methods discussed above are highly correlated and no significant
difference is noticeable in the survival curves when using the DFA measure.

The advantage of the scale-independent measure α over the scale-specific measure σ is
also shown in fig. 3. Here we scan the possible critical values by the Receiver Operating
Characteristic (ROC) analysis [22]; this analysis is usually used as a medical diagnostic test
and also was the basic diagnostic test of ref. [17]. The idea of the ROC method is to compare
the result of medical test (positive or negative) with the clinical status of the patient (with
or without disease). The efficiency of the medical test is judged on the basis of its sensitivity
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Fig. 3 – The ROC curves (sensitivity vs. specificity) of the scale-specific, σWAV, and scale-independent,
αWAV, measures. (a) t = 18 months, (b) t = 36 months, and (c) A(t) —the area under the ROC
curve— as a function of time. In all panels the scale-independent curve is located above the scale-
specific curve. Thus, the scale-independent measure is more suitable for prognosis purposes. The
fluctuations in panel (c) are due to changes in the ratio between the number of deaths and alives.
Note that most of the time the curve for σWAV follows the curve for αWAV and the distance between
them remains relatively constant. In the present study σWAV is calculated at m = 4 (n = 24 = 16
heartbeats) and αWAV for 1 ≤ m ≤ 4 (2 ≤ n ≤ 24 heartbeats). For other choice of scales A(t) drops
toward 0.5 indicating less significant mortality prediction.

(the proportion of diseased patients correctly identified) and its specificity (the proportion of
healthy patients correctly identified). The ROC curve is a graphical presentation of sensitivity
vs. specificity as a critical parameter is swept. In our case the patient status is determined
according to its mortality (death or survival up to time t) and according to its mortality
prediction (a patient with parameter value smaller than the critical value is predicted to die
while a patient with a parameter value larger than the critical value is predicted to survive).
In fig. 3a and b we present two examples of the ROC curves in different times (18 months
and 36 months). In both cases the ROC of the scale-independent (αWAV) curve is located
above the scale-specific (σWAV) curve; the larger the area under the ROC curve, the better
the parameter [23]. In the ideal case a patient with small parameter value will die before the
patient with higher parameter value. In this case the area under the ROC curve will be 1 (i.e.,
100% of the cases were correctly predicted). On the other hand, when there is no relation
between the value of the parameter and the mortality of the patient the area under the ROC
curve will be 1/2 (i.e., 50% of the cases were correctly predicted). In fig. 3c we show the area
under the ROC curves as a function of time (A(t)). Also here, the scale-independent (αWAV)
curve is located above the scale-specific (σWAV) curve. Thus, the scale-independent measure
αWAV is more suitable for prognosis.

In order to investigate if the two methods we use are correlated, we apply them on the
larger MI group consisting of 428 subjects. Figure 4 shows that the variances (the scale-specific
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Fig. 4 – A comparison between different HRV methods using 428 individuals. The value C in each
panel indicates the cross-correlation value between the different measures [24]. (a) σWAV vs. σDFA;
(b) αWAV vs. αDFA; (c) αWAV vs. σWAV; and (d) αDFA vs. σDFA. The σDFA and σWAV are calculated
at m = 4 (n = 16 heartbeats), αDFA and αWAV are calculated for m = 1 to 4 (n = 2 to 16 heartbeats).
Note that σWAV(m = 4) ∼ σDFA(m = 4) and αWAV ∼ αDFA + 1

2
.

measure) of the two methods (fig. 4a) as well as the scaling exponents of the two methods
(fig. 4b) are highly correlated. These comparisons indicate that indeed the two methods yield
the same results in terms of variance and scaling exponents. On the other hand, the lower
panels of fig. 4 show that the scale-specific variance and the scale-independent scaling exponent
are uncorrelated for the DFA methods and are only faintly correlated for the WAV method.

From this we conclude that the α and σ measures characterize the interbeat interval series
in different ways; the variance, which is a measure in the time domain (and thus is almost
invariant to shuffling [13]), performs better as a diagnostic tool, while the scaling exponent,
which is a measure in the frequency domain, depends on the order of events and performs
better as a prognosis tool. Thus we suggest that the scale-specific variance reflects changes
in either the sympathetic or the parasympathetic activities of the neuro-autonomic nervous
system [25] which affect the cardiac ability of contraction; the scale-specific variance may
hint on the instant condition of the physical properties of the heart. From the above we
also suggest that the scale-independent scaling exponent characterizes the memory interplay
of the two competing branches of the autonomic nervous system (the sympathetic and the
parasympathetic systems) and is thus an expression of the underlying mechanism of heart
regulation (which influences the conventional power spectrum [2]) [26].
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