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The basic work of Zaslavskii et al. showed that the classical non-relativistic electro-
magnetically kicked oscillator can be cast into the form of an iterative map on the phase
space; the resulting evolution contains a stochastic flow to unbounded energy. Subsequent
studies have formulated the problem in terms of a relativistic charged particle in interaction
with the electromagnetic field. We review the structure of the covariant Lorentz force used to
study this problem. We show that the Lorentz force equation can be derived as well from the
manifestly covariant mechanics of Stueckelberg in the presence of a standard Maxwell field,
establishing a connection between these equations and mass shell constraints. We argue
that these relativistic generalizations of the problem are intrinsically inaccurate due to an
inconsistency in the structure of the relativistic Lorentz force, and show that a reformulation
of the relativistic problem, permitting variations (classically) in both the particle mass and
the effective "mass" of the interacting electromagnetic field, provides a consistent system of
classical equations for describing such processes.
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1 INTRODUCTION

Zaslavskii et al. [1] have studied the behavior of
particles in the field of a wave packet of an electric
field in the presence of a static magnetic field. For a
broad wave packet with sufficiently uniform spec-
trum, the problem can be stated in terms of an

electrically kicked harmonic oscillator. They find
that for rational ratios between the frequency of the
kicking field and the Larmor frequency associated
with the magnetic field, the phase space of the

system is covered by a mesh of finite thickness;
inside the filaments ofthe mesh, the dynamics of the
particle is stochastic and outside (in the cells of
stability), the dynamics is regular. This structure is
called a stochastic web. It was found that this
pattern covers the entire phase plane, permitting the
particle to diffuse arbitrarily far into the region of
high energies (a process analogous to Arnol’d
diffusion [2]).

Since the stochastic web leads to unbounded
energies, several authors have considered the
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corresponding relativistic problem. Longcope and
Sudan [3] studied this system (in effectively +1/2
dimensions) and found that for initial conditions
close to the origin of the phase space there is a
stochastic web, which is bounded in energy, of a
form quite similar, in the neighborhood of the
origin, to the non-relativistic case treated by
Zaslavskii et al. [1]. Karimabadi and Angelopoulos
[4] studied the case of an obliquely propagating
wave, and showed that under certain conditions,
particles can be accelerated to unlimited energy
through an Arnol’d diffusion in two dimensions.
The equations used by Longcope and Sudan [3]

and Karimabadi and Angelopoulos [4] are derived
from the well-known covariant Lorentz force

d2x e dx
-F’-, (1.1)fu m

ds2 c ds

where ds is usually taken to be the "proper time" of
the particle. Multiplying both sides by dx/ds and
summing over # (we use the Einstein summation
convention that adjacent indices are summed unless
otherwise indicated, and the metric is taken to be
(-, +, +, +) for the indices (0, 1, 2, 3), distinguish-
ing upper and lower indices), one obtains

ds ds2
d (dx/dx.

2ds\ds dsJ
-0; (1.2)

taking the usual value for the constant (in s), we
have that

dxlz dx
ds ds

-c2. (1.3)

This result provides a consistent identification of
the parameter s on the particle trajectory (world-
line) as the "proper time":

ds2
c2 dx, dx

dt2 c- dx2

d/2(1 (1.4)

so that

as
dt "y ds, (1.5)

the Lorentz transformation of the time interval
for a particle at rest to the interval observed in a
moving frame. This formula has been used almost
universally in calculations of the dynamics of
relativistic charged particles [6,7]. The Lorentz
transformation, however, applies only to inertial
frames. Phenomena occurring in two inertial frames
in relative motion are, according to the theory of
special relativity, related by a Lorentz transfor-
mation. An accelerating frame, as pointed out by
Landau and Lifshitz [6], induces a more compli-
cated form of metric than the flat space (-, +,
+, +). Mashoon [11] has emphasized that the use of
a sequence of instantaneous inertial frames, as has
also often been done, is not equivalent to an

accelerating frame. He cites the example for which
a charged particle at rest in an inertial frame does
not radiate, while a similar particle at rest in an

accelerating frame does. As another example,
consider again the first of (1.4). If we transform to
the inertial frame of a particle with constant
acceleration along the x direction,

X X -+- 1/2at2,

then (1.4) becomes (as in the discussion of rotating
frames in [81)

a2 t2) dt2 2
ds2 75 7 at dx’ dt

(dx,2 q- dy2)2

In the frame in which dx’ =dy =dz =0, dt is the
interval of proper time, and it is not equal to ds.
For short times, or small acceleration, the effect is
small. We shall discuss this problem further in
Section 3.

Continuing for now in the standard framework,
Eq. (1.3) effectively eliminates one of the equations
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of (1.1). We may write

ds2 -s N -s--d7

_eat(l)-rods E+-vxH.c

Cancelling 7 dt/ds from both sides, one obtains

otd_e(1 )__(Tv) E+-vxH
m c

(1.6)

the starting point for the analysis of Longcope
and Sudan [3] and Karamabadi and Angelopoulis
[4]. A discrete map can be constructed from (1.6)
just as was done for the non-relativistic equations of
Zaslavskii et al. [1 ]. As we have remarked above, the
stochastic web is found at low energies; it deterio-
rates at high energies due to the factor.
The time component of (1.1) is

d2t e dt
=E.v (1.7)c
ds2 mc ds

or

d’7 e

dt mc2

Landau and Lifshitz [6] comment that this is a
reasonable result, since the "energy" of the particle
is ’ymc2, and eE-v is the work done on the particle
by the field. It is important for what we have to say
in the following that Eq. (1.7) is not interpretable in
terms of the geometry of Lorentz transformations.
The second derivative corresponds to an accelera-
tion of the observed time variable relative to the
"proper time"; the Lorentz transformation affects
only the first derivative, as in (1.4). We understand
this equation as an indication that the observed
time emerges as a dynamical variable. Mendonga
and Oliveira e Silva [8] have studied the relativistic
kicked oscillator by introducing a "super Hamil-
tonian", resulting in a symplectic mechanics of
Hamiltonian form, which recognizes that the
variables and E are dynamical variables of the

same type as x and p. This manifestly covariant
formulation is equivalent to that of Stueckelberg [9]
and Horwitz and Piron [10], which we shall discuss
in the next section.
We have computed solutions to the Lorentz

force equation for the case of the kicked oscillator
(see Fig. 1), using methods slightly different from
that of Longcope and Sudan [3] and Karimabadi
and Angelopoulis [4]. At low velocities, the stochas-
tic web found by Zaslovskii et al. [1] occurs; the
system diffuses in the stochastic region to
unbounded energy, as found by Karimabadi and
Angelopoulis [4]. The velocity of the particle is light
speed limited by the dynamical equations, in
particular, by the suppression of the action of the
electric field at velocities approaching the velocity
of light [5].
The rapid acceleration of the charged particle of

the kicked oscillator further suggests that radiation
can be an important correction to the motion. The
counterexample of Mashoon [11] was based on the
phenomenon of radiation. It has been shown by
Abraham [12], Dirac [13], Rohrlich [7] and Sokolov
and Ternov [14] that the relativistic Lorentz force
equation in the presence of radiation reaction is
given by the Lorentz-Abraham equation

where r0 e2/mc2, the classical electron radius, and
the dots refer here, as in (1.1), to derivatives with
respect to s. Note that from the identity (1.3), it
follows (by differentiation with respect to s) that

d
2,2* 0, 2, 2" + 2,2" 0, (1.10)

and hence (1.9) can be written as

2r d2(, )rn2" eF’"2 + --rn + 5c5c



80 L.P. HORWITZ AND Y. ASHKENAZY
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FIGURE A typical relativistic stochastic web.

The last factor on the right is a projection ortho-
gonal to 2/* (if 2## _2), and therefore (1.11) is
consistent with conservation of u#. Sokolov
and Ternov [14] state that this conservation law
follows automatically from (1.9), but it is appar-
ently only consistent. Radiation reaction therefore
also implies that the connection between proper
time and the Lorentz invariant interval may be
subject to question.
We have calculated the motion of the kicked

oscillator using the form (1.9) of the Lorentz force,
corrected for radiaton reaction, undoubtedly a

good approximation under certain conditions,
and will report on this in another paper in this
volume [15].

2 THE STUECKELBERG FORMULATION

As we have remarked above, Mendonga and
Oliveira e Silva [8] have used a "super Hamiltonian"
formulation to control the covariance of the
electromagnetically kicked oscillator. Their formu-
lation of the problem is equivalent to the theory

of Stueckelberg [9] and Horwitz and Piton [10];
we shall therefore use the notation of the latter
formulation. We first explain the physical basis
of this theory, and then derive sytematically
the covariant Lorentz force from a model
Hamiltonian.
The original thought experiment of Einstein [16]

discussed the generation of a sequence of signals in
a frame F, according to a clock imbedded in that
frame, and their detection by apparatus in a second
frame F’ in uniform motion with respect to the first.
The time of arrival of the signals in U must be
recorded with a clock of the same construction, or
there would be no basis for comparison of the
intervals between signals sent and those received. It
is essential to understand that the clocks in both F
and F run at the same rate. The relation of the
interval Ar between pulses emitted in F and the
interval between signals Ar received in U, accord-
ing to the (equivalent) clock in F is, from the special
theory of relativity, given by

At’ (2.1)
V/1- 732/c2



RELATIVISTIC DYNAMICAL SYSTEMS 81

This time interval, measured on a "standard" time
scale established by these equivalent clocks, is
identified to the interval At’, the time interval
between signals in the first frame, observed in the
second, and called simply the time by Einstein. One
sees that this Einstein time is subject to distortion
due to motion. In general relativity, it is subject to
distortion due to the gravitational field as well, and
in this case the distortion is called the gravitational
red-shift. We see that there are essentially two types

of time, one corresponding to the time intervals at
which signals are emitted, and the second, accord-
ing to the time intervals for which they are detected.
The first type, associated with signals that are pre-
programmed, is not a dynamical variable, but a

given sequence (as for the Newtonian time), and the
second, associated with the time at which signals
are observed (the Einstein time), is to be understood
as a dynamical variable both in classical and
quantum theories [17].

Stueckelberg [9] noted that for a free particle,
the signals emitted at regular intervals would be
recorded at regular intervals in a laboratory, since
the free particle would be in motion with respect to
the laboratory with the same relation as between F
and F’; the motion would then be recorded as a

straight line (within the light cone) on a space-time
diagram. In the presence of forces, however, this
line could curve. A sufficient deviation from the
straight line could make it begin to go backward in
time, and then the coordinate would no longer be
adequate to parametrize the motion. He therefore
introduced an invariant parameter r along the
curve, so that there would be a one-to-one
corrrespondence between this parameter and the
space-time coordinates. He proposed a Hamilto-
nian for a free particle of the form (the parameter
M provides a dimensional scale, for example, in
(2.5); it may also be considered as the Galilean
target mass for the variable (1/c) v/E2 cZp2)

K =PP" (2.2)
2M

for which the Hamilton equations (generalized)
give

dx OK
dr Op-- " (2.3)

It is clear that such a theory is intrinsically "off-
shell"; the variables p and pO E/c are independent,
as are the observables x and t, so that the phase
space is eight-dimensional. Dividing the equation
for the space indices by the equation for the time

index, one obtains

dx c2 p
(2.4)v-

precisely the Einstein formula for velocity. Further-
more, for the time component,

dt E
d--- Mc2; (2.5)

in case the particle is "on-shell",
Mc2 v/E2 C2ll2, (2.5) reads

so that

dt
dr V/1 2/C2’

coinciding with (2.1).
Stueckelberg [9] then considered adding a poten-

tial term V(x), to treat one-body mechanics, and the
gauge substitution p’-p’-eA*(x) for the treat-
ment of problems with electromagnetic interac-
tion. He proposed a quantum theory, for which
the Hamiltonian generates a Schr6dinger type
evolution

0
ih-(x) K(x). (2.6)

Horwitz and Piron [10] generalized the Stueckel-
berg theory for application to many-body pro-
blems. They assumed that the standard clocks
constitute a universal time, as for the Robertson-
Walker time (the Hubble time) of general relativity
[18], so that separate subsystems are correlated in
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this time. In this framework, it became possible to
solve, for example, the two-body problem in both
classical [10] and quantum theory [19].
The equations (1.1) are not generally derived

rigorously from a well-defined Lagrangian or
Hamiltonian. They result from a relativistic gen-
eralization of the non-relativistic Lorentz force
(which is derivable from a non-relativistic Hamil-

tonian). In the following, we shall derive these
equations rigorously from the Stueckelberg theory,
to emphasize more strongly the nature of the
problem we have discussed above, and to clarify
some important points.
The Hamiltonian form for a particle with electro-

magnetic interaction proposed by Stueckelberg
[9] is

K-- (’P’*- (e/c)AU(x))(P -(e/c)Au(x))
2M

(2.7)

The equation of motion for xi* is (we use the upper
dot from now on to denote differentiation with
respect to r, the universal invariant time)

OK (pU -(e/c)AU(x))2’* (2.8)Opt, M

and we see that then

dxdXU-drdr- -c2 (ds)2
(pU -(e/c)AU(x))(,p,- (e/c)A,,(x))

M
(2.9)

a quantity proportional to K, and therefore strictly
conserved. In fact, this quantity is the gauge
invariant mass-squared"

(p e-Ai*(x)) (p e-Ai,(x)) -m2c2, (2.10)
c

where we define m as the dynamical mass, a
constant of the motion. It then follows that

c2 (ds)
2

(d/)
2

(dx)
2 m2c2

c2 (2 11)TT TT TT M2

and, extracting a factor of (dt/dr),

dr) m2/M 2

1- v2,/c2" (2.12)

Up to a constant factor, the Stueckelberg theory
therefore maintains the identity (1.3).
We now derive the Lorentz force from the

Hamilton equation (this derivation has also been
carried out by Piron [20]). The Hamilton equations
for energy momentum are

l

aT Ox M -x /
e dx OA
c dr Ox (2.13)

Sincep*- M(dxi*/dr) + (e/c)A*, the left hand side is

(A* is evaluated on the particle world line x(r))

dp d2x* e OA* dx
dr

M
d7_2 - (2.14)cox dr

and hence

d2x,* e(oqA OA.’dxMdr--y-- 7 \xx] Ox"/I dr

or

d2xu e dx
M

dr2 c dr

where (0- O/Ox,)

(2.16)

The form of (2.15) is identical to that of (1.4), but
the temporal derivative is not with respect to the
variable s, the Minkowski distance along the
particle trajectory, but with respect to the universal
evolution parameter r.

One might argue that these should be equal, or at
least proportional by a constant, since the proper
time is equal to the time which may be read on a
clock on the particle in its rest frame. For an
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accelerating particle, however, one cannot transform
by a Lorentz transformation, other than instanta-

neosly, to the particle rest frame. It appears, there-
fore, that the formula (2.15) could have a more
reliable interpretation. The parameter of evolution
r does not require a Lorentz transformation to
achieve its meaning.

Since m2 is absolutely conserved by the Hamil-
tonian model (2.7), however, we have the constant
relation

m
ds dr, (2.17)

assuming the positive root (as we shall also do for
the root of (2.12); we do not wish to discuss the
antiparticle solutions here). Equation (2.15) can
therefore be written exactly as (1.1).
We see that the Stueckelberg formulation in

terms of an absolute time does not avoid the serious
problem of consistency that we have pointed out
before. It is clear that the difficulty is associated
with the fact that the Stueckelberg Hamiltonian, as
we have written it, preserves the mass-shell, and we
therefore understand the identity (1.3) as a mass-

shell relation.
Returning to the Stueckelberg-Schr6dinger

equation (2.6), we see that the gauge invariant
replacement p’-+p-(e/c)A#(x) is not adequate.
The additional derivative on the left hand side of
(2.6) must also be replaced by a gauge covariant
term. The possibility of r dependence in the gauge
transformation implies that the gauge fields them-
selves may depend on r. The gauge covariant
equation should then be [21]

0
-7(x)

-a# ---a’* ---as b(x),
c

(2.18)

where the fields as, c (0, 1, 2, 3, 5) with 05 O/Or,
change under the gauge transformation
exp i(eo/c)Ab according to as -+ as 0A. It fol-
lows from this equation, in a way analogous to

the Schr6dinger non-relativistic theory, that there is
a current

{@*(O#-iea#)-
-b(O’+ie ) }c

(2.19)

which, with

pr-j5 -Ir(x)2,

satisfies

Op. + O,j r OcJ O. (2.20)

We see that for 07 + 0 pointwise (f p(x) d4x for
any r),

Jr(x) j(x) dr (2.21)

satisfies

OJU(x) O, (2.22)

and can be a source for the standard Maxwell fields.
Since the field equations are linear, with sourcej,
one identifies the integral fdra#(x,r) (or, alter-
natively, the 0-mode) with the Maxwell potentials
[21]. It then follows that the so-called pre-Maxwell
fields a have dimension L -2, and that the charge
e0 has dimension L. The Lagrangian density for the
fields, quadratic in the field strengths (c,fl=
0,1,2,3,5)

which has dimension L-3, must carry a dimensional
parameter, say ,, and from the field equations

AOf eoj , one sees that the Maxwell charge is
e e0/A [21].
We understand the operator on the right hand

side of (2.18) as the quantum form of a classical
evolution function

(p eo )(p eo ) eoK--- ,---a# #---a# ---as. (2.23)
c c c
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It follows from the Hamilton equations that

dx/* pU- (eo/c)a
dr M (2.24)

and

dp eo dx Oa eo
dr c dr Ox/, c Oxu

Hence,

d2xu eodx"> eo(Oa5 0a*.)Mdr---5- c -rj +-- (2.25)
c \Ox Or /

If we define x5
-7, the last term can be written as

O*a5 05a -.f*, so that

d2x/- e0 dx", , eoru (2.26)Mdr--- c dr "f +c
Note that in this equation, the last term appears in
the place of the radiation correction terms of (1.9).
It plays the role of a generalized electric field.
Furthermore, we see that the relation (1.3), con-
sistent with the standard Maxwell theory, no longer
holds as an identity; the Stueckelberg form of this
result (2.11) in the presence of standard Maxwell
fields, where m2 is conserved, is also not generally
valid. We now have

dl
dr2

(dx* dx,’ eo dx’M
k, dr dr] c dr (2.27)

and does not vanish. The right hand side cor-

responds to mass transfer from the field to the
particle.
As for the method of Longcope and Sudan [3], we

may transform the derivatives with respect to r to
derivatives with respect to in the Eq. (2.26) as
follows. Defining dr/dr, it follows from (2.26)
that there is an additional term in the analogous
form of the rate of change of (we use lower case to
denote the pre-Maxwell field strengths),

d e0 (e.v) + e0 o0 (2.28)
dt Mc2 Mc2J

The space components of (2.26) can be written as

d2xJ eo vJ 1d/2 -- eJ +-c (v x h)j - (e. v)

eo+ Mc(2 [fi_ vJf]c (2.29)

To illustrate some of the properties of this system
of equations, we treat a simple example in Appen-
dix A. The effective additional forces include not
only the term associated with the work done by the
field, but additional terms associated specifically
with the r dependence of the fields, and the fifth

(scalar) field as. Given the fieldsf, Eqs. (2.28) and
(2.29) form a nonlinear coupled system ofequations
for the particle motion.

For a gauge (generalized Lorentz) in which

Oa 0, the field equations [21

become

_OOa ej,

where, classically, j/ ficl(54 (x X(T)), p (54(X
x(r)), and x =_ x/*(r) is the world line. The analysis
of these equations is in progress.

It has recently been shown that, with the help of
the Green’s functions for the wave equations of the
fields in x*, 7, that the self-reaction derived from the
contributions on the right hand side of (2.26) is

precisely of the form of the radiation reaction terms
in the Abraham-Lorentz equations (1.9) in the
limit that the theory is constrained to mass shell,
i.e., that (1.3) is enforced [22]. The off-shell
corrections provided by (2.26) make the system of
equations consistent, and should therefore provide
a basis for computing problems involving the
interaction of radiation with relativistic particles
in a consistent way.

3 CONCLUSIONS

We have shown that the standard relativistic
Lorentz force equations are not consistent since
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they imply the mass-shell constraint 25c/ --C2, a

relation that can be valid only for a charged particle
moving at constant velocity. The corrections are

generally small for short times or small accelera-
tions, and therefore calculations made with this
Lorentz force are, in many applications, quite
acceptable. However, for very large accelerations

(at large compared to c), they could become
inaccurate.
A consistent theory may be constructed from a

fully gauge covariant form of the Stueckelberg
[9,10] manifestly covariant dynamics, a theory
which introduces a fifth gauge field [21]. The
Lorentz invariant force equation derived from this
theory contains an additional term which enters in a
way analogous to the radiation reaction term in the
Abraham-Lorentz-Dirac equation (the self-reac-
tion force derived from this generalized equation in
the mass-shell limit coincides with the radiation
reaction term obtained by quite different methods
for the Abraham-Lorentz-Dirac equation; it con-
tains contributions from both terms on the right
hand side [22]).

It appears that the consistency of the classical
equations governing the interaction of charged
particles with electromagnetic radiation requires
that both the particles and the fields must be
permitted to move "off-shell", as in the vertices of
quantum field theory.

[5] We thank T. Goldman for a discussion of this point.
[6] L.D. Landau and E.M. Lifshitz, The Classical Theory of

Fields, 4th edn. (Pergamon Press., Oxford, 1975).
[7] F. Rohrlich, Classical Charged Particles, Addison Wesley,

Reading (1965).
[8] J.T. Mendonga and L. Oliveira e Silva, Phys. Rev E55, 1217

(1997).
[9] E.C.G. Stueckelberg, Helv. Phys. Acta 14, 322 (1941); 14,

588(1941).
[10] L.P. Horwitz and C. Piton, Helv. Phys. Acta 46, 316 (1973).
[11] B. Mashoon, Proc. VII Brazilian School of Cosmology and

Gravitation, Editions Fronti6res (1944); see also, Phys. Lett.
A 145, 147 (1990) and Phys. Rev. A 47, 4498 (1993). We
thank J. Beckenstein for bringing these references to our
attention.

[12] M. Abraham, Theorie der Elektrizitiit, vol. II, Springer,
Leipzig (1905). See Ref. [7] for a discussion of the origin of
these terms.

[13] P.A.M. Dirac, Proc. Roy. Soc. London Ser. A 167, 148
(1938).

[14] A.A. Sokolov and I.M. Ternov, Radiationfrom Relativistic
Electrons, Amer. Inst. of Phys. Translation Series, New
York (1986).

[15] Y. Ashkenazy and L.P. Horwitz, Discrete Dyn. Nature Soc.
(this volume).

[16] A. Einstein, Phys. Z. 12, 509 (1911). see also W. Pauli,
Theory of Relativity, Dover, N.Y. (1981).

[17] L.P. Horwitz, R.I. Arshansky and A. Elitzur, Found. Phys.
18, 1159 (1988).

[18] For example, S. Weinberg, Gravitation and Cosmology.
Principles and Applications of the General Theory of
Relativity, Wiley, N.Y. (1972).

[19] R.I. Arshansky and L.P. Horwitz, Jour. Math. Phys. 30(66),
380 (1989).

[20] C. Piton, personal communication.
[21] D. Saad, L.P. Horwitz and R.I. Arshansky, Found. ofPhys.

19, 1125 (1989); M.C. Land, N. Shnerb and L.P. Horwitz,
Jour. Math. Phys. 36, 3263 (1995); N. Shnerb and L.P.
Horwitz, Phys. Rev A 48, 4068 (1993).

[22] O. Oron and L.P. Horwitz (in preparation).

Acknowledgments

We thank J. Beckenstein, E. Comay and F.
Rohrlich for discussions.

References

[1] G.M. Zaslavskii, M.Yu. Zakharov, R.Z. Sagdeev,
D.A. Usikov and A.A. Chernikov, Zh. Eksp. Teor. Fiz 91,
500 (1986) [Sov. Phys. JEPT 64, 294 (1986)].

[2] V.I. Arnold’d, Dokl. Akad. Nauk. SSSR 159, 9 (1964).
[3] D.W. Longcope and R.N. Sudan, Phys. Rev. Lett. 59, 1500

(1987); see also, A.J. Lichtenberg and M.A. Lieberman,
Regular and Chaotic Dynamics, 2nd edn. (Springer-Verlag,
New York, 1992).

[4] H. Karimabadi and V. Angelopoulos, Phys. Rev. Lett. 62,
2342 (1989).

APPENDIX A

The purpose of the following example is to show
that in some cases the fifth field f; can cause an
effect which is very similar to the radiation effect
that is calculated by Lorentz-Dirac equation. The
fact that the mass is not conserved (the off-mass-
shell case) is equivalent, in the case of radiation, to
loss of energy through the radiation process: The
particular example that we treat here is that of a
charged particle in the presence of a uniform
magnetic field in z direction (B (0, 0, B0)).
As for the radiation reaction term of the

Lorentz-Dirac equation, we choose the fifth field
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term to be

f (c i, c, c2, 0), (A.1)

where the dot indicates derivative with respect to r.

The Lorentz force (2.26) can be written as a set of
differential equations,

d2t dt
(A.2)ecMdr2 7 dr

d2x eBo dy e dx
d-2 7d-7 + -c C2--,dr (A.3)

d2y eBo dx e dy
---+-C2-- (A.4)

d7-2 c dr c dr

The solution of Eq. (A.2) is

i= i0e’, (A.5)

where Ct ---(eC1)/(Mc). Using the complex coordi-
nate u 2 + i3?, Eqs. (A.3) and (A.4) can be written
as

du
d-7 -ifu + OZ2U (A.6)

As expected, the radiation effect is determined by
the constants c1 and c2.

It is possible to calculate the actual velocities by
dividing Eqs. (A.8) by i; this results in

dx ((dx) (dy) sin(fr)),cos(f) +
0dt

-e- -d-7 0

dy
dt ( ( ) (dy))cos(f)

dx
sin(fr) + -7 0

e-C*’r -- 0

(A.9)

where c o o2. Notice that when OZ OZ2, there
is apparent radiation (decrease of amplitude) as a
function of r but not as a function of t; in terms of
(which is redshifted) the particle appears to be
circling forever on the same circle. This remarkable
illustration is somewhat analogous to the phenom-
enon in which there is an infinite time required for a
particle to arrive at the Schwarzschild radius in the
Schwarzschild coordinate t, but a finite interval in
the proper time of the particle.
The magnitude of the (t-) velocity of the particle

is

v v0e-. (A.10)

where ct2=(eC2)/(Mc) and f=(eBo)/(Mc) (the
Larmor frequency). The solution is

u u0 exp(o2"r)e-ifr. (A.7)

Using u(r) one finds that,

2 e(2r (20 cos(T) q- J)O sin(fr)),
J) eC2r(--0 sin(fr) -+- 3)o cos(fr)).

(A.8)

When c where r0 1/(70f2) (70 is the radia-
tion constant of the Lorentz-Dirac equation),
Eq. (A.10) is exactly the solution which was ob-
tained using the Lorentz-Dirac equation [14,15].
This result is consistent with the approximations we
have made in constructing the example.

tit appears that for the usual form ofthe radiation reaction, in an example with the field magnitudes that we shall choose, the d2*/dr
term seems to be negligible, and the 2’2u may be approximated by a constant number; one is left with the 2u term. We choose the fifth
field term to have a similar structure. This choice is appropriate due to the close relation of these with the radiation reaction terms of the
usual theory [22].


