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Multifractal chaotic attractors in a system of delay-differential equations
modeling road traffic
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We study a system of delay-differential equations modeling single-lane road traffic. The cars move
in a closed circuit and the system’s variables are each car’s velocity and the distance to the car
ahead. For low and high values of traffic density the system has a stable equilibrium solution,
corresponding to the uniform flow. Gradually decreasing the density from high to intermediate
values we observe a sequence of supercritical Hopf bifurcations forming multistable limit cycles,
corresponding to flow regimes with periodically moving traffic jams. Using an asymptotic technique
we find approximately small limit cycles born at Hopf bifurcations and numerically preform their
global continuations with decreasing density. For sufficiently large delay the system passes to chaos
following the Ruelle–Takens–Newhouse scenario~limit cycles–two-tori–three-tori–chaotic
attractors!. We find that chaotic and nonchaotic attractors coexist for the same parameter values and
that chaotic attractors have a broad multifractal spectrum. ©2002 American Institute of Physics.
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In many dynamical systems modeled by delay-differential
equations„DDEs… the presence of delay can be the reaso
for chaotic behavior. We consider a system of DDEs
which models road traffic. The number of equations in
the system is proportional to the number of involved cars
and can be arbitrarily high. The nondelay version of the
system has a number of limit cycles, corresponding to
different jammed flow regimes. For a sufficiently large
delay the system exhibits chaotic behavior. We find that
different chaotic and nonchaotic attractors coexist for the
same parameter values and that chaotic attractors are
multifractal.

I. INTRODUCTION

Delay-differential equations have been used to mo
various natural phenomena including physiological con
systems~e.g., Ref. 1!, neural networks~e.g., Refs. 2, 3!, op-
tical systems~e.g., Refs. 4, 5!, chemical reactions~e.g., Refs.
6–8!, economic processes~e.g., Ref. 9!, mechanical system
~e.g., Ref. 10!, road traffic~e.g., Refs. 11, 12!, and others. In
many studies it was found that time delay can be the rea
for chaos in dynamic systems. The presence of de
induced chaos have been reported in a number system
delay-differential equations, which are mostly of low orde

In this paper we study the transition to chaos in a sys

a!Author to whom correspondence should be addressed. Electronic
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of DDEs which models road traffic. The order of the syste
can be arbitrarily high depending on the number of cars
is taken to be equal to 200.

The presence of chaotic phenomena in traffic models
been reported before. Addison and Low12 observed chaos in
a car-following model in which the leading car has an osc
lating velocity. Nagatani13 described the chaotic jam phase
a lattice hydrodynamic model derived from the optimal v
locity model.14

Unlike these studies, our model is based on a high-or
system of autonomous delay-differential equations and c
otic effects are observed only for sufficiently large delay.

We find that the system passes to chaos according to
following scenario: stable steady state–multistable lim
cycles–two-tori–three-tori–chaotic attractors, which
known as the Ruelle–Takens–Newhouse route to chao15

This scenario was observed, for example, for the first or
Ikeda delay-differential equation,4 where the coexistence o
chaotic attractors was also reported. Transition to chaos f
two-tori was also found in other models of different natu
phenomena based on delay equations, for example, by
doubling sequence,10 and other routes.16–18

We generalize the model proposed and studied in R
19–21 by introducing time delay in the driver’s reaction. T
model is based on the assumption thatN cars move a single
lane ~Fig. 1! and thenth car motion is described by th
delay-differential equation,
il:
6 © 2002 American Institute of Physics
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d2xn~ t !

dt2
5AS 12

Dxn
0~ t2t!

Dxn~ t2t!
D 2

Z2~2Dvn~ t2t!!

2~Dxn~ t2t!2D !

2kZ~vn~ t2t!2vper!, ~1!

wheren51,...,N, xn is the car’s coordinate,vn is its veloc-
ity, A andk are the sensitivity parameters,D, is the minimal
distance between consecutive cars,vper is the permitted ve-
locity, T is the safety time gap,Dxn

05vnT1D is the safety
distance,Dxn5xn112xn , Dvn5vn112vn , and t is the
time delay.Z(x)5xQ(x) ~Q is the Heaviside step function!.
As in Refs. 19–21 we use the parameters valuesvper

525(m/s), T52(s), D55(m), A53(m/s2), and k
52(s21) We assume thatN5100 and that the boundar
conditions are periodic, i.e.,xN115x11L, vN115v1 ,
whereL is the road length.

The first term in Eq.~1! is dominant when the velocity
difference between consecutive cars is relatively small.
this case thenth car accelerates ifDxn.Dxn

0 and brakes if
Dxn,Dxn

0 . The second term plays an important role wh
vn@vn11 . A car getting too close to a much slower car sta
braking even before getting within the safety distanceDxn

.Dxn
0 . This term corresponds to the negative accelera

needed to reduceuDvnu to 0 asDxn→D. The dissipative
third term is a repulsive force acting when the velocity e
ceeds the permitted velocity.

Nonlinear phenomena in the nondelay version of
model were extensively studied in Ref. 21. It was found t
system~1! with t50 in variables (Dxn , vn) has many stable
limit cycles. Any such cycle corresponds to a flow regime
which all cars in the circuit are grouped into a number
equidistant moving dense regions~jams!. Each cycle is
uniquely characterized by the total number of these regio
It was found21 that limit cycles emerge at Hopf bifurcation
with r decreasing from high to intermediate values. For d
sities close to bifurcation values the cycles were found a
lytically and traced numerically with a further decrease
density.

In this paper we present the generalization of the mo
for the time delay case. Applying an approach similar to t
of Ref. 21 to the study of the Hopf bifurcation in dela
differential equations we find that for sufficiently large del
the system can behave in a complicated manner. Sol
system~1! numerically and performing the power spectru
analysis of the resulting time series, we show that perio
solutions described above may bifurcate into two-tori, wh
subsequently bifurcate into three-tori, which are later
stroyed forming chaotic attractors. We also measure the g
eralized correlation dimension of a reconstructed chaotic
tractor and find that this attractor is multifractal.

FIG. 1. Scheme of the model.
Downloaded 30 Sep 2002 to 128.197.42.78. Redistribution subject to AIP
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The paper is organized as follows: In Sec. II we perfo
a linear stability analysis and in Sec. III find approximate
small limit cycles born at Hopf bifurcations. Section IV
devoted to global continuation of the cycles, study of th
bifurcations into two- and three-tori, transition to chaos, a
the analysis of properties of chaotic attractors. A summar
given in Sec. V.

II. LINEAR STABILITY ANALYSIS

Hopf bifurcation in delay-differential equations is a we
understood phenomenon. Many numerical techniques
analysis of Hopf bifurcations have been developed, the th
most widely used being the integral averaging,22 the
Lyapunov–Schmidt reduction,23 and the Poincare´ normal
form.16,24,25These techniques are also applicable to multi
Hopf bifurcations, where many pairs of complex eigenvalu
gain positive real parts. The former two allow one to fin
first approximations of small periodic solutions emerging a
Hopf bifurcation. The technique described below is based
a method proposed in Ref. 26 for ordinary differential equ
tions and used in Ref. 21 for the analysis of the nonde
version of our model. Although it allows us to find highe
order approximations of the small limit cycle we find on
the first approximation and use it for further numerical ana
sis.

System~1! has the following solution:

vn
05v05H A~12Dr!1kvper

ArT1k
, r<

1

D1Tvper
,

12Dr

rT
, r.

1

D1Tvper
,

~2!

xn
05

n21

r
1v0t,

wherer5N/L is the flow density. This solution correspond
to the homogeneous flow, in which all cars have the sa
velocity, and spaces between neighboring cars are all eq

We introduce a new variable

jn5Dxn21/r

in Eq. ~1!. This change of variables maps the homogene
flow solution ~2! to zero. Its stability can be analyzed usin
the linearization of Eq.~1!,

j̈n
0~ t !52pj̇n

0~ t2t!1q~jn11
0 ~ t2t!2jn

0~ t2t!!, ~3!

where

p5ATr1k,q5
AT1kTvper1kD

ATr1k
•Ar2

if r<
1

D1Tvper
,

andp5ATr, q5Ar otherwise.
Following Refs. 14, 19, we look for a solution of Eq.~3!

in the form,

jn
05exp~ iakn1lt !, ~4!
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



-

tly
-

n

ns
ty
y
ex
si-

hat
axis

e-
opf
cal.

on
igh
se

-

1008 Chaos, Vol. 12, No. 4, 2002 Safonov et al.
where ak5(2p/N)k (k50,...,N21) and l is a complex
number. Substituting~4! into Eq. ~3! we obtain the equation
for l,

l21@pl2q~eiak21!#e2lt50. ~5!

The solutions ofN equations~5! are the eigenvalues of sys
tem ~3!. One of these solutions~for k50) is zero. Other
solutions are negative for sufficiently high and sufficien
low values ofr, which indicates the stability of the homoge
neous flow solution.

For the nondelay version of the model the stability co
dition was found19 to beS(r)5p2/q.2, where

S~r!5H ~ATr1k!3

r2A~AT1kvperT1kD!
, r<

1

D1Tvper
,

ArT2, r>
1

D1Tvper
.

The function S(r) is plotted in Fig. 2. Its discontinuity
@which is a consequence of discontinuity ofp(r) andq(r)]

FIG. 2. Schematic plot of functionS(r). r85 1/(D1Tvper) , r95 2/AT2.
Downloaded 30 Sep 2002 to 128.197.42.78. Redistribution subject to AIP
-

is conditioned by the fact that the right-hand side of~1! is not
continuously differentiable.27 With small delay this stability
condition does not change qualitatively.

As r increases from low values~decreases from high
values! pairs of complex solutions of Eq.~5! cross the imagi-
nary axis causing the formation of small periodic solutio
~Hopf bifurcations!. We observe that due to the discontinui
of p(r) andq(r) for low density values, the loss of stabilit
occurs abruptly with real parts of many pairs of compl
eigenvalues becoming positive together. But for high den
ties ~and, respectively, low velocities! the last term in the
right-hand side of Eq.~1! is zero and functionsp(r) and
q(r) are continuous. Our numerical analysis shows t
some pairs of complex eigenvalues cross the imaginary
consecutively as the density changes from high to interm
diate values. We also find that cycles born at these H
bifurcations are stable, i.e., the bifurcations are supercriti

III. HOPF BIFURCATIONS, APPROXIMATE FINDING
OF SMALL LIMIT CYCLES

This section is devoted to the analytical approximati
of these periodic solutions for density values close to h
bifurcation values. For the study of bifurcations we propo
the following approach. Let Eq.~1! be written as

dx

dt
5 f ~x~ t !,x~ t2t!,r!, ~6!

where x5(j1 ,w1 ,j2 ,w2 ,...,jN ,wN)TPR2N and wn5vn

2v0 . The zero solution of~6! corresponds to the homoge
neous flow solution~2!.

We can rewrite~6! as

dx

dt
5M1x~ t !1M2~r!x~ t2t!1 f 2~x~ t !,x~ t2t!,r!

1R~x~ t !,x~ t2t!,r!, ~7!

where
M15S 0 21 0 1 0 0 ... 0 0

0 0 0 0 0 0 ... 0 0

0 0 0 21 0 1 ... 0 0

0 0 0 0 0 0 ... 0 0

. . . . . . . . .

0 1 0 0 0 0 ... 0 21

0 0 0 0 0 0 ... 0 0

D ,

M2~r!5S 0 0 0 0 0 ... 0 0

q~r! 2p~r! 0 0 0 ... 0 0

0 0 0 0 0 ... 0 0

0 0 q~r! 2p~r! 0 ... 0 0

. . . . . . . .

0 0 0 0 0 ... 0 0

0 0 0 0 0 ... q~r! 2p~r!

D
is the linearization of~6! near zero,f 2(x,r) are the second order terms andR(x,r) are the higher order terms.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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It is known28 that equation

dx

dt
5M1x~ t !1M2x~ t2t! ~8!

defines a strongly continuous semigroup in the space of continuous@2t,0#→R2N functions. AsA we denote the infinitesima
generator of this semigroup.

If l is an eigenvalue ofA found from ~5!, then the corresponding eigenfunction defined on@2t,0# can be found as

g~l,t !5e2ltS eiak,
qeiak2lt

l1pe2lt ,e2iak,
qe2iak2lt

l1pe2lt ,...,e(N21)iak,
qe(N21)iak2lt

l1pe2lt ,1,
qe2lt

l1pe2ltD T

.

.

e

step
The system conjugate to~8! ~Ref. 28! has the form,

dx

dt
52M1

Tx~ t !2M2
Tx~ t1t!. ~9!

Its eigenfunction corresponding to the eigenvaluel is

h~l,t !5eltS 2
qeiak1lt

l
,eiak,2

qe2iak1lt

l
,e2iak,...,

2
qe(N21)iak1lt

l
,e(N21)iak,2

qelt

l
,1D T

for lÞ0.
Let for r5r0 the generatorA have a pair of imaginary

eigenvalues6 iv. Then Eq.~8! has two 2p/v-periodic lin-
early independent solutionsw1(t)5Reg(iv,t) and w2(t)
5Im g(iv,t). Similarly, Eq. ~9! has two 2p/v-periodic lin-
early independent solutionsc1(t) and c2(t), defined by
h( iv,t). Without loss of generality we can assume that

v

2p E
0

2p/v

^w i~ t !,c j~ t !&dt5d i j ,

where i , j 51,2, d i j is the Kronecker symbol and̂•,•& de-
notes the scalar product inR2N.

Let r5r02«. Then M2(r)5M2(r02«)5M2
02«B2

1O(«2), whereM2
05M2(r0) andB5]M2(r0)/]r. System

~7! can be rewritten as

dx

dt
5M1x~ t !1M2

0x~ t2t!2«Bx~ t2t!

1 f 2~x~ t2t!,r02«!1O@~ uuxuu1u«u!3#. ~10!

In order to find a small cycle we replace« in ~10! with a
new small parameterc, such that26

«5cg11c2g21¯ ~11!

and introduce a new times in the form,

s5t/~11cm11c2m21¯ !, ~12!

whereg1 ,g2 ,... andm1 ,m2 ,... are yetunknown parameters
We are looking for a small limit cycle of the system~10!

in the form

x* ~ t !5y* ~s!5cy1~s!1c2y2~s!1¯ , ~13!

wherey1 ,y2 ,... areunknown 2p/v-periodic functions ofs.
Downloaded 30 Sep 2002 to 128.197.42.78. Redistribution subject to AIP
Substituting ~11!–~13! into Eq. ~10! and equating the
terms with the same powers ofc we obtain thaty1(s) is a
2p/v-periodic solution of~8!. We can assigny1(s)[w1(s).

Obviously,y2(s) can be found as a 2p/v-periodic solu-
tion of

dy2

ds
5M1y2~s!1M2

0y2~s2t!

1F2~w1~s!,w1~s2t!,m1 ,g1!, ~14!

where

F25m1M1w1~s!1m1M2
0w1~s2t!

1tm1M2
0w18~s2t!2g1B2w1~s2t!

1 f 2~w1~s2t!,r0!.

As shown in Ref. 29, for system~14! to have a periodic
solution it is necessary and sufficient that

FIG. 3. Global continuation of the cycle withk57 for t50. ~a! wn versus
jn ~each dot corresponds to a car!. The innermost loop corresponds to th
analytically found small cycle near the Hopf bifurcation pointr'0.159.
The others represent the numerical continuation of the cycle with the
Dr520.01. ~b! jn versusn @r is the same as for the last step of~a!#.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 4. Transition to chaos from the
periodic solution with k515. N
5100, t50.59. Left column, depen-
dence ofjn(t) for n510; right col-
umn, corresponding power spectra
~a!, ~b! r50.1492; ~c!, ~d! r
50.1467; ~e!, ~f! r50.1442; ~g!, ~h!
r50.1402; ~i!, ~j! r50.1387.
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2p/v

^F2~w1~s!,w1~s2t!,m1 ,g1!,c i~s!&ds50

for i 51,2. This condition yields two equations with un
known m1 andg1 . Therefore the first approximation of th
periodic solution of~10! is found as

x* ~ t !5
«

g1
w1~ t !. ~15!

This solution has the periodT5 (2p/v) (11m1 («/g1))
1O(«2). Higher approximations of the solution can b
found using the described above algorithm. Note that acc
ing to ~4! there exists an integer 1<k<N21 such that the
flow state corresponding to solution~15! is a wave with the
wavelengthL/k ~in length units! or N/k ~in number of cars!.
Downloaded 30 Sep 2002 to 128.197.42.78. Redistribution subject to AIP
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IV. GLOBAL CONTINUATION OF LIMIT CYCLES,
TRANSITION TO CHAOS

After the small limit cycle for density close to the Hop
bifurcation value is found analytically, its global continuatio
is performed numerically in the following manner. Forr
'r02« we take the analytically found approximate period
solution as an initial condition and solve Eq.~1! numerically.
After the solution has reached an attracting set, we decre
r with a small step and solve the equations numerica
again, taking the results from the previous step as ini
conditions. This procedure is iterated further. In this way
keep the track of the particular limit cycle. Results of the fi
stages of an execution of this algorithm are presented in
3.

For the nondelay case we have not found any other
tracting sets than fixed points and limit cycles. With a sm
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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delay the system’s behavior does not change qualitativ
For higher values oft the cycles may undergo bifurcation
leading to transition to chaos.

Figure 4 illustrates the transition to chaos from the cy
with k515 for t50.59 andN5100. The cycle was formed

FIG. 5. ~a! Time delay reconstruction of a two-torus. Parameters are
same as in Figs. 4~e! and 4~f!. ~b! Magnification of a part of~a!.

FIG. 6. ~a! Time delay reconstruction of a chaotic attractor. Parameters
the same as in Figs. 4~i! and 4~j!. ~b! Magnification of a part of~a!.
Downloaded 30 Sep 2002 to 128.197.42.78. Redistribution subject to AIP
ly.

e

after a Hopf bifurcation atr'0.1665. Figures 4~a!, 4~c!,
4~e!, 4~g!, and 4~i! show the dependence ofjn for an arbi-
trarily chosenn on t for different values ofr. Presented in
Figs. 4~b!, 4~d!, 4~f!, 4~h!, and 4~j! are the corresponding
power spectra. Figures 4~a! and 4~b! present the fully devel-
oped limit cycle. Figures 4~c! and 4~d! depict the loss of
stability by this cycle atr'0.1467. It can be seen from Fig
4~d! that a new independent frequency which is appro
mately three times smaller than the original one appe
This indicates a bifurcation of a two-torus from the cyc
The system’s motion on the torus is quasiperiodic, which
illustrated in Figs. 4~e! and 4~f!. A three-dimensional time-
delay reconstruction of the two-torus fork515 is shown in
Fig. 5.

As we continue to decreaser further we find that atr
'0.1402 one more independent frequency emerges, whic
nearly three times smaller than the previous one. This is
indication of a bifurcation of a three-torus from the tw
torus. The motion on the three-torus is illustrated in Fi
4~g! and 4~h!. This three-frequency quasiperiodic motion
observed only over a limited time interval, after which
becomes more complex. This indicates that the system
driven to chaos by a small computational error according
the Ruelle–Takens theory.15

With further decrease of density the motion becom
chaotic. The fully developed chaotic regime is shown
Figs. 4~i! and 4~j! and a three-dimensional time-delay reco

e

re

FIG. 7. ~a! Results of measurement of the correlation dimensionDq for
momentsq527¯7 and embedding dimensionsd57¯11 ~bottom to top!.
The parameter values are the same as in Figs. 4~i! and 4~j!. ~b! Approximate
f (a) fits for these data.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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1012 Chaos, Vol. 12, No. 4, 2002 Safonov et al.
struction of the chaotic attractor is presented in Fig. 6. Sin
as shown below, the attractor’s dimension is.3, the frag-
ment of the trajectory used here is taken short enough no
fill a three-dimensional volume. The exponential decay
the power spectrum in Fig. 4~j! is an additional sign of cha
otic behavior of our system. This decay can be associa
with the sharp decrease of the autocorrelation function
large scale, which is characteristic to chaos.30

The most widely used characteristic of multifractality
a chaotic set is thef (a) function which represents the spe
trum of fractal dimensions.31

To fit this function approximately we use the so-call
method of moments.32 The method is based on measuring t

FIG. 8. A schematic bifurcation diagram, showing transition to chaos fr
six different limit cycles fort50.59. The figure shows that limit cycles
two-tori, and chaotic attractors can coexist for the same parameter va
~see the vertical dashed line!.

FIG. 9. ~a!–~e!. Power spectra of the solutions originated form limit cycl
with k510 (r50.1449),k514 (r50.1459),k516 (r50.1410),k518
(r50.1303), andk512 (r50.1476), respectively, immediately after th
limit cycle→two-torus bifurcation. The ratio of the new frequency to the o
one is close to a divisor ofk ~10, 7, 4, 9, and 3, respectively!. ~f! Power
spectrum of the solution originated from the cycle withk512 (r
50.1420) after the two-torus→three-torus bifurcation. The frequencies rat
is also close to an integer.
Downloaded 30 Sep 2002 to 128.197.42.78. Redistribution subject to AIP
e,

to
f

ed
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generalized correlation dimension33 of the attractor. To mea-
sure the correlation dimension we reconstruct the attra
from a single car time seriesjn(t), taking consecutive
d-tuples of values xi5(jn(t i),jn(t i1Dt),...,jn(t i1(d
21)Dt)) as d-dimensional phase vectors (d is called em-
bedding dimension33 andDt is the the first zero of the time
series autocorrelation function!.

We consider the correlation function of the momentq,

Cq~r !5F 1

M (
i 51

M F 1

M (
j 51

M

Q~r 2uxi2xj u!Gq21G1/~q21!

,

whereQ is the Heaviside step function andM is the time
series length, which should be sufficiently large. The cor
lation dimensionDq is defined by the relationCq(r );r Dq

~see Refs. 33, 34, and references therein for more details!. To
find the correlation dimensions numerically we use the al
rithm proposed in Ref. 34.

Figure 7~a! shows the results of measurements ofDq for
q527¯7 andd57¯11. Fitting these data with a continu
ous functionD(q) for eachd, we find the f (a) function
according to the formula

f ~a~q!!5qa~q!2t~q!,

where t(q)5(q21)D(q) and a(q)5dt(q)/dq ~see, e.g.,
Ref. 31!.

As can be observed from Fig. 7~a!, the values ofDq

show weak convergence with growingq, especially ford
close to 0. Therefore, presented values of dimensions ma
underestimated. Nevertheless, the broadness of thef (a)

es

FIG. 10. Space–time diagrams of the traffic flow fork510 andr50.1. ~a!
t50.4 ~a limit cycle!; ~b! t50.59 ~chaos!. Each dot corresponds to a ca
Bold dots represent the trajectory of a single car.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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curves for eachd ~especially forq<0) enables us to claim
the multifractality of the considered attractor.

The chaoticity of the attractor can also be characteri
by the existence of positive Lyapunov exponents. T
Kaplan–Yorke conjecture connects the Lyapunov dimens
DL with the Lyapunov exponents spectrum by

DL5 j 1(
i 51

j

l i /ul j 11u,

where the Lyapunov exponents are sorted in decreasing o
(l1.l2.¯.ln) and j is defined by the conditions
( i 51

j l i.0 and( i 51
j 11l i,0. SinceDL>D2 ,35 our system has

at least one positive Lyapunov exponent. A direct calculat
of the largest Lyapunov exponent36 and the Lyapunov expo
nents spectrum37 yields three positive Lyapunov exponen
of order 1024. Because these exponents are small and c
to each other, they cannot be used to accurately estimateDL .

We perform similar studies of transition to chaos fro
several other cycles~with different k!. Figure 8 is a sche-
matic bifurcation diagram showing that the bifurcations
the same type occur at different density values for differ
cycles. It also shows that attractors of different types~includ-
ing chaotic and nonchaotic ones! coexist for the same param
eter values.

Another important observation is that the ratio of the o
frequency to the new one at the limit cycle→torus bifurca-
tion is close to a divisor of the correspondingk. For ex-
ample, it is close to 10 fork510 @Fig. 9~a!#, 7 for k514
@Fig. 9~b!#, 4 for k516 @Fig. 9~c!#, 9 for k518 @Fig. 9~d!#,
and 3 for k512 @Fig. 9~e!#. At the two-torus→three-torus
bifurcation the ratio between the new and the previous
quency is also close to an integer, which is different
different tori. For example, Fig. 9~f! shows that fork512
this ratio is close to 4, while fork515 it is nearly 3@Fig.
4~h!#.

Figure 10 demonstrates how the introduction of de
into the model equations affects the traffic flow generated
the model. Presented on the figure are space–time diag
for a periodic and a chaotic regimes. Obviously, in the la
case the flow is more complex. It is well known that com
plexity of real traffic is due to various heterogeneities~of
driver behaviors, vehicles, the road, etc.!. Our model, despite
not taking all these factors into account, is, nevertheless,
to demonstrate irregular behavior attributed only to the de
in the driver’s reaction.

V. SUMMARY

A model of single-lane road traffic based on a system
delay-differential equations is studied. It is found that t
presence of time delay accounts for the chaotic behavio
the system. The transition to chaos is found to follow t
Ruelle–Takens–Newhouse scenario, which is stable ste
state–two-dimensional tori–three-dimensional tori–chao
attractors. The motion on the tori is periodic or quasiperio
and many different tori and chaotic attractors coexist for
same parameter values. We also find that chaotic attrac
have multifractal properties.
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