A Foothold Selection Algorithm
for Spider Robot Locomotion
in Planar Tunnel Environments

Amir Shapiro Elon Rimon*
Dept. of Mechanical Engineering Dept. of Mechanical Engineering
Ben Gurion University, Israel Technion, Israel

Shraga Shoval
Dept. of Industrial Engineering & Management
Ariel College, Israel

Abstract 7his paper presents an algorithm, called PCG, for planning the foothold po-
sitions of spider-like robots in planar tunnels bounded by piecewise linear walls. The paper
focuses on 3-limb robots, but the algorithm generalizes to robots with a larger number of limbs.
The input to the PCG algorithm is a geometric description of the tunnel, a lower bound on
the amount of friction at the contacts, as well as start and target foothold positions. Using
efficient convex programming techniques, the algorithm approximates the possible foothold
positions as a collection of cubes in contact c-space. Fach cube represents a contact indepen-
dent set of feasible 3-limb postures. A graph structure induced by the cubes has the property
that its edges represent feasible motion between neighboring sets of 3-limb postures. This
motion 1s realized by lifting one limb while the other two limbs brace the robot against the
tunnel walls. A shortest-path search along the graph yields a 3-2-3 gait pattern that moves
the robot from start to target using a minimum number of foothold exchanges. In practical
environments the algorithm runs in time which is linear in the number of tunnel walls and
polynomaal in the degree of cube approrimation of contact c-space. Simulations as well as
experiments demonstrate the PCG algorithm in tunnel environments.

1 Introduction

In conventional motion planning a wheeled mobile robot navigates toward a goal configura-
tion while avoiding collision with obstacles. However, many motion planning problems are
more suited for legged robots that interact with the environment in order to achieve stable
locomotion. For example, surveillance of collapsed structures for survivors [18, 24|, inspec-
tion and testing of complex pipe systems [19, 28|, and maintenance of hazardous structures
such as nuclear reactors [22] all require motion in congested, unstructured, and complex
environments. Our goal is to develop general purpose multi-limb mechanisms that navi-
gate quasistatically in such complex environments. This paper presents a polynomial time
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Figure 1: Top view of a 3-limb spider like robot moving in a planar tunnel environment.

algorithm, called PCG (Partitioned Cubes Gaiting), for planning the foothold positions of
spider-like robots in planar tunnel environments.

A spider-like robot consists of k articulated limbs attached to a central body, such that
each limb ends with a footpad (Figure 1). We assume that the robot moves quasistatically in
a horizontal plane by exerting forces on the tunnel walls’, while the robot is supported against
gravity by frictionless contacts mounted under the mechanism. In general, a spider-like robot
must have at least three limbs in order to move quasistatically in planar tunnel environments.
At every instant the robot braces against the tunnel walls in static equilibrium using two
or three limbs. During a 2-limb posture the robot moves its free limb to the next foothold
position. During a 3-limb posture the robot changes its internal geometry in preparation for
the next limb lifting. The PCG algorithm is presented in the context of such 3-limb robots,
but the algorithm generalizes to robots having a larger number of limbs.

The foothold positions are represented as points in contact c-space (contact configuration
space), which is defined as follows. Let L be the total length of the tunnel walls, and let
s; € [0,L] be an arc-length parametrization of the position of the i contact along the
tunnel walls (Figure 2). Then for a k-limb mechanism contact c-space is the k-dimensional
space (si,...,s;) € [0,L]*. The use of contact c-space is common in the grasp planning
literature. In particular, Nguyen [17] and Ponce and his colleagues [20, 21] introduced the
notion of contact independent regions. Given a k-finger grasp of a planar object, a contact
independent region is a k-dimensional cube aligned with the coordinate axes in contact c-
space. This cube represents k segments along the object’s boundary, such that any placement
of the k contacts inside these segments generates an equilibrium grasp. We use a similar
notion in our representation of the feasible footholds as cubes in contact c-space. Each cube
represents three segments along the tunnel walls, such that any placement of three footpads
inside these segments results in a feasible 3-limb equilibrium posture. Other relevant grasping
papers are those that discuss finger gaiting. Hong et al. [10] describe 3 and 4-finger gaits

'In quasistatic motion inertial effects due to moving parts of the robot are kept small relative to forces
and torques of interaction between the robot and the environment.



for planar objects. However, they assume that once an object is grasped, the fingers may
not change their order along the object’s boundary. In contrast, we impose no restriction
on the order of the footpads along the tunnel walls. Goodwine et al. [7, 26] investigate
the stratification of the full configuration space associated with finger gaiting. While this
approach is justifiable for the design of feedback control laws, motion planning can be carried
out in lower dimensional spaces such as contact c-space. For example, our 3-limb robot has
twelve actuated joints and three unactuated degrees of freedom at the central base (Figure 1),
while its contact c-space has only three dimensions.

In the multi-legged locomotion literature, Boissonnat et al. [2, 3] discuss a motion
planning algorithm for multi-legged robots in a gravitational field. They assume that the legs
contact discrete point sites located on a perfectly flat terrain. Much like our approach, they
lump the kinematic structure of the robot into a reachability radius, and use this parameter
to design a path that takes the robot from start to target via a sequence of stable stances.
Bretl, Rock, and Latombe [5] consider motion planning of a 3-limb planar robot climbing on
a vertical wall under the influence of gravity. The wall contains discrete protrusions against
which the robot can push during climbing. They describe an algorithm for planning a one-
step motion between successive footholds, then apply a heuristic search to generate on-line a
sequence of climbing steps. Our work differs from these works in several fundamental ways.
First, we consider motions where the robot achieves stability by bracing against tunnel walls
rather than maintaining stable stances against gravity. Second, we allow arbitrary footpad
placement along the tunnel walls rather than at discrete point sites. Third, Boissonnat et al.
first plan a planar path for the central body then select footholds that realize this path, while
Bretl, Rock, and Latombe plan the robot motion in its full configuration space. In contrast,
the PCG algorithm first plans a sequence of footholds in contact c-space, then determines
the mechanism’s joint values that would bring the footpads to the desired foothold positions.
Other notable papers that consider multi-legged locomotion planning are [8, 9, 12, 14, 15, 25].
However, all of these papers are concerned with locomotion over a terrain in a gravitational
field, while this paper is concerned with motion in congested tunnel-like environments.

This paper focuses on the portion of the PCG algorithm that plans a sequence of foothold
positions in contact c-space. The algorithm consists of the following three stages. The first
stage is based on a key result, that the set of feasible 3-limb postures is a union of convex
sets in contact c-space. Using convex optimization techniques, the algorithm approximates
each of the convex sets by p maximal cubes. In the second stage the algorithm partitions the
cubes into compatible sub-cubes, where two sub-cubes are compatible if it is possible to move
between any two postures in these sub-cubes by lifting a single limb. However, compatibility
encodes only a kinematic transition between two sub-cubes. Each sub-cube is also assigned
an orientation vector which identifies what limbs can be stably lifted from the postures
in the sub-cube. The algorithm constructs a graph whose nodes are sub-cubes and whose
edges connect compatible sub-cubes with suitable orientation vectors. In the third stage the
algorithm searches the sub-cube graph for the shortest sequence of foothold positions that
moves the robot from start to target. This sequence yields a minimal 3-2-3 gait pattern,
where minimality is relative to the cube approximation of contact c-space. Application
examples of the algorithm to real or simulated tunnels are shown in the simulations and
experimental results sections (sections 5 and 6).

The paper is organized as follows. Section 2 characterizes the feasible 3-limb postures
in contact c-space. These postures must be reachable, form stable equilibria, and satisfy
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Figure 2: (a) A 3-limb robot in a planar tunnel. (b) The parametrization of its contact

c-space.

a condition that allows their inclusion in a 3-2-3 gait pattern. Section 3 establishes that
the feasible 3-limb postures are a union of convex sets in contact c-space. It is also shown
that the approximation of a convex set by p maximal cubes is a convex optimization prob-
lem. Section 4 describes the PCG algorithm and analyzes its computational complexity. In
practical tunnel environments the robot can only reach a small number of walls from any
given position. In such environments the algorithm runs in O(np®log(np)) time, where n
is the number of tunnel walls and p is the number of cubes used in the approximation of
contact c-space. Section 5 describes simulations of the algorithm, and Section 6 describes
motion experiments with a 3-limb robot in a planar tunnel. The concluding section discusses
generalization of the algorithm to cases where gravity exists and to robots having a larger
number of limbs. Appendix A provides further details of the PCG algorithm. in Appendix
B the effect of the parameter p on path cost is investigated and a method for its automatic
selection is suggested. Finally, Appendix C contains the multimedia extensions of this paper
and present a video of the robot motion in a tunnel.

2 The Feasible 3-Limb Postures

We characterize the feasible 3-limb postures as inequality constraints in contact c-space,
based on the following assumptions. First, we assume piecewise linear tunnel walls with
known geometry. Second, each limb contacts the tunnel walls through a footpad which
can only push against the environment. Third, each footpad contacts the tunnel walls at a
frictional point contact, with a known lower bound on the coefficient of friction. Fourth, the
kinematic structure of the robot is lumped into a single parameter called the robot radius R.
This parameter is the length of a fully stretched limb, measured from the center of the robot’s
central base. The algorithm uses this parameter to ensure that the selected footholds can
be reached from the robot’s central base. Recall now that contact c-space of a 3-limb robot
is the cube (si, s, 53) € [0, L]?, where L is total length of the tunnel walls and s; € [0, L] is
an arc-length parametrization of the i contact (Figure 2).

The feasible 3-limb postures must form stable equilibria, be reachable, and satisfy the
following gait feasibility condition. This condition requires that the 3-limb posture will



contain two distinct 2-limb postures—one for entering the 3-limb posture by establishing a
new foothold, and one for leaving the 3-limb posture by releasing another foothold. Note
that the initial and target 3-limb postures are required to contain one rather than two 2-limb
postures. We now consider the individual constraints.

Equilibrium and stability of 2-limb postures. Gait feasibility requires that a 3-limb
posture will contain two distinct 2-limb postures. Hence we first review the conditions for
equilibrium and stability of 2-limb postures. A mechanism bracing against the environment
is in static equilibrium if the net wrench (i.e. force and torque) generated by the contact
forces acting on the mechanism as a single rigid body is zero. Once footholds are established
according to the equilibrium condition, suitable feedback control laws must ensure zero net
torque at each joint of the mechanism (e.g. [23, p. 98-126]). In general, a 2-limb mechanism
forms an equilibrium posture as a single rigid body when the line segment connecting the two
contacts lies inside the two friction cones [17]. As a stability criterion we use the notion of
force closure. By definition, an equilibrium posture is force closure if the mechanism can resist
any perturbing wrench by suitable adjustment of its contact forces with the environment [1].
In general, an equilibrium posture in a planar environment is force closure if the contact
forces of the unperturbed posture lie in the interior of the respective friction cones [27].

We now write the above conditions as inequalities in contact c-space. Let Wy, ..., W,
denote the tunnel walls, and let Iy, ..., I,, be a partition of [0, L] into intervals that represent
the parametrization of the individual walls in contact c-space (Figure 2). Thus, for instance,
the cube I;x1;xI; parameterizes the 3-limb postures where limb 1 contacts the wall IW;, limb
2 contacts the wall W;, and limb 3 contacts the wall 1Wj,. The unit tangent and unit normal
to the wall W; are denoted t; and n;, where n; is pointing away from the wall. Using this
notation, points along W; are given by x(s) = x; + (s — sb)t;, where x; is the initial vertex
of W;, s € I;, and s}, is the minimal value of s € I;. Given a contact force f;, we write the
force as f;, = flt; + f'n;, where f! and f are its tangent and normal components. The
Coulomb friction cone at the i** contact, denoted F'C;, is the collection of forces satisfying
the inequalities: FC; = {f, : f > 0and — puf? < fI < ufl}, where u is the coefficient of
friction.

Let two limbs with indices [ and m contact the tunnel walls W; and W;. Then for a
2-limb stable equilibrium, the vector &(s,,)—(s;) must lie in the interior of the friction cone
FC;, while z(s;) —2(s,,) must lie in the interior of the friction cone F'C;. This condition

defines a set in the (s, s,,) plane, denoted Sé’;’l, which is given by

Sﬁ;n = {(sl,sm)GIiXIj s (@ (sm)—2(s1)) | < p(x(sm) —2(s))) ng,

|(@(s1) —2(sm)) 5] < p(@(s1) —2(5m)) 15}
An example of 2-limb stable equilibrium sets appears in Figure 7. It is important to note
that the inequalities describing 55;” are linear in s; and s,,. Hence SZ’Z is a convex polygon
in the (s, ;) plane. When 55;” is considered as a subset of the contact c-space of a 3-limb
mechanism, it becomes a three-dimensional set which is denoted as follows. Let [ serve as
a place holder for the limb that does not participate in the 2-limb posture. Then a 2-limb
equilibrium set, 811]2 for instance, becomes a three-dimensional set which is denoted P;;o and
given by

Pijrn = {(s1,52,83) € ix[;x[0, L]+ [(2(s2) — (1)) ti] < plx(s2) — @ (1)) ma,
[(2(s1) — (s2)) 5] < p(x(s1) — x(s2)) -5}
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Figure 3: (a) A gait feasible 3-limb posture, (b)-(c) contains two distinct 2-limb postures.

The set P;;o is a prism orthogonal to the (s, s2) plane with a polygonal cross section given
by 8%].2. Similarly, the sets P;n; and Pr;; are prisms orthogonal to the (s, s3) and (s2, s3)
planes, with polygonal cross sections given by £ 2133 and 82233

Reachability constraint of 3-limb postures. A 3-limb posture is reachable when its three
footholds lie within the robot’s reachability radius R. For each triplet of walls W;, W;, Wy,
the reachability constraint is given by

Riji = {(s1,82,83) € IxIjx Iy : Ie € R* max{|z(s1) —el|, [Jz(s2) — |, [[2(s3) — €ll} < R},

(1)
The point ¢ appearing in (1) can be interpreted as the center of a disc containing the three
foothold positions, such that the disc’s radius is bounded by R. As discussed below, the
elimination of the existential quantifier in (1) results in a set which is bounded by quadratic
surfaces in contact c-space.

Gait feasibility of 3-limb postures. A 3-limb posture is gait feasible if it contains two
distinct 2-limb equilibrium postures (Figure 3). Let us write this constraint in the contact
c-space cell I; x I; x Ij,. This cell corresponds to contact with the walls W;, W;, W}, and gait
feasibility is satisfied by intersection of pairs of 2-limb prisms associated with the three walls.
There are three such pairs in the cell: (Pyjo, Piow), (Pijo, Pojk), and (Pojk, Pink). Hence
the set of all feasible 3-limb postures in the cell, denoted Fjj;, is given by

fijk = (PijD N Pioe N Rijk) U (Pijg N PDjk N Rijk) U (Pljjk NPioe N Rijk)- (2)

Note that the same three walls appear in siz cells in contact c-space, each corresponding to
a specific assignment of the limbs to the three walls. The entire collection of feasible 3-limb
postures is the union of all such sets over all ordered wall triplets. We end this section with
an assertion that it is always possible to affect a transition between two 2-limb postures
contained in a feasible 3-limb posture by suitable change of the contact forces.

Lemma 2.1. Let a feasible 3-limb posture contain two 2-limb equilibrium postures. Then
there exists a continuous change of the contact forces that allows a transition between the
2-limb postures, while the mechanism is kept in static equilibrium with fized contacts.

Proof: We present a simple continuous change of the contact forces that allows transition
between the two 2-limb postures. Since the mechanism has three limbs, any two 2-limb
postures must share a limb in common. Without loss of generality, let the 3-limb posture



lie inside P;;n N Ppjx in contact c-space, so that limb 2 is common to both 2-limb postures.
Let f, and f, be the contact forces at the 2-limb posture involving limbs 1 and 2, and
let g, and g; be the contact forces at the 2-limb posture involving limbs 2 and 3. Then
since the two postures are equilibrium postures we have f; + f, = 0, g, + g, = 0 and
additional two equations for the torques. Multiplying the first equilibrium equation by 1—s
and the second by s, where s € [0, 1], and summing them together yields that the convex
combination (1—s)f, 4+ (1—s) f,+ sg,+ sg; generates a zero net force for all s. Applying the
same methodology to the torques equations results with the very same convex combination
of the forces that generates zero net wrench for all s. This convex combination specifies a
continuous transition between the two 2-limb postures, while the mechanism is kept in static
equilibrium. Specifically, the contact forces of limbs 1 and 3 vary only in magnitude, while
the contact force of limb 2 varies in magnitude and direction between f, and g,. Finally,
since f, and g, lie inside the friction cone at the contact of limb 2 with the environment,
their convex combination also lies inside the friction cone, for all s € [0, 1]. O

The lemma generalizes as follows. If a k-limb posture contains two equilibrium postures
having a smaller number of limbs, it is always possible to affect a transition between these
two postures by suitable change of the contact forces, while the mechanism is kept in static
equilibrium.

3 Convexity of the Feasible 3-Limb Postures

In this section we discuss two issues concerning convexity that will be key to the PCG
algorithm. First we establish that the feasible 3-limb postures are a union of convex sets in
contact c-space. Then we show that the approximation of a convex set by p maximal cubes
is a convex optimization problem.

3.1 Convexity of the feasible postures

The set F;ji of feasible 3-limb postures is specified in (2) as a union of three sets, each
corresponding to a different pair of 2-limb postures. The following lemma asserts that each
of these sets is convex in contact c-space.

Lemma 3.1. In each cell I;x<I;xI}, of contact c-space, the set Fij. of feasible 3-limb postures
s a union of three convex sets.

Note that any of the convex sets comprising F;;; may be empty. For example, in Figure 8
each set F;;;, is either empty or consists of a single convex set.

Proof:  The three sets that comprise F;j;;, have a similar form. Hence it suffices to consider
only one of these sets, say P;jq N Prjr N Rijx. The prisms P;jn and Ppji are defined by
the intersection of linear inequalities. Each prism is therefore a convex polytope in contact
c-space. Next consider the reachability set R;j;. The existential quantifier in (1) acts on a
set, denoted R;jx, which is defined in the five-dimensional space (si, s2, S3, €):

ﬁijk = {(51, S9,83,¢) € I; xI; x I, x IR? - max{||z(s1) — cl|, ||z(s2) — cl|, [|£(s3) — ||} < R}.
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Figure 4: The minimal disc containing three footholds when A is (a) an acute, and (b) an
obtuse triangle.

The norm function ||& — ¢| is convex in (x, ¢) space, and each x(s;) is linear in s;. Since
the composition of a convex function with a linear map preserves convexity, the functions
||lz(s;) — ¢|| are convex in (sq, 9, S3, €) space. In general, the pointwise maximum of convex
functions is a convex function [6, p. 47]. Hence R;;x is a convex set in (sy, s, 53, €) space.
But R;ji is the coordinate projection of ﬁijk onto contact c-space. Since projection preserves
convexity, R;;i is convex in contact c-space. Finally, the intersection of convex sets is convex.

Hence P;jo N Pojr N Riji 1s convex. O

The PCG algorithm described below approximates the feasible 3-limb postures by cubes.
The approximation requires an explicit formula for the reachable set which we now describe.
The following is an equivalent formulation for R;jp,

Rijk = {(31,82733) € I; xI; X I : T (51, 52, 53) < R};

where .y, (81, S2, $3) is the radius of the minimal disc containing the foothold positions x(s),
x(s2), and z(s3). Let A be the triangle generated by these three points. Then the formula
for rumin(s1, S2, s3) is divided into two cases (Figure 4). When A is an acute triangle (i.e.
with angles less than 90°), 7., (51, S2, 53) is the radius of the disc passing through the three
points, given by

Trin (51, S2, 83) = [2(s1) — @(s2) - [2(52) — ®(s3)]| - [|£(s3) — (51
. 2||x(s1) X ®(s2) + 2(52) X 2(s3) + x(s3) X x(s1)| ’

where uxv is the scalar obtained by taking the determinant of the 2x2 matrix [u v]. When
A is an obtuse triangle, 7, (51, S2, s3) is simply the half-length of the longest edge of A,

Tmin (81, 52, 83) = %12323{“53(511) —z(s4)[|}-
The two-part formula for 7., (s1, S2, s3) reveals that the set R;;, is bounded by quadratic
surfaces in contact c-space. To summarize, the set F;;; is the union of three convez sets,
each bounded by planar surfaces associated with the 2-limb prisms, and quadratic surfaces
associated with the reachability constraint.



3.2 Convexity of the Cube Approximation Problem

We have already established in Lemma 3.1 that the set F;j;; is a union of three convex sets.
Now we discuss the approximation of these convex sets by maximal cubes. We discuss the
problem in the context of three-dimensional spaces, but the result is completely general.

Consider the approximation of a three-dimensional convex set S by p cubes, where
the cubes have an arbitrary center and dimensions. We assume as input a desired relative
configuration for the cubes, where a relative configuration is a specification of an adjacency
relation between the cubes in terms of a set of separating planes, such that no two cubes
can possibly intersect. Each of the separating planes is defined only in terms of the relative
position of two cubes, and does not restrict the absolute position of the two cubes. A simple
example of such relative configuration is when the cubes are stacked one over the other with
only one separating plane between every two adjacent cubes as shown in Figure 9. The
i cube is parameterized by its center ¢; € IR, and its dimensions along the coordinate
axes, h; € IR®. The optimization therefore takes place in the 6p-dimensional space whose
coordinates are (ci,hy,..., ¢y, h,). Our objective is to maximize the total volume of the
cubes, subject to constraints discussed below. However, the sum of the cubes’ volumes is
not a convex function of the optimization variables. Rather, we use a normalized total
volume function given by?

p

¢>(C1, hi,. .., Cp, h’p) = Z(hilhithB)

=1

W=

Next we list the constraints involved in the cube approximation problem. First we have the
requirements that the cubes’ dimensions be non-negative, and that their centers lie inside
contact c-space [0, L]3. Second, the relative configuration of the cubes is specified by a list
of separating planes, each involving the center and dimensions of two cubes separated by
the plane. Last, we must ensure that the cubes lie inside the convex set S. The following
proposition asserts that the maximization of ¢ over p cubes contained in § is a convex
optimization problem.

Proposition 3.2. The mazimization of ¢ = le(hilhﬂhz‘g)% over p cubes contained in
a convex set S and satisfying a relative-configuration specification is a convex optimization
problem.

Proof: In general, the minimization of a scalar function ¢(x) subject to scalar constraints
Py (x),. .., Y (x) < 0is convex if ¢ and 1)y, ..., 1, are convex functions of the optimization
variables. In our case, the maximization of the total volume function ¢ is equivalent to the
minimization of —¢, and convexity of —¢ is equivalent to concavity of ¢. Hence we must
first verify that the function ¢ = Zle(hilhizhw)% is concave. A sufficient condition is that
the second derivative matrix of ¢ be negative semi-definite. Since ¢ depends only on the

variables iy, ..., hy, its second derivative matrix is block diagonal, with non-zero 3x3 blocks
corresponding to the second derivative of the functions ¢; = (hilhithg)l/?) where ¢ =1,...,p.
The first derivative of ¢;, written as a column vector, is:
hiahis
Do = —— | hirhis

i
3(hi1hi2hi3)3

hiihig

2We are grateful to Prof. A. Nemirovsky who suggested this function.



The second derivative of ¢; is:

[ 0 hiz hio -| highis

D*¢; =—1—— 1 hs 0 hy | ——2—— | hahis (hi2hi3 hiihi hilhiQ)
B(hirhizhis)® [ hia hyi 0O J Ahirhizhis) hiihig

ol

Let us define the matrix H; as follows:

[ —2 —h,f’iB hi hi -|
H; = hig =20t p :
| ke hip -2t J

Then we can rewrite the second derivative matrix D?¢; as:

2 _ 1
D ¢z — 2 Hi-
9(hs1hizhiz)3

The eigenvalues of H; must satisfy the characteristic equation det(AI — H;) = 0, where A is
eigenvalue of H;. Thus, the computed characteristic equation of H; is:

A [AQ +2 <h“h“ 4 harhia | hi?h“) A+3 (3 + 05 +h3)| =0
hi hi hix ' ' ‘

This equation is the product of A and a second order polynom with non-negative coefficients.
One obvious eigenvalue is A = (0. The other two eigenvalues are the roots of the second order
polynom. It is well known that the roots of a second order polynom with non-negative coeffi-
cients have non-positive real part. Consequently, the matrix H; is negative semi definite, and
as a result the matrix D?¢; is negative semi definite. The entire matrix D?¢ is consequently
negative semi-definite, and ¢ is a concave function.

Next consider the constraints on the optimization variables. First, the constraint that
the cubes’ dimensions be non-negative is linear in the optimization variables, and linear
functions are convex. Second, a relative configuration of the cubes is specified by a list
of constraints of the form: ¢; + Lh;; < ¢j; — 1hj;. (This particular constraint separates
the i* and j" cubes along a plane orthogonal to the s;-axis.) We see that the separation
constraints are also linear in the optimization variables. Last consider the constraint that
the cubes lie inside the convex set S. The i** cube lies inside S if its vertices lie in S. We
may assume that S is specified by inequalities 11 (s1, S, 3), .. ., ¥, (1, S2, 53) < 0 such that
Yy, ..., 1, are convex functions. In this case a vertex v; lies in § if it satisfies the inequalities
Y1 (vj), ..., ¢ (v;) <0. Each vertex is given by an expression of the form v; = ¢; £ 1h; The
vertices are therefore linear functions of the optimization variables. Since composition of a
convex function with a linear map preserves convexity, the cube containment constraints are
convex functions of the optimization variables. O

It is worth mentioning that convex optimization algorithms, for instance the ellipsoid algo-
rithm used in our implementation, generate an e-accurate solution in O(m?llog(1/¢)) time,
where m is the number of optimization variables and [ is the number of steps required to
evaluate the constraints. An example of the approximation of a convex set by five maximal
cubes using € = 0.1 appears in Figure 9.
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Figure 5: (a) Three cubes in contact c-space, (b) their mutual partition into sub-cubes along
the separating planes, and (c¢) the induced sub-cube graph.

4 The PCG Algorithm

In this section we describe and analyze the PCG algorithm. First we give an overview of
the algorithm. The set of feasible 3-limb postures in each cell of contact c-space is a union
of three convex sets. However, in practical tunnel environments each cell contains at most
one convex set. We describe the algorithm under the assumption of a single convex set
per cell, and discuss the case of multiple convex sets in Appendix A. The algorithm first
approximates each of the convex sets by p maximal cubes. The number of cubes and their
relative configuration are user-specified inputs whose practical selection is discussed below. In
order to describe the next stage of the algorithm we introduce the notion of cube orientation.
A maximal cube parameterizes a set of feasible 3-limb postures, each containing two distinct
2-limb postures. The two 2-limb postures necessarily share a common limb. This common
limb cannot be lifted, since its lifting would destroy both 2-limb postures. Each maximal
cube is constructed such that its 3-limb postures have the same common limb. Hence we can
associate with each maximal cube an orientation vector, which is aligned with the s;-axis
of the limb that cannot be lifted from the 3-limb postures parameterized by the cube. The
orientation vectors play an important role in the graph construction described below.

In the second stage the algorithm partitions the maximal cubes as follows. The algo-
rithm constructs an arrangement of all separating planes of the maximal cubes, where each
separating plane contains one of the cubes’ faces. Using this arrangement, the algorithm
partitions the cubes as illustrated in Figure 5. The figure shows three cubes and their mu-
tual partition along the separating planes into sub-cubes. During the partition process each
sub-cube inherits the orientation vector of its parent cube. The resulting sub-cubes have
disjoint interiors and satisfy the following projection property. Any two sub-cubes either
have the same projection on one of the coordinate planes, or their projection on all three
coordinate planes have disjoint interiors. If two sub-cubes share a projection they are called

11



compatible, and the s;-axis aligned with the direction of projection is called the direction of
compatibility. The algorithm next defines a graph called the sub-cube graph. The nodes of
the graph are center points of the sub-cubes. The edges of the graph connect compatible
sub-cubes whose direction of compatibility is orthogonal to the orientation vector of the two
sub-cubes.

Let us pause to discuss the edges of the sub-cube graph. Every edge represents lifting
and repositioning of a particular limb. The lifting of a limb must leave the robot in a stable
2-limb posture. The orientation vector of a sub-cube describes which limb may not be lifted
from the 3-limb postures parameterized by the sub-cube. Hence all edges emanating from a
node must be orthogonal to the orientation vector of the sub-cube associated with the node.
Moreover, all edges of the sub-cube graph are straight lines parallel to the s;-axes in contact
c-space (Figure 5 (c)). For example, when an edge is parallel to the s;-axis, motion along
this edge means that only limb 1 is moving, while the footholds positions of limbs 2 and 3
remain fixed. According to Lemma A.1 in Appendix A, the motion of a limb between any
two sub-cubes connected by an edge can be executed such that reachability is maintained
throughout the limb’s motion. Finally, the start and target 3-limb postures, denoted S and
T, are added as special nodes to the sub-cube graph. The construction of edges from S and
T to the other nodes of the graph is described below.

In the third stage the algorithm assigns unit weight to all edges, then searches the sub-
cube graph for the shortest path from S to 7. The shortest path on the graph minimizes
the number of limb lift-and-reposition steps from start to target. However, this minimality
is only relative to the cube approximation obtained in the first stage of the algorithm. A
formal description of the algorithm follows.

PCG Algorithm:

Input: Geometric description of n-wall tunnel. Coefficient of friction. Start and target 3-limb
postures S and 7. A value for number of maximal cubes p and their relative configuration.
1. Cube approximation:

1.1 Determine which cells I;x1;x1} contain a non-empty set F;;;, of feasible 3-limb postures.

1.2 Approximate each non-empty set F;;; by p maximal cubes. Assign an orientation vector
to each maximal cube.

2. Cube partition:

2.1 Construct an arrangement of separating planes for all maximal cubes.

2.2 Subdivide each maximal cube into sub-cubes along separating planes. Assign to each
sub-cube the orientation vector of its parent maximal cube.

3. Sub-Cube Graph:

3.1 Define a graph with nodes at center of sub-cubes and edges between compatible sub-
cubes whose direction of compatibility is orthogonal to the orientation vector of both
sub-cubes.

3.2 Define S and T as special nodes and connect them to the graph as described below.

4. Graph search:
4.1 Assign unit weight to all edges.
4.2 Search for the minimum cost path from S to T" along the sub-cube graph.

Two technical details of the algorithm need clarification. The first is the construction of
edges from S and 7' to the other nodes of the graph. For simplicity, let the start and target
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be feasible 3-limb postures with their own orientation vector. (In general, S and T are
required to contain only one stable 2-limb posture.) If the start or target lies in a sub-cube,
the node associated with this sub-cube becomes the start or target node in the graph. If
the start or target lies outside the cube approximation, it is added as a special node to the
graph. In this case compatibility of S or T" with a sub-cube means that its projection on one
of the coordinate planes lies in the projection of the sub-cube. Having defined orientation
and compatibility for S and 7', the edges connecting these nodes to the other nodes of the
graph are constructed by the rule specified in step 3.1 of the algorithm. The second technical
issue is the selection of a relative configuration for the p maximal cubes. In principal any
relative configuration can be used by the algorithm. In the next section we specify for each
cell a relative configuration that separates the p cubes by planes having normal parallel to
the cell’s orientation vector. This relative configuration tends to preserve the connectivity
of the convex sets in their cube approximation.

Next we discuss some notable features of the algorithm. First, the uniform edge weight
assignment reflects our desire to minimize the total number of limb reposition steps along
the path. However, the edges can be assigned different weights, for instance, ones that
reflect a measure of distance traversed between successive footholds. Second, the sequence
of footholds generated by the algorithm is contact independent in two ways. Each node of the
graph parameterizes three contact independent wall segments, and each edge of the graph
can be realized by limb motion between any compatible points in the sub-cubes joined by the
edge. This robustness with respect to small footpad placement errors allows implementation
of the algorithm using inexpensive sensors and controllers as discussed below. Third, the
algorithm treats the motion of a limb between walls and along a single wall in a uniform
manner. One implication of this uniformity is that small changes in the tunnel geometry,
for instance a change of a long straight wall into a piecewise linear wall, would not have
a significant influence on the path generated by the algorithm. Last, the size of the sub-
cube graph increases with p. However, if an edge exists in the graph for low values of p, it
would persist in the graph for larger values of p. Consequently, the path from start to target
only becomes shorter as p increases. This issue is further discussed in Appendix B, where
we suggest a method for selecting p in a way that preserves the connectivity of the sets of
feasible 3-limb postures.

We now establish the correctness of the algorithm. Recall that paths in contact c-space
must be orthogonal to the sub-cube orientation vectors. This constraint requires a careful
consideration of the collection of reachable postures®. Let X be an approximation of the
feasible 3-limb postures by maximal cubes. Let R(S) denote the set of 3-limb postures that
can be reached from a posture S along a path in X'. The following lemma gives a sufficient
condition for reachability of a target posture 7.

Lemma 4.1. Let S and T be start and target 3-limb postures. A sufficient condition for
T € R(S) is that the sub-cube graph contains a path from S to T whose nodes change
orientation at least once along the path.

The sufficient condition is also necessary when T lies outside the planes passing through S
and orthogonal to the axes of contact c-space.

3The orientation vectors impose a non-holonomic constraint which has been first observed by Koditschek
in the context of manipulation planning [11].
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Figure 6: Four sub-cubes in contact c-space with parallel and non-parallel orientation vectors.

A proof of the lemma appears in Appendix A. The necessary condition is depicted in
Figure 6(a). The figure shows four sub-cubes whose orientation vectors are aligned with the
sz-axis. The path on the sub-cube graph from S to T" contains no change of orientation, and
R(S) is trapped in a plane passing through S and orthogonal to the sz-axis. Figure 6(b)
shows the situation when one sub-cube has an orientation vector along the s;-axis. In this
case R(S) fills the entire sub-cube having the rotated orientation vector, as well as the
subsequent sub-cubes along the path. The change-of-orientation condition of the lemma
can be identified by the following simple criterion. If the sequence of footholds from S to
T requires repositioning of all three limbs, the sequence contains at least one change of
orientation as required by the lemma. This criterion automatically holds true when the
target footholds are distinct from the start footholds.

The remainder of this section discusses the computational complexity and optimality of
the algorithm. We assume in the analysis that the number of walls the robot can reach while
contacting a given wall is bounded by a constant. This assumption is called wall reachability.

Theorem 1. Let S and T be start and target 3-limb postures in a tunnel environment
satisfying the wall reachability assumption. If T lies in R(S), the PCG algorithm finds a
path from S to T in O(np®log(np)) time using O(np®) space, where n is the number of tunnel
walls and p is the number of mazrimal cubes in each non-empty cell of contact c-space.

Proof: First consider step 1.1 of the algorithm, identifying which cells of contact c-space
contain feasible 3-limb postures. The algorithm first identifies which cells contain reachable
3-limb postures as follows. The radius-R neighborhood about a wall is bounded by two linear
and two quadratic curves. The collection of these neighborhoods forms a planar arrangement
of O(n) curves. By the wall reachability assumption, a radius-R neighborhood intersects
a constant number of other radius-R neighborhoods. Hence the arrangement of radius-R
neighborhoods contains O(n) intersection points. A line sweep algorithm can compute the
intersection points in O(nlog(n)) time. Each intersection point is associated with a finite
number of overlapping radius-R neighborhoods, and any triplet of overlapping neighborhoods
is a potentially non-empty cell in contact c-space. Thus we obtain O(n) potentially non-
empty cells in O(nlog(n)) time. The actual verification that these cells are non-empty is
carried out in the next step of the algorithm.

Next consider step 1.2, where each non-empty set F;;, is approximated by p maximal
cubes. Any convex optimization algorithm first computes an initial feasible solution, or
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reports that no feasible solution exists. This first step determines which of the O(n) cells
generated by the line sweep algorithm contains a non-empty set of feasible 3-limb postures.
Standard convex optimization algorithms, for instance the ellipsoid algorithm used in our
implementation, generate an e-accurate solution in O(m?llog(1/¢)) time, where m is the
number of optimization variables and [ the number of steps required to evaluate the con-
straints [16]. In our case m = 6p since each cube has six parameters. The [ constraints are
the validity of the cubes’ relative configuration, and the containment of the cubes’ vertices
in F;j;. The relative configuration consists of p — 1 separating planes, and the total number
of cube vertices is 8p. Thus m = O(p) and [ = O(p). The approximation of each set F;;y
by p maximal cubes takes O(p3log(1/¢)) time. Since there are O(n) potentially non-empty
sets Fijk, step 1.2 generates O(np) maximal cubes in O(np®log(1/€)) time.

Next consider steps 2.1 and 2.2, where the maximal cubes are partitioned into sub-cubes.
Since there are O(np) maximal cubes, sorting the cubes’ separating planes and generating
their arrangement takes O(nplog(np)) time. Consider now the partitioning of a maximal
cube along the separating planes. By the wall reachability assumption, each maximal cube
has an overlapping projection with a constant number of non-empty cells. Since a non-empty
cell contains p maximal cubes, each maximal cube is partitioned by O(p) separating planes
along each axis of contact c-space. If we first partition the maximal cube along the s;-axis,
it is divided into O(p) slabs orthogonal to the s;-axis. The slabs are next divided along the
sy-axis into O(p?) rectangular prisms. Finally, the prisms are divided along the s3-axis into
O(p?) sub-cubes. Since there are O(np) maximal cubes, step 2.2 generates a total of O(np?)
sub-cubes in O(np?) time.

Step 3 concerns the construction of edges between sub-cubes. In our implementation
the edges are constructed during the cube partitioning process. For purposes of analysis, let
us assume that the construction of an edge takes O(1) time, so that the time for step 2.3 is
equal to the total number of edges in the sub-cube graph. Recall that all edges are aligned
with the s;-axes, and that an edge connects sub-cubes with a matching projection on one of
the coordinate planes. Consider now a particular sub-cube denoted D. The wall reachability
assumption implies that D has an overlapping projection with O(p) maximal cubes. Each of
these maximal cubes contains a rectangular prism that has a matching projection with D.
Since a rectangular prism contains O(p) sub-cubes, D has a matching projection with O(p?)
sub-cubes. Since the sub-cubes are the nodes of the sub-cube graph, the edge degree of each
node is O(p?). Since there are O(np?) sub-cubes, the total number of edges is O(np%). Note
that the size of the sub-cube graph, O(np®), is the space requirement of the algorithm.

Finally consider step 4. In general, a shortest path search on a graph with m vertices
and e edges takes O(elog(m)) time. Substituting m = O(np*) and e = O(np®), the search for
the shortest path along the sub-cube graph takes O(np®log(np)) time. Summarizing all the
steps, we obtain a run time of O(n log(n)+np?®log(1/€)+np*+np®log(np)) = O(np®log(np)),
where we made the reasonable assumption that log(1/e) << p*log(np). O
Note that in practice the time required to reposition a limb is much longer than the time
required to execute a computation step in the robot’s computer. Hence the algorithm’s
relatively high run time is compensated by its ability to minimize the number of steps along
the path. The following proposition characterizes this path optimality.

Proposition 4.2. Let X' be an approximation of the feasible 3-limb postures by mazximal
cubes. Let S and T be start and target 3-limb postures such that T € R(S). Then up to one
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Figure 7: The 2-limb equilibrium postures in the (s;, s;) plane.

extra step, the path computed by the PCG algorithm minimizes the number of steps over all
paths from S to T in X.

The proof, which appears in Appendix A, realizes the path computed by the algorithm as
a rectilinear path in contact c-space having one segment per edge of the sub-cube graph.
Optimality of the resulting path follows from the fact that all paths associated with a 3-2-3
gait naturally embed in the sub-cube graph. Note that the sub-cube graph is a fixed data
structure for a given tunnel environment. Each new start and target need only be connected
to the existing graph which is then searched for the optimal path.

5 Simulation of the PCG Algorithm

This section contains results of running the PCG algorithm on a simulated tunnel depicted in
Figure 12. The tunnel consists of six walls whose lengths are marked in the figure. All length
units are centimeters. The figure also shows a 3-limb robot at its start and target positions.
In this simulation we set the robot reachability radius to be R = 60 cm. The coefficient
of friction is u = 0.5, a value that corresponds to rubber coated footpads contacting walls
made of metal or perspex. Note that the simple tunnel already contains significant geometric
features. The two walls at the tunnel’s bottom form a closing cone. The tunnel next turns
leftward and becomes two parallel walls. Finally, the two walls at the tunnel’s top form an
opening cone. These geometric features are significant, since the robot must use friction
effects in order to traverse such features.

The walls are parameterized by path length in counterclockwise order (Figure 12). Thus
s = 0 and s = 270 correspond to the bottom and top of the tunnel’s right side, while
s = 270 and s = 540 correspond to the top and bottom of the tunnel’s left side. Using
this parametrization, contact c-space is the cube [0, 540]x[0, 540]x[0, 540] depicted in Figure 8.
The center point of contact c-space at (270,270,270) represents 3-limb postures where the
three footpads touch the upper point of either side of the tunnel. Topologically, we ought
to put a cube-shaped puncture at the center of contact c-space, since the top points on the
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Figure 8: The collection of feasible 3-limb postures in contact c-space.

left and right sides of the tunnel are physically distinct. The eight outer vertices of contact
c-space represent 3-limb postures where the three footpads are located at the bottom part
of the tunnel. These vertices represent the 23 = 8 possible assignments of the three limbs to
the tunnel’s two sides. Note that the robot must contact both sides of the tunnel in order
to generate an equilibrium posture. Hence the vertices (0,0,0) and (540,540, 540) certainly
lie outside the set of feasible 3-limb postures presented below. Topologically, when one
introduces a small cube-shaped puncture at the center point, contact c-space becomes a set
embedded in a three-dimensional torus. This fact has been noted in the context of 3-finger
grasps by Leveroni and Salisbury [13].

Let us now turn to the computation of the feasible 3-limb postures in contact c-space.
Figure 7 shows the collection of 2-limb equilibrium postures in the (s;,s;) plane. It can
be seen that these postures form a conver polygon in each planar cell. The edges of these
polygons consist of frictional equilibrium constraints and the cell’s boundaries. Note that
the figure is symmetric with respect to the s; = s; axis, reflecting the possibility of switching
the limbs between the two contacts. Figure 8 shows the collection of feasible 3-limb postures.
These postures are intersection of pairs of prisms whose polygonal cross section appears in
Figure 7. In this particular tunnel, all prism intersections automatically satisfy the reacha-
bility constraint. (This is an artifact of our tunnel environment, coefficient of friction, and
robot radius.) The collection of feasible 3-limb postures has a siz-fold symmetry consisting of
six symmetric “arms”: every non-empty cell represents an assignment of the three limbs to
a triplet of walls, and there are six such assignments. The arms are roughly aligned with the
diagonals of contact c-space, and this can be explained as follows. The coordinate projection
of each arm covers the entire length of the tunnel. Each arm can therefore be visualized
as “dragging” the 3-limb mechanism as a single rigid body along the entire length of the
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tunnel. There are nine non-empty cells in each arm, giving a total of 54 non-empty cells in
the entire contact c-space.

Next consider the approximation of the feasible 3-limb postures in each cell by p maximal
cubes. We use five maximal cubes per cell and compute the maximal cubes using the ellipsoid
algorithm with an approximation error € = 0.1 (i.e. the volume of the maximal cubes is up
to 1 + € times smaller than the volume of the exact maximal cubes). This value of p =5
preserves the connectivity of the set of feasible 3-limb postures, while still being sufficiently
low to allow reasonable execution time. Figure 9 shows the cube approximation of the feasible
3-limb postures in the cell I; x I x I}, where the relative configuration is specified by four
separating planes orthogonal to the s3-axis. The result of running the ellipsoid algorithm on
the non-empty cells in one arm of contact c-space appear in Figure 10. Since there are 54
non-empty cells, the resulting cube approximation of contact c-space contains 5 - 54 = 270
maximal cubes. The algorithm next partitions each maximal cube along the separating
planes of the other maximal cubes. The partitioning of the maximal cubes generated 230, 900
sub-cubes in contact c-space (the resulting sub-cubes are not shown).

The algorithm next constructs the sub-cube graph, assigns unit edge weights, and
searches the graph for the shortest path from the start to target postures. The result of
computing the shortest path using Dijkstra’s algorithm is shown in Figure 11. Each segment
in the figure is an edge of the sub-cube graph representing one limb lift-and-reposition step.
Figure 12 shows the same path in physical space, where each foothold is marked by its index
in the sequence of steps taken by the robot. Let us denote the sequence of 3-limb postures
by (i1, i2,i3), where 7; is the foothold position of limb j at the i*" stage. Then the path com-
puted by the algorithm consists of the 3-limb postures: S = (1,2,3) — (4,2,3) — (4,5,3) —
(4,5,6) — (7,5,6) — (7,8,6) — (7,8,9) — (7,10,9) — (11,10,9) — (11,10,12) —
(13,10,12) — (13,14,12) — (13,14,15) — (16,14,15) — (16,17,15) — (16,17,18) —
(19,17,18) — (19,20,18) — (19,20,21) — (22,20,21) — (22,20,23) — (22,24,23) —
(25,24,23) — (25,24,26) — (25,27,26) — (28,27,26) — (28,27,29) — T = (30,27,29).
This sequence describes a 3-2-3 gait pattern, where successive 3-limb postures are inter-
spersed by a 2-limb posture that allows motion of a limb between the two 3-limb postures.
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Note that the path generated by the algorithm is minimal in terms of the number of steps rel-
ative to the cube approximation of the feasible 3-limb postures (Figure 10). Note, too, that
the short edge along the s3 axis in Figure 11 corresponds to the transition (7,8,6) — (7,8,9).
This edge takes the robot around the corner between the walls W5 and Wy in Figure 12.
The difficulty in accomplishing this maneuver can be appreciated by inspecting the narrow
overlap between the planar cells I5x Iy and Igx I in Figure 7.

Some remarks on the algorithm run time: We ran the algorithm on a a Pentium 1.7GHz
computer with 512MB of RAM. The algorithm was programmed in Mathematica* native
code and it was not compiled into C. Due to the size of the sub-cube graph which contains
230,900 nodes, searching the took most of the runtime. In the search for shortest path we
used a naive Dijkstra’s algorithm. The search took 117,500 iterations. Additional limitation
was the computer amount of memory. While running the algorithm the computer also ran
the operating system and other resident programs in the background. These programs used
at least half the memory of the computer. Thus due to the size of the database the operating
system was forced to use the Hard Disk for on-line memory usage. Under these conditions
running the example presented here took about 78 hours. We suspect that more efficient
search algorithm that will be compiled in C can dramatically reduce the algorithm’s runtime.

6 Experimental Results

This section describes an experimental implementation of the PCG algorithm. The objective
of the experiments is to test the robustness of the PCG algorithm with respect to small
footpad placement errors. We used for this purpose a 3-limbed robot having four revolute
joints per limb, giving a total of twelve actuated degrees of freedom (Figure 1). The limbs
are attached to a central base which has three unactuated degrees of freedom. The distance
from the robot’s center to the tip of a fully stretched limb is R = 90 cm. The robot operates
in a horizontal plane, and is supported against gravity by air bearings mounted under the
central base and the distal link of each limb. The robot’s twelve joints are instrumented with
2000 count-per-revolution optical encoders (mounted on the joint axis rather than the motor
shaft), and the robot’s motion is controlled with MEI controllers that allow decentralized PID
control of the twelve axes. However, the robot has no visual feedback from the environment,
and is not equipped with any contact force sensors. The robot was placed on a horizontal
plane bounded by piecewise linear walls made of stiff Plexiglas (Figure 13). The walls were
coated with medium rough sand paper, giving a friction coefficient of at least ; = 0.5. Note
that the tunnel layout provides various geometric features such as parallel, diverging, and
converging wall segments.

The PCG algorithm was given a geometric description of the tunnel, as well as the start
and target 3-limb postures depicted in Figure 13. Based on this information, the algorithm
computed the sequence of footholds marked 1 to 10 along the tunnel walls in Figure 13.
The corresponding minimum cost path along the sub-cube graph is shown in Figure 14.
At the next stage the sequence of footholds was converted to continuous central-base and
joint trajectories that were fed to the robot’s controllers. (The details of this stage are not
considered in this paper, but the central-base and joint trajectories were computed as to
satisfy reachability and avoid collision with the tunnel walls and between limbs.) A major

4Mathematica is a trade mark of Wolfram Research, Inc.
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Figure 13: The tunnel environment used for the experiment. The footholds computed by
the algorithm are numbered 1 to 10.
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Figure 14: The minimum cost path from S to T" along the edges of the sub-cube graph. Each
node is marked with the walls being contacted by (limb 1, limb 2, limb 3).

source of position errors in our implementation has been the coarse granulation of the joint
trajectories, which were discretized and fed to the motor controllers at a rate of 10 set points
per second.

It is worth to mention that in this example the algorithm generated footholds positions
which are in the proximity of tunnel corners (e.g points 6,8,18,21,22). If necessary it is
possible to avoid such footholds by virtually shortening the tunnel segments. Thus, each
tunnel segment will end up in a safe distance from the real corner. Note that the PCG
algorithm does not require the tunnel to be connected.

The experiment started with a calibration process during which the robot positioned
itself at the start posture. Then motion started, and the time history of the twelve axes as
well as the central-base three configuration parameters were recorded. Figure 15 shows the
robot’s configuration history during the entire motion from S to 7. The first row shows the
x,y, 0 coordinates of the central base. The remaining rows show the joint angles of each limb,
where the leftmost graph describes the proximal joint and the rightmost graph describes the
distal joint. The total length of the robot’s central-base trajectory along the y coordinate
was 1.5 m, and the total motion time was 33 minutes. This low speed motion allowed a
fairly accurate tracking of the pre-designed path in IR, without using any feedback on
the central-base position and orientation. The tracking accuracy can be seen in the graphs
as very small deviations between the desired and actual paths. Note that a considerably
larger deviation occurred during the last few minutes in the distal joint of the second limb.
This limb established contact with the tunnel wall before its distal joint reached the desired
angle. While applying contact force against the tunnel wall, the distal motor saturated
on its maximal output torque without being able to reach its desired angle. This error
was eventually corrected when the limb broke contact with the wall and moved to the next
foothold position. Snapshots from a video of the robot motion during the experiment appear
in Figure 16.
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Figure 15: Measurements of the robot’s 15 configuration parameters during the experiment.
The nominal paths are indicated as dashed lines, and the actual measurements are indicated
as solid lines.
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Figure 16: Snapshots from the video showing the spider robot moving in the tunnel (see
http://robots.technion.ac.il for the full video).
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7 Conclusion

We presented an algorithm for selecting the foothold positions of a 3-limb robot in planar
tunnel environments. The algorithm assumes knowledge of the tunnel geometry and a lower
bound on the amount of friction at the contacts. Using this knowledge, we established that
the feasible 3-limb postures consist of a union of convex sets in contact c-space. Using
convex programming techniques, the algorithm approximates the feasible 3-limb postures
by O(np) maximal cubes, where n is the number of tunnel walls and p is the number of
maximal cubes which approximate each convex set in contact c-space. The algorithm next
partitions the cubes into sub-cubes, and defines a graph whose nodes are sub-cubes and
whose edges represent feasible motion of a limb between any 3-limb postures in the two sub-
cubes. A search for the minimum cost path in the graph generates a 3-2-3 gait sequence that
moves the robot from start to target while minimizing the number of foothold exchanges
along the path. The algorithm has been demonstrated in a simulated tunnel as well as in
actual experiments with a 3-limb robot prototype.

The algorithm’s main strength is its emphasize on computing contact independent
foothold placement sequences. Each sub-cube parameterizes three contact independent wall
segments, and motion along an edge of the sub-cube graph can be realized by limb reposition
between any two postures in the two sub-cubes connected by the edge. Thus a controller for
the robot’s limbs need only ensure footpad placement within the segments parameterized by
the sub-cubes. An example for such controller is the decentralized PD position controller
that was used in our experiments. The algorithm’s main weakness is the lack of a systematic
procedure for selecting the input parameter p. We described a preliminary approach for
selecting p based on the requirement that the cube approximation preserve the connectivity
of the feasible 3-limb postures.

Finally let us mention two possible generalizations of the algorithm. The first general-
ization is to 3-limb spider robots that move under the influence of gravity in two-dimensions.
In this case the position of the robot’s center of mass plays an important role in determining
posture stability, and contact c-space must be augmented with two parameters representing
the center-of-mass positions. Research under progress indicates that the feasible equilibrium
postures under gravity still form convex sets. The algorithm is therefore extendible to motion
under the influence of gravity. The second generalization is to planar robots having a larger
number of limbs. It seems that the algorithm directly generalizes to k-limb mechanisms that
move in tunnel environments using a k—(k—1)-k gait pattern. Contact c-space in this case
is k-dimensional, and the feasible k-limb postures seem to be a union of convex sets. In that
case the algorithm can be applied to k-limb mechanisms without any change. The computa-
tional complexity of the k-limb algorithm would become O(npt*3log(np)) i.e., exponential
in the number of limbs. A more challenging topic is how to plan the foothold positions of
a k-limb mechanism using a variable gait pattern. For instance, a 4-limb mechanism can
move a single limb at a time, or two limbs at a time, resulting in a variable gait pattern.
We are currently investigating foothold placement algorithms for such mechanisms, with the
objective of generating polynomial time algorithms that minimize the number of steps from
start to target while exploiting variable gait patterns.
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A Details of the PCG Algorithm

This appendix describes several details of the PCG algorithm. First we describe the necessary
modification to the algorithm when a cell contains two or three possibly overlapping convex
sets of feasible 3-limb postures. Since each convex set is approximated individually by p
maximal cubes, it is possible that two maximal cubes originating from different convex sets
would overlap in contact c-space. However, each cube still has its own unique orientation
vector. The partitioning of the maximal cubes into sub-cubes proceeds as before. The
edges between sub-cubes are assigned a weight of unity or zero according to the following
two cases. If two sub-cubes connected by an edge are disjoint, the edge is assigned a unit
weight as before. In the second case the edge connects two copies of the same sub-cube. We
represent the two sub-cubes as distinct nodes, and assign zero weight to the edge connecting
the two sub-cubes. Note that zero-weight edges provide important pathways in the sub-cube
graph. Rather than representing a physical limb lifting and reposition, these edges represent
a freedom of the algorithm to select among more than one limb for its next step.

The following lemma asserts that motion along an edge of the sub-cube graph can be
realized by a continuously reachable limb motion.

Lemma A.1. Consider two reachable 3-limb postures. If two limbs and their footpad posi-
tions are common to both postures, there exists a path that takes the third limb between the
two postures such that the three footpads are continuously reachable along the path.

The lemma generalizes as follows. If two k-limb postures share at least two limbs and their
contacts, there exists a path for the remaining k£ —2 limbs between the two postures such
that all k& footpads are continuously reachable along the path.

Proof:  The minimum-radius discs containing the two triplets of foothold positions nec-
essarily overlap, since two foothold positions are common to both postures. The radius of
the two discs is bounded by R, since the two triplets of foothold positions are reachable. It
follows that any motion of the third limb between its two footholds, such that its footpad
lies in the union of the two discs, guarantees that the three footpads, one moving and two
stationary, are continuously reachable along the path. 0

The next lemma gives necessary and sufficient conditions for target reachability.

Lemma 4.1. Let S and T be start and target 3-limb postures. A sufficient condition for
T € R(S) is that the sub-cube graph contains a path from S to T whose nodes change
orientation at least once along the path.

The sufficient condition 1s also necessary when T lies outside the planes passing through S
and orthogonal to the axes of contact c-space.

Proof: = We consider only the sufficient condition. Let D, ..., D, be the sub-cubes corre-
sponding to the nodes of the sub-cube graph along the path from S to 7. For simplicity we
assume that S€D, and T'€D,. Let u denote the orientation vector of D;, and let P denote
the plane orthogonal to u and passing through S. Let D, be the sub-cube experiencing the
first orientation change, so that Dy,...,D; have an orientation vector parallel to u. Then
D; NR(S) is the rectangle D; N P. Since the orientation vectors are aligned with the axes
of contact c-space, D;,; has an orientation vector, denoted v, which is orthogonal to v and
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therefore lies in P. Since the sub-cube graph contains an edge between D; and D;,,, the
two sub-cubes are compatible. It follows that the subset of D,y reachable from D; N R(S)
along a single-step motion is the rectangle D;,; N P. Since v lies in P, any motion starting
in D;;1 N P in the direction orthogonal to this rectangle is admissible. The totality of these
motions fills the sub-cube D; ;. From this stage onward R(S) fills the remaining sub-cubes
Dit2,...,Dy. Since T' € D, the target belongs to R(S). O

The following proposition characterizes the algorithm’s optimality.

Proposition 4.2. Let X be an approximation of the feasible 3-limb postures by mazximal
cubes. Let S and T be start and target 3-limb postures such that T € R(S). Then up to one
extra step, the path computed by the PCG algorithm minimizes the number of steps over all
paths from S to T in X.

Proof: = We consider the case where S and T both lie in X'. Recall that paths in contact
c-space are rectilinear with each segment representing one limb reposition step. Let a be a
path from S to T in X having the minimum number of segments, and let N (a) be the number
of its segments. Let § be a minimum cost path from S to 7" computed by the algorithm
along the sub-cube graph. We wish to show that § can be realized by a rectilinear path v in
contact c-space whose number of segments, N(v), satisfies the inequality N(v) < N(«) + 1.
As an intermediate step, we show that 3 can be realized by a path v such that N(v) equals
to the number of nodes along 3. The proof is by induction on the number of nodes along £3.
The induction starts with paths having three nodes, but first we remark on paths having
fewer nodes. When [ has a single node, S and T lie in the sub-cube corresponding to this
node. Since T' € R(S), the target can be reached along a path v having at most two segments,
which is the minimum number of steps. When S passes through two nodes, S and T lie in
the two sub-cubes corresponding to these nodes. Since T € R(S), the target can be reached
along a path v having at most three segments, which is again the minimum number of steps.
Consider now the case where 3 passes through three nodes. We wish to show that
can be realized by a path v having three segments. Let D, Dy, D3 denote the sub-cubes
corresponding to the three nodes, and let vy, vo, v3 denote their orientation vectors. Then
S € Dy and T € D3. Let P be the plane passing through S and orthogonal to v, and let P’
be the plane passing through 7" and orthogonal to v3. There are two sub-cases to consider.
In the first sub-case v; is parallel to vz or, equivalently, P is parallel to P'. Let [; be any
segment between Dy and D,, and let [s be any segment between Dy and D3. Since [ is a
minimum cost path, [y and [, cannot be collinear, as this would imply that D, is directly
connected to D3 in the sub-cube graph. By construction [y is orthogonal to v; and vy, while
[ is orthogonal to vy and v3. Since v; and w3 are parallel, they are orthogonal to the plane
spanned by l; and ly. Thus vy, vy, and vs are all parallel. Since T € R(S), the plane P’
must coincide with P. Hence T" can be reached along a path v having at most two segments
embedded in this plane. Consider now the sub-case where v; and v3 are non-parallel. Let [;
be the particular segment starting at S € D; and leading into D5, and let 5 be the particular
segment ending at 7' € D3 and originating from D,. Then either [; is collinear with v3, or
[ is collinear with vy. If [; is collinear with vz, it must hit the rectangle D, N P'. If Iy is
collinear with vy, it must hit the rectangle D, N P. In either case 7 can be realized using
three segments. For instance, when [y is collinear with v3, the first segment is [;, the second
and third segments are embedded in P’ and connect the endpoint of [; in Dy N P’ to T'.
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Next consider the induction step, where § passes through ¢ > 3 nodes corresponding to
sub-cubes Dy, ..., D; such that S € D; and T" € D;. There are two cases to consider. In
the first case R(S) fills the entire sub-cube D; ;. The induction hypothesis implies that any
point in D; ; can be reached from S along at most ¢ — 1 steps. Since the sub-cube graph
contains an edge between D; ; and D;, this edge can be realized by a single segment from
D,_1 to T in D;. Hence T can be reached along a path v having at most ¢ segments. In
the second case R(S) fills only a subset of D;_;. Lemma 4.1 implies that in this case the
orientation vectors of Dq,...,D;_; are all parallel to v;. The reachable subset of D;_; is
therefore the rectangle D; ;N P, where P is the plane defined above. Since the portion of ~
until D;_; is embedded in P, this portion of 7 can be realized by a path having one segment
per transition between successive sub-cubes, which gives ¢ — 2 segments from S € D; to
D,_1. There are now two sub-cases to consider, according to the position of 1" relative to
P. We consider only the sub-case where T lies outside P. Since T € R(S), the orientation
vector of D; must be rotated with respect to v;. Letting P’ be the plane passing through
T and orthogonal to the orientation vector of D;, the line [ = P N P’ contains a valid
segment from D;_; to D;. The latter segment reaches the rectangle D; N P’, from which a
segment orthogonal to [ reaches T. Thus we added two segments to the path from S to D;_q,
generating a path  containing at most ¢ segments. To summarize, § can be realized by a
rectilinear path v whose number of segments N(7) equals the number of nodes along £.

The sub-cubes form a partition of X'. Since the minimum cost path « is rectilinear with
vertices in X, every vertex of « lies in some sub-cube. If two successive vertices of « lie in
distinct sub-cubes, the segment joining the two vertices is parallel to some s;-axis and its
direction necessarily respects the orientation vector of both sub-cubes. It follows that the
sub-cube graph contains an edge between the nodes corresponding to the two sub-cubes. By
construction 5 minimizes the number of edges from S to T" along the sub-cube graph. Hence
the number of edges along 3, denoted N, satisfies N < N(«). The number of nodes along
fis N + 1. Since 3 can be realized by a path v having N(v) < N + 1 segments, we obtain
that N(v) < N(a) + 1. O

B Selection of Number of Maximal Cubes

In this appendix we suggest a method for selecting the number of maximal cubes, p, which
approximate each convex set of feasible 3-limb postures. The method is based on the fol-
lowing two-stage approach. First we determine the connectivity relation between the convex
sets in contact c-space. Then we describe a decision algorithm that determines if p preserves
the above connectivity relation as well as the connectivity within each convex set. We begin
with a characterization of the required connectivity check. By definition, two convex sets of
feasible 3-limb postures are connected if they have an overlapping projection along a direc-
tion perpendicular to the orientation vector of both sets. The following lemma asserts that
this type of connectivity can be checked as a convex programming problem.

Lemma B.1. Let S and Sy be two convex sets in IR", and let T be a set of coordinate
indices of IR". Then the existence of points x = (x1,...,2,) € Sy and y = (y1,...,yn) € Sa
such that x; = y; for j € I is a convex programming problem.

Proof: First we embed S; and S; in the orthogonal subspaces IR" x 0 and 0 x IR" of
IR?" Next we construct 2n-dimensional cylinders over the embedded sets, denoted S; and
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S,. These cylinders are convex in IR*" since S; and S, are convex in IR". Every point in

S1 N Sy represents a pair of points x,y € R* such that x € §; and y € S,. Consider now
the linear subspace in IR* given by P = {(s1,...,82,) : 8; = 8j1n Vj € Z}. Every point
in P represents two points in R” that share the same j* coordinate for all j € Z. The set
P NSNS, is convex, since it is an intersection of convex sets. Moreover, every point in
PN S; NS, represents a pair of points z € S; and y € S, that share the j coordinate for all
j € Z. The problem has now become a standard check that a given convex set is non-empty,
which is a convex optimization problem (e.g. [4, p. 329]). O

Next we describe a decision algorithm which verifies that p is sufficiently large, based on the
criterion that the cube approximation should preserve the connectivity of the feasible 3-limb
postures in contact c-space. Once a sufficiently large p is found, a binary search based on
the decision algorithm can give the smallest p that preserves connectivity.

An algorithm for checking that p preserves connectivity
Input: A cube approximation of the feasible 3-limb postures based on p maximal cubes per
non-empty convex set.
For each convex set F;;, with orientation vector along s;-axis do:
1. Check if maximal cubes in F;;;, have a common projection along axis perpendicular
to s;. If not, STOP, p is too small.
2. Find all F,,,, such that
Casel=1: m=iand (n=joro=k)
Casel=2:n=jand (m=ioro=k)
Case l=3: o=k and (m =1 orn=j)
3. For every F .., from step 2 do:
3.1 Check if F;j;;, overlaps F,,, using convex programming. If there is no overlap,
continue to next F,,,, in step 3.
3.2 Check compatability of all possible pairs of maximal cubes such that one cube is
in F;j, and the other is in F,,,,. If there is no compatible pair, STOP, p is too small.
End of do loop.

The effect of p on the cube approximation is illustrated in Figure 17. The figure depicts a
two-dimensional cube approximation analogous to our three-dimensional case. The figure
shows that connectivity is preserved by the maximal cubes only for p > 3. The figure suggests
that there is no significant benefit in increasing p beyond a certain value, since improvement
in path cost is only minor. Finally, we ran simulations to investigate the effect of p on the
number of steps along the path from S to 7. We used a 3-limb robot with reachability radius
of R = 77 cm, and tested two tunnels having a friction coefficient of ¢ = 0.5. The first tunnel
consists of two parallel walls of length 200 cm and width 116 cm. The second tunnel consists
of a straight wall of length 150 cm, and a wall composed of two segments 80 cm long at an
angle of 150°. The sharp angle between the wall segments points into the tunnel, and the
narrowest part of the tunnel is 102 cm wide. The results of running the PCG algorithm for
p=2,...,6 in the two tunnels are listed in the following table. The table shows that once p
is sufficiently large to yield a path from S to T, subsequent increase of p gives only a minor
reduction in the number of steps along the path.
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Figure 17: The effect of p on the number of steps along the path from S to 7.

p | number of steps in | number of steps in
| | tunnel > | tunnel

2 no path no path

3 10 9

4 10 9

5 10 8

6 10 7

C Index to Multimedia Extensions

The multimedia extensions to this article are at: http://www.ijrr.org.
Extension Type Description
1 Video Spider robot motion in a tunnel

The accompanied video present the prototype of our 3-limbed robot conducting the experi-
ment discussed in Section 6 and walks through a 2D tunnel. This video shows the applica-
bility of the algorithm presented in this paper to a real world problem. The algorithm gets
as an input the tunnel geometry, the amount of friction between the robot footpads and the
walls, and teachability radius of the robot. Next it off-line compute a sequence of foothold
positions. A continuous central-base and joint trajectory is computed off-line, and fed to
the robot’s controller. Since the mechanical design of the robot prevent from one limb to
cross over the other a set of limb replacement maneuvers is needed. These maneuvers can
be seen in the video as one limb contacts the wall, the another limb moves towards the same
contact point and finally contact the wall near the first limb. At this stage where two limbs
contact the wall in two very close points the first limb disjoint the wall and move forward to
conduct the next step. These maneuvers enlarge the total number of steps conducted by the
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mechanism, but they are caused only due to mechanical limitations. Finally, it is possible
to design a mechanism that overcome this mechanical limitation and that can fully perform
the steps produced by the algorithm.
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