
PCG: A Foothold Selection Algorithm for

Spider Robot Locomotion in 2D Tunnels

Amir Shapiro and Elon Rimon
Technion, Israel Institute of Technology

amirs@tx.technion.ac.il, elon@robby.technion.ac.il

Abstract This paper presents an algorithm,

called PCG, for planning the foothold positions of
spider-like robots in planar tunnels bounded by piece-

wise linear walls. The paper focuses on 3-limb robots,
but the algorithm generalizes to robots with a higher

number of limbs. The input to the PCG algorithm is

a description of a tunnel having an arbitrary piece-

wise linear geometry, a lower bound on the amount

of friction at the contacts, as well as start and target

foothold positions. Using efficient convex program-

ming techniques, the algorithm approximates the pos-

sible foothold positions as a collection of cubes in con-

tact c-space. A graph structure induced by the cubes

has the property that its edges represent feasible mo-

tion between neighboring sets of 3-limb postures. This
motion is realized by lifting one limb while the other

two limbs brace the robot against the tunnel walls.

A shortest-path search along the graph yields a 3-2-3
gait pattern that moves the robot from start to tar-

get using a minimum number of foothold exchanges.

Simulation results demonstrate the PCG algorithm in

a tunnel environment.

1 Introduction
Many robotic tasks are suited for legged robots that
interact with the environment in order to achieve
stable locomotion. For example, surveillance of col-
lapsed structures for survivors [13], inspection and
testing of complex pipe systems [9], and maintenance
of hazardous structures such as nuclear reactors [11].
Our ultimate goal is to develop spider-like mecha-
nisms that navigate quasistatically in such complex
environments. A spider-like robot consists of k artic-
ulated limbs attached to a central body, such that
each limb ends with a footpad (Figure 1). This pa-
per presents an algorithm called PCG (short for Par-
titioned Cubes Gaiting), for planning the foothold
positions of spider-like robots in planar tunnel envi-
ronments.

In our setup, the robot moves by exerting forces
on tunnel walls which are mounted on a horizontal
plane. The robot is supported against gravity by
frictionless contacts mounted under the mechanism
(Figure 1). In general, a spider-like robot must have

at least three limbs in order to move quasistatically in
a planar tunnel1. At every instant the spider braces
against the tunnel walls in static equilibrium using
two or three limbs. During a 2-limb posture the spi-
der moves its free limb to the next foothold position.
During a 3-limb posture the spider changes its inter-
nal geometry in preparation for the next limb lifting.
The PCG algorithm is presented in the context of
such 3-limb robots, but we also discuss the general-
ization of the algorithm to higher number of limbs.

We make the following assumptions. First, we
assume piecewise linear tunnel walls with known ge-
ometry. Second, the entire tunnel lies in a horizontal
plane so that gravity is excluded. Third, each limb
can only push against the environment, using its foot-
pad. Fourth, each footpad contacts the tunnel walls
via a frictional point contact, with a known lower
bound on the coefficient of friction. The ith foothold
position is parametrized by si∈ [0, L], where L is the
total length of the tunnel walls. The footholds of the
entire k-limb mechanism are parametrized by con-
tact c-space, (s1, . . . , sk) ∈ [0, L]k (Figure 2). Last,
we lump the kinematic structure of the robot into
a single parameter called the robot radius. This pa-
rameter, denoted R, is the length of a fully stretched
limb. The algorithm uses R to ensure that the se-
lected footholds can be reached from the robot’s cen-
tral base.

Relationship to prior work. The use of con-
tact c-space is common in the grasp planning litera-
ture. In particular, Nguyen [8] and Ponce et al. [10]
introduced the notion of contact independent regions.
Given a k-finger grasp of a planar object, a contact
independent region is a k-dimensional cube in con-
tact c-space aligned with the coordinate axes. This
cube represents k segments along the object’s bound-
ary, such that any placement of the k contacts inside
these segments generates an equilibrium grasp. We
use a similar notion in our representation of the feasi-
ble footholds as cubes in contact c-space. Each cube
represents three segments along the tunnel walls, such
that any placement of three footpads inside these seg-

1In quasistatic motion inertial effects due to moving parts

of the robot are kept small relative to the forces of interaction

between the robot and the environment.

1



Figure 1: Top view of a 3-limb spider robot moving
in a planar tunnel environment.

ments results in a feasible 3-limb equilibrium posture.
Other relevant grasping papers discuss finger gaiting.
Hong et al. [3] describe 3 and 4-finger gaits for planar
objects. However, they assume that once an object is
grasped, the fingers may not change their order along
the object’s boundary. In contrast, we impose no re-
striction on the order of the footpads along the tunnel
walls. Goodwine et al. [15] investigate the stratifi-
cation of the full configuration space associated with
finger gaiting. While their approach is justifiable for
the design of feedback control laws, motion planning
can be carried out in lower dimensional spaces such
as contact c-space.

In the multi-legged locomotion literature, Bois-
sonnat et al. [1] discuss a motion planning algorithm
for multi-legged robots that move in a gravitational
field over a flat terrain. Much like our approach,
they lump the kinematic structure of the robot into a
reachability radius, and compute a sequence of stable
stances from start to target. Our work differs from
the work of Boissonnat et al. in two fundamental
ways. First, we consider motions where the robot sta-
bly braces against tunnel walls rather than maintain-
ing stable stances against gravity. Second, they allow
the legs to contact only discrete point sites, while we
allow arbitrary footpad placement along the tunnel
walls. Other papers that consider motion planning
for multi-legged robots are [2, 4, 6, 7, 14].

This paper focuses on the portion of the PCG
algorithm that plans a sequence of footholds in con-
tact c-space. In Section 2 we characterize the feasible
3-limb postures in contact c-space. These postures
must be reachable, form stable equilibria, and sat-
isfy a condition that allows their inclusion in a 3-2-3
gait pattern. In Section 3 we establish a key result,
that the feasible 3-limb postures are a union of con-
vex sets in contact c-space. It is also shown in this
section that the approximation of a convex set by
p maximal cubes is a convex optimization problem.
In Section 4 we describe the PCG algorithm. The

(a) (b)

x(s3) x(s2)

x(s1) s1

s2

s3

(s1,s2,s3)

s=0

s
s

ss

s=L

Wi

Wj
Wk

Ii

Ij
Ik

limb 1

limb 2
limb 3

Figure 2: (a) A 3-limb robot in a planar tunnel, and
(b) the parametrization of its contact c-space.

algorithm approximates the convex sets by contact
independent cubes, then searches a graph induced by
the cubes for the shortest sequence of footholds from
start to target. In Section 5 we run the PCG algo-
rithm on a simulated tunnel environment. Finally, in
the concluding section we discuss the generalization
of the algorithm to higher number of limbs.

2 The Feasible 3-Limb Postures

In this section we characterize the feasible 3-limb
postures as inequality constraints in contact c-space.
The feasible 3-limb postures must form stable equilib-
ria, be reachable, and satisfy the following gait feasi-
bility condition. This condition requires that a 3-limb
posture will contain two distinct 2-limb postures—
one for entering the 3-limb posture by establishing a
new foothold, and one for leaving the 3-limb posture
by releasing some other foothold.

Next we introduce notation that would allow us
to write the above conditions as inequalities in con-
tact c-space. LetW1, . . . ,Wn denote the tunnel walls,
and let I1, . . . , In be the partition of [0, L] into in-
tervals that parametrize the individual walls (Fig-
ure 2). Let ti and ni denote the unit tangent and
unit normal to the ith wall. Points along Wi are
given by x(s) = xi + sti, where xi is the initial ver-
tex of Wi and s ∈ Ii. Given a contact force f i,
f t

i = f i · ti and fn
i = f i ·ni are the tangent and

normal components of f i. The friction cone at a
contact along the ith wall, denoted FCi, is given by
FCi = {f i : f

n
i ≥ 0 and − µfn

i ≤ f t
i ≤ µfn

i }, where
µ is the coefficient of friction.

Gait feasibility requires that a 3-limb will con-
tain two distinct 2-limb postures. As a preparation,
we review the conditions for equilibrium and stabil-
ity of 2-limb postures. A 2-limb mechanism forms
an equilibrium posture if the line segment connect-
ing the two contacts lies inside the two friction cones
[8]. As a stability criterion we use the notion of force
closure—a posture where the mechanism can resist
any perturbing wrench by suitable adjustment of its
contact forces. In general, a planar equilibrium pos-
ture is force closure and hence stable if the contact
forces of the unperturbed posture lie in the interior

2



x(s2)
x(s1)

friction cone 2

friction cone 1

friction cone 3

x(s3)
t2

n2

t1

n1

n3

t3

Wi

Wj

Wk

(a)

x(s2)
x(s1)

x(s3)

Wi

Wj

Wk

(b)

x(s2)
x(s1)

x(s3)

Wi

Wj

Wk

(c)

Figure 3: (a) A gait feasible 3-limb posture, (b)-(c)
contains two distinct 2-limb postures.

of the respective friction cones.
Let two limbs with indices l and m contact the

tunnel walls Wi and Wj . Then for a 2-limb stable
equilibrium, the vector x(sm)−x(sl) must lie in the
interior of FCi, while −(x(sm)−x(sl)) must lie in the
interior of FCj . This condition defines a set in the

(sl, sm) plane, denoted E lm
ij , given by

E lm
ij = {(sl, sm)∈Ii×Ij :

∣

∣

(

x(sm)−x(sl)
)

·ti

∣

∣ < µ
(

x(sm)−x(sl)
)

·ni,
∣

∣

(

x(sl)−x(sm)
)

·tj

∣

∣ < µ
(

x(sl)−x(sm)
)

·nj}.

It is important to note that the inequalities describing
E lm

ij are linear in sl and sm. Hence E lm
ij is a convex

polygon in the (sl, sm) plane. When E lm
ij is consid-

ered as a subset of the contact c-space of a 3-limb
mechanism, it becomes a three-dimensional prism or-
thogonal to the (sl, sm) plane. The prism is denoted
with an × for the limb that does not participate in
the 2-limb posture. The 2-limb equilibrium set E12

ij

thus becomes the prism P ij×, the sets E13
ij becomes

Pi×j , and E
23
ij becomes P×ij .

Reachability constraint of 3-limb postures. A
3-limb posture is reachable when its footholds lie
within the robot’s radius R. For each wall triplet
Wi,Wj ,Wk the reachability constraint is given by

Rijk = {(s1, s2, s3) ∈ Ii×Ij×Ik : ∃c ∈ IR2

max{‖x(s1)− c‖, ‖x(s2)− c‖, ‖x(s3)− c‖} ≤ R},
(1)

The point c appearing in (1) can be interpreted as
the center of a disc containing the three foothold po-
sitions, such that the disc radius is bounded by R.
As discussed below, the elimination of the existential
quantifier in (1) results in a set which is bounded by
quadratic surfaces in contact c-space.

Gait feasibility of 3-limb postures. A 3-limb
posture is gait feasible if it contains two distinct 2-
limb equilibrium postures (Figure 3). Let us write
this constraint in a cell Ii × Ij × Ik of contact c-
space. This cell corresponds to contact with the
walls Wi,Wj ,Wk, and gait feasibility is satisfied
by intersection of pairs of 2-limb prisms associated
with the three walls. There are three such pairs—
(Pij×,Pi×k), (Pij×,P×jk), and (P×jk,Pi×k)—and
the resulting set of feasible 3-limb postures in the
cell, denoted F ijk, is given by

F ijk =
(

Pij× ∩ Pi×k ∩Rijk

)

∪
(

Pij× ∩ P×jk ∩Rijk

)

∪(P×jk ∩ Pi×k ∩Rijk).
(2)

Note that the same three walls appear in six cells
in contact c-space, each corresponding to a specific
assignment of the limbs to the three walls. The entire
collection of feasible 3-limb postures is the union of all
such sets over all ordered wall triplets. We end with
the following assertion [12]. It is always possible to
transfer forces between two 2-limb postures contained
in a feasible 3-limb posture, while the mechanism is
kept in static equilibrium with three fixed footholds.

3 Convexity of Feasible 3-Limb

Postures

In this section we establish two convexity results that
will be used by the PCG algorithm. First we establish
that the feasible 3-limb postures are a union of con-
vex sets in contact c-space. Then we show that the
approximation of a convex set by p maximal cubes is
a convex optimization problem.

3.1 Convexity of the feasible postures

The set F ijk of feasible 3-limb postures is specified
in (2) as a union of three sets, each corresponding to
a particular pair of 2-limb postures. The following
lemma asserts that each of these sets is convex in
contact c-space.

Lemma 3.1. In each cell Ii×Ij×Ik of contact c-space,

the set F ijk of feasible 3-limb postures is a union of
three convex sets.

Proof: Consider the set P ij× ∩ P×jk ∩Rijk in (2).
The prisms P ij× and P×jk are defined by intersection
of linear inequalities, and are therefore convex poly-
topes in contact c-space. Next consider the set Rijk.
The existential quantifier in (1) acts on a set, denoted
R̄ijk, which is defined in the five-dimensional space
(s1, s2, s3, c): R̄ijk = {(s1, s2, s3, c) ∈ Ii×Ij×Ik×IR

2 :
max{‖x(s1) − c‖, ‖x(s2) − c‖, ‖x(s3) − c‖} ≤ R}.
The norm function ‖x − c‖ is convex in (x, c) space,
and each x(si) is linear in si. Hence the functions
‖x(si)− c‖ are convex in (s1, s2, s3, c) space. The
pointwise maximum of convex functions is a convex
function. Hence R̄ijk is convex in (s1, s2, s3, c) space.
But Rijk is the projection of R̄ijk onto contact c-
space. Since projection preserves convexity, Rijk is
convex. Finally, the intersection of convex sets is con-
vex, hence Pij× ∩ P×jk ∩Rijk is convex. ¤

To summarize, the set F ijk is the union of three
convex sets, each bounded by planar surfaces associ-

3



ated with the 2-limb prisms, and quadratic surfaces
associated with the reachability constraint [12].

3.2 Convexity of Cube Approximation

We now discuss the approximation of the convex sets
comprising F ijk by maximal cubes. Consider the
approximation of a three-dimensional convex set S
by p cubes, where the cubes have arbitrary center
and dimensions. We assume as input a desired rela-
tive configuration for the p cubes, where a relative
configuration is a specification of an adjacency re-
lation between the cubes in terms of a set of sepa-
rating planes, such that no two cubes can possibly
intersect. Each of the separating planes is defined
in terms of the relative position of two cubes, and
does not restrict the absolute position of the two
cubes. The ith cube is parametrized by its center
ci ∈ IR3, and its dimensions along the coordinate
axes, hi ∈ IR3. The optimization therefore takes
place in the 6p-dimensional space whose coordinates
are (c1, h1, . . . , cp, hp). Our objective is to maximize
the total volume of the cubes. However, the sum of
the cubes’ volumes is not a convex function of the
optimization variables. Rather, we use a normalized
total volume function given by2

φ(c1, h1, . . . , cp, hp) =

p
∑

i=1

(hi1hi2hi3)
1

3 .

Next we list the constraints involved in the cube
approximation problem. First we have the require-
ments that the cubes’ dimensions be non-negative,
hij ≥ 0, and that their centers lie inside contact c-
space, 0 ≤ cij ≤ L (i = 1, . . . , p, j = 1, 2, 3). Second,
the relative configuration of the cubes is specified by
a list of separating planes, each involving the center
and dimensions of two cubes separated by the plane.
Last, we must ensure that the cubes lie inside the
convex set S. The following proposition asserts that
the maximization of φ over p cubes contained in S is
a convex optimization problem.

Proposition 3.2 ([12]). The maximization of φ =
∑p

i=1(hi1hi2hi3)
1

3 over p cubes contained in a convex
set S and satisfying a relative-configuration specifica-
tion is a convex optimization problem.

It is worth mentioning that convex optimization al-
gorithms, for instance the ellipsoid algorithm used in
our implementation, generate an ε-accurate solution
in O(m2l log(1/ε)) time, where m is the number of
optimization variables and l the number of steps re-
quired to evaluate the constraints.

2This function was suggested to us by Prof. A. Nemirovsky.

 s2

s1

s3

 s2

s1

s3

(1,1,2)

(4,3,4)

(6,1,1)

(8,3,3)

(2,1,5)

(7,6,7)

(1,1,2)

(4,3,4)

(6,1,1)

(8,3,3)

(2,1,5)

(7,6,7)
S2=3 plane

S1=4 plane S1=6 plane

S3=2
plane

S1=7 plane

S1=2 plane

S3=3 plane

(a) (b)

Figure 4: (a) Three cubes in contact c-space, and
(b) their mutual partition into sub-cubes along the
separating planes.

4 The PCG Algorithm

We begin with an overview of the algorithm. The
set of feasible 3-limb postures in each contact c-space
cell, F ijk, is a union of three convex sets. However,
usually each cell contains at most one convex set, and
we describe the algorithm under the assumption of a
single convex set per cell. The algorithm first approx-
imates each of the convex sets by p maximal cubes.
The number of cubes and their relative configuration
are user-specified inputs whose selection is discussed
below. In order to describe the next stage of the
algorithm we introduce the notion of cube orienta-
tion. A maximal cube parametrizes a set of feasible
3-limb postures, each containing two distinct 2-limb
postures. The two 2-limb postures necessarily share
a limb in common (Figure 3). However, this common
limb cannot be lifted, since its lifting would destroy
both 2-limb postures. By construction, all the 3-limb
postures parametrized by a given maximal cube have
the same common limb. Thus we associate with each
maximal cube an orientation vector, which is aligned
with the si-axis of the limb that cannot be lifted from
the 3-limb postures parametrized by the cube.

In the second stage the algorithm partitions the
maximal cubes as follows. The algorithm constructs
an arrangement of all the separating planes of the
cubes, where each separating plane contains one of
the cubes’ faces. Using this arrangement, the algo-
rithm partitions the cubes as illustrated in Figure 4.
The figure shows three cubes and their mutual parti-
tion along the separating planes into sub-cubes. Dur-
ing the partition process, each sub-cube inherits the
orientation vector of its parent cube. The resulting
sub-cubes have disjoint interiors, and they satisfy the
following projection property. Any two sub-cubes ei-
ther have precisely the same projection on one of the
coordinate planes, or their projection on all three co-
ordinate planes are disjoint. If two sub-cubes share a
projection they are called compatible, and the si-axis
aligned with the direction of projection is called the
direction of compatibility.

In the third stage the algorithm constructs a
graph called the sub-cube graph. The nodes of the

4



graph are center points of the sub-cubes. The edges of
the graph are assigned unit weights. Each edge con-
nects compatible sub-cubes whose direction of com-
patibility is orthogonal to the orientation vector of
the two sub-cubes. The meaning meaning of the or-
thogonality condition is discussed below. Finally, the
start and target 3-limb postures, denoted S and T ,
are added as special nodes to the sub-cube graph.
The construction of edges from S and T to the other
nodes of the graph is described below.

In the last stage, the algorithm searches the sub-
cube graph for the shortest path from S to T . The
shortest path on the graph minimizes the number of
foothold exchanges along the path from S to T . How-
ever, this minimality is relative to the cube approx-
imation obtained in the first stage of the algorithm.
A formal description of the algorithm follows.

PCG Algorithm:
Input: Geometrical description of an n-wall tunnel.
A value for the coefficient of friction. Start and tar-
get 3-limb postures S and T . A value for the number
of cubes p and their relative configuration.
1. Cube approximation:
1.1 Determine which cells Ii×Ij×Ik contain a non-

empty set F ijk of feasible 3-limb postures.
1.2 Approximate each non-empty set F ijk by p max-

imal cubes. Assign an orientation vector to each
maximal cube.

2. Cube partition:
2.1 Construct an arrangement of the separating

planes of all maximal cubes.
2.2 Subdivide each maximal cube into sub-cubes

along the separating planes. Assign to each sub-
cube the orientation vector of its parent cube.

3. Graph construction:
3.1 Define a sub-cube graph as described above.
3.2 Define S and T as special nodes and connect

them to the graph as described below.
3.3 Assign unit weight to all edges.

4. Graph search:
Search for the shortest path along the sub-cube
graph from S to T .

Let us discuss the meaning of the edges in the
sub-cube graph. An edge represents lifting and re-
placement of a particular limb. The lifting of a
limb must leave the robot with a stable 2-limb pos-
ture. The orientation vector of a sub-cube describes
which limb my not be lifted from the 3-limb postures
parametrized by the sub-cube. Hence all edges ema-
nating from a node must be orthogonal to the orienta-
tion vector of the sub-cube associated with the node.
Moreover, all edges of the sub-cube graph are straight
lines parallel to the si-axes in contact c-space (Fig-
ure 6). Another aspect of the edges is reachability—

motion of a limb between any two sub-cubes con-
nected by an edge can always be executed such that
reachability is maintained throughout the limb’s mo-
tion [12].

Next consider the construction of edges from S
and T to the other nodes of the sub-cube graph. Let
S and T be feasible 3-limb postures with their own
orientation vector. For S and T , compatibility with a
sub-cube means that the projection of the sub-cube
on one of the coordinate planes contains the corre-
sponding projection of the node. Having defined ori-
entation and compatibility for S and T , the edges
connecting these nodes to the other nodes of the
graph are constructed by the rule specified in step
3.1 of the algorithm. A second technical issue is the
selection of a relative configuration for the p cubes.
We specify in each cell a relative configuration that
separates the p cubes along a coordinate axis which is
orthogonal to the cell’s orientation vector. Adjacent
maximal cubes consequently overlap along the cell’s
allowed directions of motion, thereby preserving the
connectivity of the set of feasible 3-limb postures in
the cell.

Let us discuss some notable features of the algo-
rithm. First, the uniform weight assignment reflects
our desire to minimize the number of foothold ex-
changes along the path. Second, the algorithm treats
the motion of a limb between walls and along a sin-
gle wall in a uniform manner. Last, the size of the
sub-cube graph increases with p. However, if an edge
exists in the graph for low values of p, it would per-
sist in the graph for larger values of p. Consequently,
the path from start to target only becomes shorter as

p increases. The computational complexity of the
algorithm is analyzed in Ref. [12]. Under the rea-
sonable assumption that the spider robot can reach
from any given position only a small number of walls
which is bounded by a constant, the algorithm runs in
O(np6 log(np)) time, where n is the number of tunnel
walls and p is the number of cubes per cell in contact
c-space.

5 Simulation Results

In this section we run the PCG algorithm in the tun-
nel depicted in Figure 7. The tunnel consists of six
walls whose lengths in cm are marked in the figure.
The robot reachability radius is R = 60 cm, and
the coefficient of friction is µ = 0.5. Note that this
simple tunnel already contains significant geometric
features: the two walls at the bottom form a clos-
ing cone, the tunnel next turns leftward and becomes
two parallel walls, and finally the two walls at the top
form an opening cone. These geometric features are
significant, since the robot must use friction effects to

5



0

200

400

0

200

400

0

200

400

0

200

400

0

200

400

Figure 5: The collection of 270 maximal cubes ap-
proximating the feasible 3-limb postures.

traverse such features.

Let us now discuss the computation of the feasi-
ble 3-limb postures in contact c-space. The collection
of feasible 3-limb postures has a six-fold symmetry
consisting of six symmetric “arms:” every non-empty
cell represents an assignment of the three limbs to
a triplet of walls, and there are six permutations of
the three limbs on the triplet of walls. The arms are
roughly aligned with the diagonals of contact c-space,
for the following reason. The coordinate projection
of each arm covers the entire length of the tunnel.
Each arm can therefore be visualized as “dragging”
the 3-limb mechanism as a single rigid body along the
entire length of the tunnel. There are nine non-empty
cells in each arm, giving a total of 54 non-empty cells
in the entire contact c-space.

Next consider the cube approximation of the fea-
sible 3-limb postures. We use p = 5 cubes per cell
and compute the maximal cubes using the ellipsoid
algorithm. The p = 5 value preserves the connectiv-
ity of the set of feasible 3-limb postures, while still
being sufficiently low to allow reasonable execution
time. The result of running the ellipsoid algorithm
on the non-empty cells of contact c-space appear in
Figure 5. Since there are 54 non-empty cells, the
resulting cube approximation of contact c-space con-
tains 5 · 54 = 270 maximal cubes. The algorithm
next partitions each of the maximal cubes along the
separating planes of the other maximal cubes. The
partitioning of the maximal cubes generated 28, 299
sub-cubes in each of the six arms of contact c-space
(the resulting sub-cubes are not shown).

The algorithm next constructs the sub-cube
graph, and searches the graph for the shortest path
from the start to target postures. The result of com-
puting the shortest path is shown in Figure 6. Each

segment in the figure is an edge of the sub-cube graph
that represents one limb lifting and re-placement.
Figure 7 shows the same path in physical space, where
each foothold is marked by its index in the sequence
of steps taken by the robot. Let us denote the se-
quence of 3-limb postures by (i1, i2, i3), where ij is
the foothold position of limb j at the ith posture.
Then the path computed by the algorithm consists
of the 3-limb postures: S = (1, 2, 3) → (4, 2, 3) →
(4, 5, 3)→ (4, 5, 6)→ (7, 5, 6)→ (7, 8, 6)→ (7, 8, 9)→
(7, 10, 9) → (11, 10, 9) → (11,10, 12) → (13, 10, 12)→
(13, 14, 12)→(13, 14,15)→ (16, 14, 15)→ (16, 17, 15)→
(16, 17, 18)→ (19, 17, 18)→ (19, 20, 18)→(19, 20,21)→
(22, 20, 21)→ (22, 20, 23)→ (22, 24, 23)→(25,24, 23)→
(25, 24, 26)→ (25, 27, 26)→ (28, 27, 26)→(28,27, 29)→
T = (30, 27, 29). This sequence describes a 3-2-3 gait
pattern, where successive 3-limb postures are inter-
spersed by a 2-limb posture that allows motion of
a limb between the two 3-limb postures. The path
generated by the algorithm is minimal in terms of
the number of foothold exchanges, where minimality
is relative to the cube approximation of the feasible
3-limb postures (Figure 5).

6 Conclusion
We presented the PCG algorithm, for selecting the
footholds of a 3-limb robot in planar tunnel environ-
ments with an arbitrary piecewise linear geometry.
The algorithm assumes knowledge of the tunnel ge-
ometry and a lower bound on the amount of friction
at the contacts. The algorithm approximates the col-
lection of feasible 3-limb postures by pmaximal cubes
in each non-empty cell of contact c-space. Then it
partitions the cubes and searches the sub-cube graph
for the shortest 3-2-3 gait sequence from start to tar-
get. The algorithm’s main strength is its emphasize
on achieving contact independent foothold placement
sequences. Each sub-cube parametrizes three contact
independent wall segments, and each edge can be re-
alized by limb lifting and re-placement between any
two postures in the two sub-cubes connected by the
edge. Thus a controller for the robot’s limbs need
only ensure footpad placement within the segments
parametrized by the sub-cubes. The main weakness
of the algorithm is the lack of a procedure for selecting
the parameter p. This topic is under investigation.

Finally, it seems that the algorithm directly
generalizes to k-limb mechanisms that move with a
k − (k − 1)− k gait pattern. Contact c-space in this
case is k-dimensional, and one must first establish
that the feasible k-limb postures in this space are a
union of convex sets. If this is the case, the algo-
rithm can be directly applied to such mechanisms.
However, the computational complexity of the al-
gorithm would become O(npk+3 log(np)). A second

6



0

200

400

0

200

400

s2

0

100

200

300

400

0

200

400

s1

0

100

200

300

400

s3

T

S

motion around
corner between

W5 and W6

Figure 6: The shortest path from S to T along the
edges of the sub-cube graph in contact c-space.

-20 20 40 60

-50

50

100

150

200

1

2

3

4

5

6

7

8

9 10

11

12

13

14

15

16

17

18

19

20

21
22

23

24
25

26

27
28

29

30
last step

first step

initial configuration

final configuration

limb 1

limb 2 limb 3

limb 1

limb 2

limb 3

s

s=0

s=270
s=270

s=370

s=470

s=540

170o

200o

150o

170o

100

100

70
100

100

70

s

s=100

s=200

W1

W6

W2

W3

W4

W5

Figure 7: The tunnel environment used in the sim-
ulations, and the sequence of footholds generated by
the PCG algorithm.

more challenging topic is how to plan the footholds
of a k-limb mechanism using a variable gait pattern.

References
[1] J.-D. Boissonnat, O. Devillers, and S. Lazard. Mo-
tion planning of legged robots. SIAM J. of Comput-

ing, 30:218–246, 2000.

[2] S. Hirose and O. Kunieda. Generalized standard foot
trajectory for a quadruped walking vehicle. Int. J.

of Robotics Research, 10(1):2–13, 1991.

[3] J. Hong, G. Lafferriere, B. Mishra, and X. Tan. Fine
manipulation with multifinger hands. Icra, 1568–
1573, 1990.

[4] J. K. Lee and S. M. Song. Path planning and gait of
walking machine in an obstacle-strewn environment.
J. Robotics Sys., 8:801–827, 1991.

[5] S. Leveroni and K. Salisbury. Reorienting objects
with a robot hand using grasp gaits. 7th Int. Symp.

on Robotics Research, 2–15, 1995.

[6] A. Madhani and S. Dubowsky. Motion planning of
mobile multi-limb robotic systems subject to force
and friction constraints. Icra, 233–239, 1992.

[7] D. Marhefka and D. Orin. Gait planning for energy
efficiency in walking machines. Icra, 474–480, 1997.

[8] V.-D. Nguyen. Constructing force closure grasps.
Int. J. of Robotics Research, 7(3):3–16, 1988.

[9] F. Pfeiffer, T. Rossmann, N. Bolotnik, F. Cher-
nousko, G. Kostin. Simulation and optimization of
regular motions of a tube-crawling robot. Multibody

Sys. Dyn., 5:159–184, 2001.

[10] J. Ponce and B. Faverjon. On computing three-
finger force closure grasps of polygonal objects. IEEE

Trans. on Robotics and Aut., 11(6):868–881, 1995.

[11] J. Savall, A. Avello, and L. Briones. Two compact
robots for remote inspection of hazardous areas in
nuclear power plants. Icra, 1993–1998, 1999.

[12] A. Shapiro and E. Rimon. Pcg: A foothold se-
lection algorithm for spider robot locomotion in
2D tunnels. Tech. report, Dept. of ME, Technion,
http://www.technion.ac.il/∼robots, July 2002.

[13] T. J. Stone, D. S. Cook, B. L. Luk. Robug III—an 8-
legged teleoperated walking and climbing robot for
disordered hazardous environments. Mech. Incorp.

Engineer, 7(2):37–41, 1995.

[14] K. van der Doel and D. K. Pai. Performance mea-
sures for locomotion robots. J. of Robotic Systems,
14(2):135–147, 1997.

[15] Y. Wei and B. Goodwine. Stratified motion planning
on non-smooth domains with application to robotic
legged locomotion and manipulation. Icra, 3546–
3551, 2002.

7


