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We study a system of delay-differential equations modeling single-lane road traffic. The cars move
in a closed circuit and the system'’s variables are each car’s velocity and the distance to the car
ahead. For low and high values of traffic density the system has a stable equilibrium solution,
corresponding to the uniform flow. Gradually decreasing the density from high to intermediate
values we observe a sequence of supercritical Hopf bifurcations forming multistable limit cycles,
corresponding to flow regimes with periodically moving traffic jams. Using an asymptotic technique
we find approximately small limit cycles born at Hopf bifurcations and numerically preform their
global continuations with decreasing density. For sufficiently large delay the system passes to chaos
following the Ruelle—Takens—Newhouse scenalfiiimit cycles—two-tori—three-tori—chaotic
attractors. We find that chaotic and nonchaotic attractors coexist for the same parameter values and
that chaotic attractors have a broad multifractal spectrum2002 American Institute of Physics.
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In many dynamical systems modeled by delay-differential
equations(DDEs) the presence of delay can be the reason
for chaotic behavior. We consider a system of DDEs
which models road traffic. The number of equations in
the system is proportional to the number of involved cars
and can be arbitrarily high. The nondelay version of the
system has a number of limit cycles, corresponding to
different jammed flow regimes. For a sufficiently large
delay the system exhibits chaotic behavior. We find that
different chaotic and nonchaotic attractors coexist for the
same parameter values and that chaotic attractors are
multifractal.

I. INTRODUCTION

of DDEs which models road traffic. The order of the system
can be arbitrarily high depending on the number of cars and
is taken to be equal to 200.

The presence of chaotic phenomena in traffic models has
been reported before. Addison and L'Swbserved chaos in
a car-following model in which the leading car has an oscil-
lating velocity. Nagatai? described the chaotic jam phase in
a lattice hydrodynamic model derived from the optimal ve-
locity model*

Unlike these studies, our model is based on a high-order
system of autonomous delay-differential equations and cha-
otic effects are observed only for sufficiently large delay.

We find that the system passes to chaos according to the
following scenario: stable steady state—multistable limit

Delay-differential equations have been used to modefycles—two-tori—three-tori—chaotic attractors, which is
various natural phenomena including physiological controknown as the Ruelle—Takens—Newhouse route to chaos.

systemge.g., Ref. 1, neural networkge.g., Refs. 2, B op-
tical systemge.g., Refs. 4,  chemical reactionée.g., Refs.
6—8), economic processés.g., Ref. 9, mechanical systems
(e.g., Ref. 10, road traffic(e.g., Refs. 11, 12 and others. In

This scenario was observed, for example, for the first order
lkeda delay-differential equatichwhere the coexistence of
chaotic attractors was also reported. Transition to chaos from
two-tori was also found in other models of different natural

many studies it was found that time delay can be the reasofhenomena based on delay equations, for example, by tori
for chaos in dynamic systems. The presence of delayaoubling sequenc¥ and other routets~18

induced chaos have been reported in a number systems of
delay-differential equations, which are mostly of low order.
In this paper we study the transition to chaos in a syste

We generalize the model proposed and studied in Refs.

le—Zl by introducing time delay in the driver’s reaction. The

model is based on the assumption tNatars move a single

dAuthor to whom correspondence should be addressed. Electronic mai'.ane (Flg. 1) and thenth car motion is described by the
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delay-differential equation,
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The paper is organized as follows: In Sec. Il we perform
X a linear stability analysis and in Sec. Ill find approximately
small limit cycles born at Hopf bifurcations. Section IV is
devoted to global continuation of the cycles, study of their
bifurcations into two- and three-tori, transition to chaos, and
the analysis of properties of chaotic attractors. A summary is
given in Sec. V.

FIG. 1. Scheme of the model.

dZXn(t)_( AXﬂ(t—T)) Z%(—Avy(t—1)) II. LINEAR STABILITY ANALYSIS

dZ T\ 7 Axy(t—7)] 2(Ax,(t—7)—D) _ o _ _ o
Hopf bifurcation in delay-differential equations is a well

—KZ(vy(t=17) = vpe, (1) understood phenomenon. Many numerical techniques for
analysis of Hopf bifurcations have been developed, the three

wheren=1,...N, X, is the car’s coordinatey, is its veloc- ~most widely used being the integral averagffigthe

ity, A andk are the sensitivity parametei3, is the minimal ~ Lyapunov—Schmidt reductioft, and the Poincarerormal
distance between consecutive cars,, is the permitted ve- form **?4%These techniques are also applicable to multiple
locity, T is the safety time gap\xC=v,T+D is the safety Hopf bifurcations, where many pairs of complex eigenvalues
distance, AX,=Xn+1— Xy, Ava=vhs1—v,, and 7 is the gain positive real parts. The former two allow one to find
time delay.Z(x) =x0(x) (O is the Heaviside step functipn first approximations of small periodic solutions emerging at a
As in Refs. 19-21 we use the parameters Va|w%§ HOpf bifurcation. The teChnique described below is based on
=25(m/s), T=2(s), D=5(m), A=3(m/¥), and k a method proposed in Ref. 26 for ordinary differential equa-
=2(s'}) We assume thaN=100 and that the boundary tions and used in Ref. 21 for the analysis of the nondelay
conditions are periodic, i.e.Xy+1=X1+L, vNi1=U1, version of our model. Although it allows us to find higher
whereL is the road length. order approximations of the small limit cycle we find only

The first term in Eq.(]_) is dominant when the velocity the first approximation and use it for further numerical analy-
difference between consecutive cars is relatively small. IrfiS.
this case thenth car accelerates ihx,>Ax2 and brakes if System(1) has the following solution:
Ax,<Ax3. The second term plays an important role when A(1—Dp)+kv per 1
vL>v,. 1. Acar getting too close to a much slower car starts ApT K S DtTo
braking even before getting within the safety distadog, p0=10= per )
>Ax%. This term corresponds to the negative acceleration 1-Dp - 1
needed to reducfAv,| to 0 asAx,—D. The dissipative T P D+Tope
third term is a repulsive force acting when the velocity ex-
ceeds the permitted velocity. onn;l +0°%,

Nonlinear phenomena in the nondelay version of the "op

model were extensively studied in Ref. 21. It was found thaiyherep=N/L is the flow density. This solution corresponds
system(1) with 7=0 in variables fx,, vn) has many stable 5 the homogeneous flow, in which all cars have the same

limit cycles. Any such cycle corresponds to a flow regime inyg|ocity, and spaces between neighboring cars are all equal.
which all cars in the circuit are grouped into a number of  \yee introduce a new variable

equidistant moving dense regiorigams. Each cycle is
uniquely characterized by the total number of these regions. &n=Axn—1lp

It was foun&l that limit CyCleS emerge at Hopf bifurcations in Eq (1) This Change of variables maps the homogeneous

with p decreasing from high to intermediate values. For denflow solution (2) to zero. Its stability can be analyzed using
sities close to bifurcation values the cycles were found anate linearization of Eq(1),

lytically and traced numerically with a further decrease of .

density. &= —p&t-n+aé(t-D—&t-7), 3
In this paper we present the generalization of the mod

for the time delay case. Applying an approach similar to that

of Ref. 21 to the study of the Hopf bifurcation in delay-

differential equations we find that for sufficiently large delay

the system can behave in a complicated manner. Solving

system(1) numerically and performing the power spectrum if o<

analysis of the resulting time series, we show that periodic D+Tope’

solutions described above may bifurcate into two-tori, whichangp= ATp, q=Ap otherwise.

subsequently bifurcate into three-tori, which are later de-  po|iowing Refs. 14, 19, we look for a solution of E®)

stroyed forming chaotic attractors. We also measure the gemy the form,

eralized correlation dimension of a reconstructed chaotic at- | _

tractor and find that this attractor is multifractal. En=expia, n+At), 4

AT+KTvpert kD

. 2
ATp+k p

p=ATp+k,q=
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FIG. 2. Schematic plot of functioB(p). p'= 1/(D+Tvpe) , p"= 2/AT?,

where @,=(27/N)k («=0,...N—1) and\ is a complex
number. Substituting4) into Eq. (3) we obtain the equation

for \,

N+[pr—q(e'*—1)]e *=0.

The solutions olN equationg5) are the eigenvalues of sys-
tem (3). One of these solution§or k=0) is zero. Other
solutions are negative for sufficiently high and sufficiently
low values ofp, which indicates the stability of the homoge-
neous flow solution.

Safonov et al.

is conditioned by the fact that the right-hand sidéDfis not
continuously differentiablé’ With small delay this stability
condition does not change qualitatively.

As p increases from low value&lecreases from high
valuesg pairs of complex solutions of E€5) cross the imagi-
nary axis causing the formation of small periodic solutions
(Hopf bifurcations. We observe that due to the discontinuity
of p(p) andq(p) for low density values, the loss of stability
occurs abruptly with real parts of many pairs of complex
eigenvalues becoming positive together. But for high densi-
ties (and, respectively, low velocitigghe last term in the
right-hand side of Eq(1) is zero and functionp(p) and
d(p) are continuous. Our numerical analysis shows that
some pairs of complex eigenvalues cross the imaginary axis
consecutively as the density changes from high to interme-
diate values. We also find that cycles born at these Hopf
bifurcations are stable, i.e., the bifurcations are supercritical.

Ill. HOPF BIFURCATIONS, APPROXIMATE FINDING
OF SMALL LIMIT CYCLES

This section is devoted to the analytical approximation
of these periodic solutions for density values close to high
bifurcation values. For the study of bifurcations we propose
the following approach. Let Eq1) be written as

dx
gp = fx).x(t=7),p), (6)

For the nondelay version of the model the stability con-here X= (&1, W1, W, én W) TR and w,=v,,

dition was found® to be S(p) =p?/q>2, where

S(p)=

The function S(p) is plotted in Fig. 2. Its discontinuity
[which is a consequence of discontinuity fp) andq(p)]

1

p= .
D+Tvper

7 PSS )
p?A(AT+Kv perT + kD) D+ Toper

O o o o
O o o ©
o © o o
o P o o
o © o o

o O
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o O
o O

o

o

o © o o

© o © o

0
0
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—vg. The zero solution of6) corresponds to the homoge-
neous flow solution(2).
We can rewrite(6) as

d
G =M+ M(p)X(t=7) + T (1) X(t= 7),p)

+R(X(1),X(t=17),p), (7)
where

© o © o

0
—p(p)

is the linearization of6) near zerof,(x,p) are the second order terms aRdx,p) are the higher order terms.
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It is knowr?® that equation
dx
—=M1X(t)+M2X(t—T) (8)

dt

defines a strongly continuous semigroup in the space of contifuea®]— RN functions. AsA we denote the infinitesimal
generator of this semigroup.

If X is an eigenvalue ofd found from(5), then the corresponding eigenfunction defined etr,0] can be found as

1 a©
A+pe r TN+ pe M

eiakf}\f . quiakf}\T qe(Nfl)iakf}\T —\T T
la

(N-1)ia,

—a M| Qia, P
g\ t)=e € ')\+pe‘”""’e ,

Nrpe®

The system conjugate {®) (Ref. 28 has the form, Substituting (11)—(13) into Eg. (10) and equating the

terms with the same powers ofwe obtain thaty,(s) is a

d_X: —MIx(t)— MIx(t+ 7). 9) 27l w-periodic solution of(8). We can assigy;(s)= ¢4(S).
dt ! 2 Obviously,y,(s) can be found as aw-periodic solu-
Its eigenfunction corresponding to the eigenvaluis tion of
a,tNT a,+\T 2
h()\ t):e)\t _ qe' ' o, _ qezl ' eZiaK E:MlyZ(S)—i_ngZ(s_ T)
’ A L L A 1 AL §
—1ia T T +F S), S—1), f f 14
_qe(N Dia+) R _qe}‘ . T 2(@1(8), 1(S—7), 41, 71) (14
A ’ ’ N where
for A #0. Fo=puiM191(8) + u1M9@1(s—7)

Let for p=pg the generatord have a pair of imaginary
eigenvaluestiw. Then EQq.(8) has two 2r/w-periodic lin-
early independent solutiongq(t)=Reg(iw,t) and ¢,(t)

+7usMI01(s—7)— ¥1Bogi(s—7)

=Img(iw,t). Similarly, Eq. (9) has two 27/w-periodic lin-
early independent solutiong,(t) and #,(t), defined by
h(i w,t). Without loss of generality we can assume that

+f2(@1(S—17),po).

As shown in Ref. 29, for systerfil4) to have a periodic
solution it is necessary and sufficient that

27w
27 o (@i(1),;(1))dt= 5y,
wherei,j=1,2, §; is the Kronecker symbol an¢ ,-) de-

_, .. a
op ©
notes the scalar product R?N. :

Let p=po—z. Then M,(p)=My(po—&)=M3—&B, g |
+0(£?), whereM5=M(po) andB=aM,(po)/dp. System Eol
(7) can be rewritten as 3" i

dx 0 2

——=MX(t) +Mx(t—7)—eBx(t—17) -

dt

+fa(x(t=7),p0— )+ OL(|[x|[+]e])®]. (10

In order to find a small cycle we replaean (10) with a
new small parametar, such that®

SZC’yl'f'Cz’}/z'f'"' (11)
and introduce a new timg in the form,

s=t/(14+cuy+Cup+--+), (12

_3 1 1 1 1 J

wherey,,y,,... andwq,u2,... are yeunknown parameters. 0 20 40 60 80 100

We are looking for a small limit cycle of the systei0) n
in the form FIG. 3. Global continuation of the cycle witk=7 for 7=0. (a) w,, versus

&, (each dot corresponds to a fafhe innermost loop corresponds to the
X*(t)=y*(s)=cyq(s)+ c2y2(5)+--- , (13 analytically found small cycle near the Hopf bifurcation pojnt0.159.

The others represent the numerical continuation of the cycle with the step

wherey,,Y,,... areunknown 27/ w-periodic functions of. Ap=—0.01.(b) &, versusn [p is the same as for the last step(af].
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for i=1,2. This condition yields two equations with un-
known u, and y,. Therefore the first approximation of the

periodic solution of(10) is found as

*(t)=—
X*(t)=—
Y1

This solution has the period = (27/w) (1+ uq(/v41))

ea(t).

Safonov et al.

FIG. 4. Transition to chaos from the
periodic solution with k=15. N
=100, 7=0.59. Left column, depen-
dence of&,(t) for n=10; right col-
umn, corresponding power spectra.
@, (b p=0.1492; (c), (d »p

=0.1467; (), (f) p=0.1442;(g), (h)
p=0.1402; (i), (j) p=0.1387.

1
0.1

1
0.3 0.4

f - frequency

IV. GLOBAL CONTINUATION OF LIMIT CYCLES,
TRANSITION TO CHAOS

After the small limit cycle for density close to the Hopf

bifurcation value is found analytically, its global continuation

is performed numerically in the following manner. Fpr
~po— ¢ we take the analytically found approximate periodic
solution as an initial condition and solve E@) numerically.
After the solution has reached an attracting set, we decrease
p with a small step and solve the equations numerically
again, taking the results from the previous step as initial
conditions. This procedure is iterated further. In this way we

+0(e?). Higher approximations of the solution can be keep the track of the particular limit cycle. Results of the first
found using the described above algorithm. Note that accordstages of an execution of this algorithm are presented in Fig.
ing to (4) there exists an integerslk<N—1 such that the 3.

flow state corresponding to soluti¢hb) is a wave with the
wavelengthL/ « (in length unit$ or N/« (in number of cars

For the nondelay case we have not found any other at-
tracting sets than fixed points and limit cycles. With a small
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FIG. 5. (a) Time delay reconstruction of a two-torus. Parameters are the

same as in Figs.(d) and 4f). (b) Magnification of a part ofa).

delay the system’s behavior does not change qualitativel)f

Multifractal chaotic attractors 1011

RN X

11iie

IG. 7. (a) Results of measurement of the correlation dimendignfor
momentsy= —7---7 and embedding dimensiods=7---11 (bottom to top.

For higher values of- the cycles may undergo bifurcations the parameter values are the same as in Figsaad 4j). (b) Approximate

leading to transition to chaos.

f(«) fits for these data.

Figure 4 illustrates the transition to chaos from the cycle

with k=15 for 7=0.59 andN=100. The cycle was formed

-1
- = -0.8
—1 Y-
-1 -09 08 —07 —08 _os —0.4 gt

£, (-0

after a Hopf bifurcation ajp~0.1665. Figures @), 4(c),
4(e), 4(g), and 4i) show the dependence &f, for an arbi-
trarily chosenn ont for different values ofp. Presented in
Figs. 4b), 4(d), 4(f), 4(h), and 4j) are the corresponding
power spectra. Figurega@ and 4b) present the fully devel-
oped limit cycle. Figures #) and 4d) depict the loss of
stability by this cycle ap~0.1467. It can be seen from Fig.
4(d) that a new independent frequency which is approxi-
mately three times smaller than the original one appears.
This indicates a bifurcation of a two-torus from the cycle.
The system’s motion on the torus is quasiperiodic, which is
illustrated in Figs. 4e) and 4f). A three-dimensional time-
delay reconstruction of the two-torus far=15 is shown in
Fig. 5.

As we continue to decreagefurther we find that ap
~0.1402 one more independent frequency emerges, which is
nearly three times smaller than the previous one. This is an
indication of a bifurcation of a three-torus from the two-
torus. The motion on the three-torus is illustrated in Figs.
4(g) and 4h). This three-frequency quasiperiodic motion is
observed only over a limited time interval, after which it
becomes more complex. This indicates that the system is
driven to chaos by a small computational error according to
the Ruelle—Takens theoty.

With further decrease of density the motion becomes

FIG. 6. (a) Time delay reconstruction of a chaotic attractor. Parameters ar&haOt'C- The fu”y deveIOped chaotic regime Is shown in

the same as in Figs(i4 and 4j). (b) Magnification of a part ofa).

Figs. 4i) and 4j) and a three-dimensional time-delay recon-
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; ‘ generalized correlation dimensi5rof the attractor. To mea-

' sure the correlation dimension we reconstruct the attractor

k=10 from a single car time serieg,(t), taking consecutive
d-tuples of values x;=(&,(t;),&q(t;+AL),....&x(t+(d
—1)At)) asd-dimensional phase vectorsl (s called em-

p bedding dimensioit and At is the the first zero of the time
o_‘17 series autocorrelation functipn
' We consider the correlation function of the moment
M M

1 1
MZ szl O(r—|xi—x)

a-1)1q-1)
Cy(r)= }

x=12

where ® is the Heaviside step function arM is the time
5 series length, which should be sufficiently large. The corre-
— limit cycle two-torus three-torus/chaos lation dimensionD, is defined by the relatiom:q(r)~qu
. o . . (see Refs. 33, 34, and references therein for more defails
F_IG. 8 Asch_ematlc bifurcation diagram, s_howmg transition to f:haos fromfind the correlation dimensions numerically we use the algo-
six different limit cycles forr=0.59. The figure shows that limit cycles, .
two-tori, and chaotic attractors can coexist for the same parameter valudéthm proposed in Ref. 34.
(see the vertical dashed line Figure 7a) shows the results of measurementqffor
g=—7--7 andd=7---11. Fitting these data with a continu-

struction of the chaotic attractor is presented in Fig. 6. Since2t® functionD(q) for eachd, we find thef(a) function

as shown below, the attractor’s dimension>, the frag- according to the formula
ment of the trajectory used here is taken short enough notto f(«(q))=qa(q)—7(q),
fill a three-dimensional volume. The exponential decay of . _
the power spectrum in Fig.( is an additional sign of cha- Wz;erg];(q) (9-1)D(q) and a(q)=d=(q)/dq (see, g,
otic behavior of our system. This decay can be associate§ e
with the sharp decrease of the autocorrelation function a%ho
large scale, which is characteristic to chdds.

The most widely used characteristic of multifractality of
a chaotic set is thé(«) function which represents the spec-
trum of fractal dimension&!

To fit this function approximately we use the so-called
method of moment¥ The method is based on measuring the 600

As can be observed from Fig.(&, the values ofD
w weak convergence with growirgy especially ford
close to 0. Therefore, presented values of dimensions may be
underestimated. Nevertheless, the broadness off(lag

t [sec]

1 -
0 01 02 03 04 70 01 02 03 04
f - frequency

4
FIG. 9. (a—(e). Power spectra of the solutions originated form limit cycles ) }
with k=10 (p=0.1449), k=14 (p=0.1459), k=16 (p=0.1410), k=18 Oy 500 400 600 800 1000

(p=0.1303), andk=12 (p=0.1476), respectively, inmediately after the
limit cycle— two-torus bifurcation. The ratio of the new frequency to the old x [m]

one is close to a divisor ok (10, 7, 4, 9, and 3, respectively(f) Power

spectrum of the solution originated from the cycle witt=12 (p FIG. 10. Space—time diagrams of the traffic flow for 10 andp=0.1. ()
=0.1420) after the two-torus three-torus bifurcation. The frequencies ratio 7=0.4 (a limit cycle); (b) 7=0.59 (chao$. Each dot corresponds to a car.
is also close to an integer. Bold dots represent the trajectory of a single car.
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