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Abstract

We explore an on-line problem where a group of robots has t dintarget whose position is unknown
in an unknown planar environment whose geometry is acquiyethe robots during task execution. The critical
parameter in such a problem is the physical motion time, ishiader the assumption of uniform velocity of all the
robots, corresponds to length or cost of the path travelethéyobot which finds the target. Ti@ompetitiveness
of an online algorithm measures its performance relativéheooptimal off-line solution to the problem. While
competitiveness usually means constant relative perfocmathis paper uses generalized competitiveness, i.e.
any functional relationship between online performance aptimal off-line solution. Given an online task, its
Competitive Complexity Clags a pair of lower and upper bounds on the competitive perdoee of all online
algorithms for the task, such that the two bounds satisfystimae functional relationship. We classify a common
online motion planning problem into competitive class. artcular, it is shown that navigation to a target whose
position is recognized only upon arrival belongs to a quédicmmpetitive class. This paper describes a new on-line
navigation algorithm, calleMRSAM, which requires linear memory and has a quadratic competiterformance.
Moreover, it is shown that in general any on-line navigatidgorithm must have at least a quadratic competitive
performance. Th&IRSAMalgorithm achieves the quadratic lower bound and thus htimalpcompetitiveness. The
algorithm is improved with some practical speedups andédtsopmance is illustrated in office-like environments.

. INTRODUCTION

The Problem of finding a target whose position is unknown iruaknown planar environment is very
important in many practical and academic research fielagsntbst significant are humanitarian robotics,
industry robotics and military robotics. Area coverage isoaresponding task, since the searching unit
will cover a certain area before finding the tafgetnd when the number of targets in a specific area is
unknown, the whole area must be covered. Examples for tHagms above are demining, search/rescue
missions, cleaning supermarkets and train stations, tilggecontaminated or radioactive substances in
factories, nuclear reactors or in the open field, planetapfogation and sample acquisition. This paper
is concerned with the aforementioned problem solved by ipialmobile robots.

The most critical parameter in mobile robot motion task$esghysical travel time rather than on-board
computation time. Under a uniform velocity assumptioryetdime corresponds to path length, and under
the assumption of uniform velocity among all the robotsydtaime corresponds to the path length of
the robot that found the target, or of any other robot thanteated at the same time the target was
found, since all the robots travel the same path length pee tinit. We denote the distance traveled by
each robot/, and the optimal off-line solutiof,,,. Under a uniform power output assumption, travel time
corresponds to path traversibility cost. Hence the algoritliscussed in this paper is classified in terms
of length or cost of the path traveled by one robot during @ligon execution.

In the problem discussed above, using a group of robots cea mmany advantages over using only
one robot, the most important is the shortening of the totakion time, another advantage is increased
robustness, since the multitude of robots can easily oneec malfunction in one or more of the units, an
issue associated with redundancy. The decrease of thadondlmechanical wear and power consumption
per mission maximizes the life span of each robot and pradhg whole mission duration and range.
Other advantages concerns maintaining radio connecheiyeen the robots and the base station. Another
advantage of robot groups is a decreased sensor uncertihiatjo merging of overlapping information,
it has been shown in [1], that multiple robots localize thelwss more efficiently, especially when they
have different sensor capabilities.

The purpose of this paper is to introduce a new algoritMRSAM (short for Multi Robot Search
Area Multiplication) to solve the problem of finding a target whose position isnavin in an unknown
planar environment with multiple robots, and to prove optiity of the MRSAMalgorithm. This is done
by proving that the problem itself belongs to the quadrabmpetitive complexity class and that the
performance oMRSAMbelongs to that class. The notion of competitiveness coesptire performance

When dealing with limited sensors which detects the targentarrival or within a specific constant range from the tavgeich is much
smaller in magnitude than the typical length of the probkerivironment.



of an on-line algorithm to the optimal off-line solution fidre same problem. In particular, an algorithm
for a task P is said to be competitive if its solution to every instancefofis bounded by a constant
time [, [2]. GeneralizedCompetitive Complexitand Competitive Complexity Class@se introduced
and discussed in [3], however, most of the papers dealinlyg @ampetitiveness strive to identify specific
classes of environments in which constant competitiveoasde achieved. In contrast, our objective is to
identify the competitive relationship governing the fufigneral on-line navigation problem for multiple
robots. MRSAMis based on the area doubling strategySodD1 algorithm introduced in [3], which
launches one robot to search for a target whose positionkisawn in an unknown environmen$.AD1
assigns a search disc to the robot, which is doubled at eaph ifthe target is not found.

Recent works related to the subject of mobile multi-robotgiom planning deals with many aspects of
the problem. A major issue is whether the group architedsii@entralized or decentralized, i.e. wether
there is only one control agent, or not. In the second cade rdot is autonomous and there is neither a
centralized component, nor any other global coordinatieeded. Communication is a very close subject,
since, when there is no communication between the robotshenvit is limited, the system cannot be
centralized. Intermediate systems represent real-weatidps better, for example, the semi-decentralized
approach in [4], where robot teams cover the space indepemdeach other, but robots within a team
communicate state and share information. Limited comnaiitin plays an important role when dealing
with ant-like robots, where messages between the robotgamsed mainly or only through marking they
leave on the terrain, [5]. A solution to a problem can charg®aling to the availability of information on
the environment prior to algorithm execution. Online siolng assume no knowledge of the environment
when the algorithm starts, while off-line solutions rely apriori knowledge. An off-line algorithm is
presented in the notable early paper [6], and a new work ih dh@a [7] focuses on robustness, and
completeness of the algorithm. Robustness measures tfogrmpance in case of failures and an algorithm
is considered complete if for any input it correctly repontisether or not there is a solution in a finite
amount of time. A limited-communication complete alganmitis presented in [8]. Our solution is complete
and robust and can be decentralized or centralized, depgoti the setup communication.

The structure and contributions of the paper are as follbwthe next section we state a key assumption
that the robot has a physical siZe such thatD > 0. While this assumption may seem obvious, only
few papers make use of this assumption (e.g. [9], [3]). We gigesent some definitions regarding
competitiveness. In Section Ill we show that for every arelialgorithm, there is a worst case path
that yields a cost which islgpt. The MRSAMalgorithm is presented in Section IV and its competitivenes
is analyzed in Section V. It is shown that the length of thehgedveled by the robot during execution
of MRSAMis at most quadratic if,,:, implying that up to the constant coefficieBRSAMhas optimal
competitiveness. In the same Section (Sec MRSAMis proved to be complete. Simulation results of
MRSAM execution in an office-like environment are described inti8acVl .An extension version of
the algorithm handling multi-target environment is disfgld in Section VII along with some practical
speedups of the algorithm. Finally, we conclude and dis@adshtional research directions and future
work.

[1. BASIC SETUP AND DEFINITION OF COMPETITIVENESS

Our basic assumptions are as follows. Each mobile robot i®elyf moving planar body of siz®,
whereD > 0 is a given constant. One may think of the mobile robots assdi$aiameterD. Each robot
is equipped with three sensors which are assumed ideal. iBhadinsor measures the robot position with
respect to a fixed reference frame. The second sensor is taclgbdetection tactile or short range sensor
which allows tracing of an obstacle boundary. The third sems a target recognition sensor. The robots
use onboard and/or central calculation unit and can comrateiwith each other and/or with a central
base station, at least upon starting and ending of the @rec(the robots or the base station are assumed
to have enough memory for the calculations needed and theyoale in the same uniform velocity.

Next we describe the parameters governing the performaheeobile robot tasks. The three most
significant parameters are physical travel time, on-boanmhputation time, and on-board memory. In



order to simplify the ensuing analysis, we associate paysiavel time with length of the path traveled
by the robot. As for on-board computation time, we limit owsadission to algorithms that take polynomial
time to compute each physical motion step of the robot. Stheetime required for a physical motion
step is typically several orders of magnitudes longer ti@netxecution time of an on-board computation
step, we focus ol as the main performance parameter. Last, we limit the dssongo algorithms whose
storage requirement is at most linear in the size of the enment. This memory requirement may prove
impractical in tasks such as planetary navigation, and neggdno be revised in future work.

Thus! denotes length of the path traveled by the robot whjjedenotes length of the optimal off-line
path. The following definition generalizes the traditionation of linear competitiveness to any functional
relationship betweenh and/,.

Definition 1 (generalized competitivenes#)n on-line algorithm solving a task is f(l,,:)- compet-
itive when! is bounded from above by a scalable functit,,:) over all instances of. In particular,

I < caloge + co is the traditional linear competitiveness, while< czl;fpt + c1lopt + co IS quadratic
competitiveness, where thg's are positive constant coefficients that depend on thetrsize D.

The meaning of scalability is as follows. When performarseceneasured in physical units such as meters
m, one must ensure that both sides of the relationskipf(/,.,:) posses the same units, so that change of
scale would not affect the bound . For instance, the coefiiciein the relationshig < c2l§pt+c1lopt+c0
must have units ofn™!, ¢; must be unitless, and, must have units ofn. Note that the definition of
f(l,pt)-competitiveness focuses on a particular algorithm sglvire task”. However, our objective is to
characterize the lowest upper bound that can be achievedathan-line algorithms forP. This objective
requires a universal lower bound on the performance of allirenalgorithms forP. If the lower and
upper bounds satisfy the same functional relationship, ss@ate the functional relationship with
itself. This notion is made formal in the following definitio

Definition 2 (Competitive Complexity Classk universal lower bound on the competitiveness of a task
P is a lower bound > ¢(I,,) over all on-line algorithms foP. If a competitive upper bound (l,,:)
and a universal lower boung/,,:) for P are the same function up to constant coefficients, this fonct
is the competitive complexity class @f.

The competitive complexity class of a taskis thus a pair of lower and upper bounds on the competitive
performance of all on-line algorithms faoP, such that the two bounds are identical up to constant
coefficients. Note that competitive complexity charaaesithe task itself, not of any specific algorithm
for P. The remainder of the paper characterizes the competitimgptexity class of the multi-robots on-
line navigation problem.

[1l. UNIVERSAL LOWER BOUND

In this section we establish a universal lower bound on thepsditive complexity for the problem of
navigation to a target which is recognized only upon arrivala group of robots. The environment that
serves to establish the lower bound is a disc contaifirgidth corridors that emanate radially from the
start pointS (Figure 1). Initially a small disc centered &tis free of obstacles. At a certain distance
from S eight equally spaced point-size obstacles appear, sutchthteadistance between the obstacles
is D (the number eight has no special meaning here). The eighades extend radially as lines and
form the boundary of eight passable corridors for the rolbbe width of the eight corridors increases
as they stretch radially away fros. When the width of a corridor become®), the corridor splits into
two D-width corridors separated by a cone-shaped obstacler@ifip)). By symmetry all corridors split
simultaneously. Hence the cone obstacles that separaidasrjust before splitting are truncated at the
splitting radius, and become radial lines from this radiog/ard. A close inspection of Figure 1(b) reveals
that the cone obstacles occupy one third of the disc’s totd.aFinally, the tip of each cone obstacle
is symmetrically "shaved”, so that its tip would lie at a diste D away from the truncated cone lying
closer toS (Figure 1(b)). This shaving allows &-size robot to enter the two corridors generated by
splitting. Note that the shaved off area becomes negligiligtive to the cone’s total area as the radius
of the environment increases.



split ¢
when
width
becomes
2D

(b)

(@)

Fig. 1. (a) The radial corridors environment. (b) Close upwif the environment.

The following theorem establishes a quadratic lower bounthe performance of all on line navigation
algorithms for a group of robots to a target whose positiorecgnized only upon arrival.

Lemma 3.1:Let A be any navigation algorithm fot robots in an unknown planar environment to a
target whose position is recognized only upon arrival. Lié the length of the path generated Ayfor
one of the robots, and ldt,; be the length of the optimal off-line path. Thérsatisfies the quadratic

lower bound,
4
[ >

Z 5,019
where D is the robot size and is an arbitrary small positive parameter.

Proof: Consider the corridor environment with the targéfplaced at the end of a distal corridor,
at a distance: from S. Since the robots have no knowledge of the environraedthas no information
whereT" might lie, they must in worst case inspect every corridotuding all distal corridors. (IfA is
deterministic, we can enforce this worst case scenario by Wiatching the behavior ofl, then placing
the target in the last inspected corridorAfis non-deterministic, we can only guarantee that one outcom
of the algorithm would match this worst case scenario.) Bgstmction every distal corridor can be
approached frond along a simple radial path. Moreover, the robots must ewdigtmove twice through
every corridor of the environment - once in order to inspedistal corridor and once in order to exit
the corridor. An exception to this rule is the last corridonigh is considered below. The total area of
the obstacles in the corridor environment is almost onelthirthe disc area, with the approximation
becoming arbitrary close to one third as the disc’s radigseimses. The total area inspected by the robots
is therefore2rr?/3. Since all corridors have a width which is identical to the robots size, the total
length of the path traveled by the robots satisfies in worse ¢he inequality,,; > 47r?/3D — r, where
the substraction of is due to the last corridor which need not be traced backwiardhe best case
where none of the robots travel any part of the path of therotbleots, the total length of the path
traveled by one robot satisfids> 47r?/3nD — r/n. SinceT is placed at a radial distaneefrom S
we have that,,, = r + ¢/, where¢€' is an arbitrary small positive parameter. Substituting /fogives
[ > (47 /3nD)2,, — l,pi/n — € We can write the last inequality ds> 12 ,(c — (Iope/n + €')/12,,), Where

opt opt opt

12

opt



¢ = 4m/3nD. Since the quantity = (I,,/n + ¢')/12,, can be made arbitrarily small for sufficiently large

environments, we obtain the lower bouhd (1 —€)I2,. u

IV. MRSAM ALGORITHM

MRSAMalgorithm launches multiple robots from a common startiojpS and assigns each robpt
to a disc to search for the targétin it, all the discs are concentric arfdis their center. The first robot
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Fig. 2. A group of two robots launched WRSAMsearching for the target.

(7 =1) is designated to the initial disc of arég, and each of the following robots starts its search in a



disc of area larger than the previous disc by a factof af > 1, namely, the areas of the discs will be
So,aS0,a2Sy,02 S, . . .. For example, in Figure 2, robot 1 is initially assigned torskdor the target inside
a disc of areaS; and robot 2 is assigned to search inside a disc of atea After robot 1 completes
covering the entire portion of disc 1 which is accessiblenft, it starts searching for the target inside
disc 3 of arean®S,, in this case, robot 1 will find the target while searching iscd3, before or after
robot 2 completed searching in disc 2 and moved on to disc 4ezf @& S,. Each robot searches for the
target in the accessible portion of the disc allocated to tintil the target is detected, or until the entire
region accessible fron¥' is explored without findingl". The search process in each disc is as follows.
The robot imposes an on line discretization of the contisuanea into a grid of)-size cells [10], [11].
The grid consists only of free cells and is surrounded byigdfrtoccupied cells. The robot executes a
standard area coverage tour on the grid of free cells, wiedarsing each new cell for the target. Once
entering a new cell, the robot additionally scans the neaghly partially occupied cells fot". If the
discretization preserves the connectivity of the accéssiegion (this assumption can be relaxed by a
more sophisticated algorithm that monitors local connégtbreakage), then clearly all free and partially
occupied cells in the region accessible froirare eventually inspected by the robot.

The robots cover the area of the discs until they reach thgeTalf the target was not detected in the
initial disc, the robot is assigned to the next non-occuplext. A formal description of the algorithm
follows.

Basic MRSAM Algorithm:
SensorsA position and orientation sensors. An obstacle detectensar.
Input: A Start pointS, An initial Search Radius,, A group ofn searching robot§ Ry, R, ..., R,}.
Initialization: For each robot?;, j=1,...,n:
Set Multiplication factorar = (n + 1)'/™.
Set current search digg = j,

Set initial search radids-;(p;) = o™ 2 ry.
For each roboyj, Repeat:

1) Execute a coverage tour on the grid contained in the disedifisr;(p,) with center at S.

a) Scan each new free cell and its partially occupied neighblbs for 7.
b) STOP ifT is found.
2) If no new free cell is encountered during i coverage tour: STOP, the target is unreachable.
3) Setp; =p; +j,
Setr;(p;) = « 1
(End of Repeat loop)

Rather than give a formal proof of correctness, we make sofoenal remarks on the algorithm. First,
during the initialization section, after getting the vaduaf n» andr,, each robot can calculate its future
search discs and the corresponding radii, which meanshbBabbots does not need to communicate with
each other till the rest of the execution, apart from a steggignal when the target is found. This implies
a decentralized approach with no or limited communicati®econd, a robot that finished searching a disc
will immediately proceed to the next disc assigned to it. Thgerage tour in step IV can be executed
with a trivial DFS algorithm using linear memory. The aldbm’s average performance can be improved
if each robot covers in each step only those cells which lighenring added to the previous disc, this
is discussed in detail later in this paper. Fourth, if thgehis inaccessible fror§, the algorithm would
stop only when it has completely covered the connected caemgoof the environment containing A
detailed example oMRSAMexecution appears in Section VI.

%This is an important property, since the search area mustteaded in each step in order to reach the target when thettisrgositioned
outside the flrst search disc.

th

ri(p;) = o7 rq is the radius of the®" disc which is assigned to robgt



V. COMPETITIVE COMPLEXITY ANALYSIS OF MRSAM

We now establish an upper bound on the path lengtM&BSAMin terms of/,,. The following
proposition establishes a quadratic competitive uppentan MRSAM.

Proposition 5.1:If the target7 is reachable fronmt, MRSAMfinds the target using robots and the
path length/; traveled by the robot which found the target satisfies thedguie inequality,

2ra™tt 2w

i< P et T

D(a™ —1) D
where D is the robot sizer is the initial search radiugy is the multiplication factor which is a function
of n only, andl,, is the length of the optimal off-line path frorfi to 7". Note that the upper bound is
scalable, in the sense that both summands have units ohlengt

Proof: First consider the case whekg, > 7. In this case the initial search disc area is expanded
at least once before the target is found. Suppose the semcisdxpanded— 1 times until the target is
found (in disci). Since the radius of a disc is increased by a factoy/afat each step, its area increases
in each step by a factor ef. Let Sy, = 72, and letS; denote the total area of the regions inspected by
robot j which found the target after searching findisc$ (these areas include free as well as partially
occupied cells inspected by the robot.), thenis bounded by:

S; <S(E)+SG+n)+SG+2n)+...+53) =
= Oéj_ISQ + Oéj_1+n50 + Oéj_1+2n50 + ...+ Oé(i_l)So.
Substitutingi = j + n(k — 1) yields

l

a(z’—l)SO — aj—1+n(k—1)50.
And thus we get:
Sjgaj_lso + ()éj_1+n50 + ()éj_1+2n50 +...
R Ozj_l—’_n(k_l)S() =

=3 1S5pl(@")° + (07) + (@) + .+ (@) =

n\k j—1 n\k
N e B GO B
a —1 a” —1
j—1( . n\k
<5 @)
a”—1

where we used = o’~!, A = ("), andw = k in the formula:
g\ —1)
(A=1)
Since the disc of radius,,; already contains at least one path fréhio 7', MRSAMfinds the target in a

disc of radius at mos{/al,,. It follows that the area of thé" search disca’~15), satisfies the inequality

o'~'Sy < aml?,,. Substituting this inequality into the bound 6h gives:

G+ AN+ g+ g+ g\ =

j k j k

g < ol (o) 2o ol " 2o

J (an _ 1)ai—1 opt (an _ 1)aj+n(k—1)—1 opt

B ﬁafa"k 2o T 2o

(an . 1)Oé] nka—na—l opt (an . 1)a—na—1 opt
_ma oy wa 2
- 1—aq™" opt a® — 1 opt
an—i—l
2

S< Tl (1)

“k can be considered a global step. In the initial global stepntiiobots search in the first consequent discs, in the next global step
the robots search in the nextconsequent discs and so on.



Now recall thatMRSAMguides the robot only through free grid cells. The total aséahe free grid
cells is at mostS;. Hence the total number of grid cells visited by the robotl@iding repetitive visits),
denotedm, is bounded byn < S;/D?. On line coverage algorithms such as DFS guide the robogalon
a path whose length in cells is at most twice the total numiberid cells. Since each cell has siZe
the total length of the path traveled by the robot;is< 2mD. Thus,

2mra”t

2
lj S 2mD S ESJ < ngpt = C lgpt

where we substituted the inequaliy < ’TO‘ — 12, and C, = O[Ti iS constant per execution since it
depends om alone. Finally, the constant termrrg/D bounds the path length traveled by the robot in
the case wheré,,,< ry. In this case the target is found inside the initial searat aif radiusry. [ |
The following lemma, inspired by [12], asserts that searga anultiplying is indeed an optimal strategy.

Lemma 5.2:The Competitive Complexity oMRSAMis minimal when the multiplication factos
equalsa = (n + 1)/,

Proof: Let n be the number of robots searching for the target, and sugpeskarget was found in
the " disc by robot numbej after covering that disc entirely. The area of tH& disc isS(x) = a*~15,
whereq is the area multiplying factor anél(1) = Sy. The total ares; covered by that robot as obtained
in Eq.(1) is:

n+1

S; < wCyul2%,, whereC,, =

nbopts n n
a” —1
Minimizing for o while taking into account > 1 as explained before, and> 1 for realistic execution,

0 9 (o™ a"(a"=n-1)
3 = 5 m1) - e

Equating with zero yields
a=(n+ 1)

This is an extremum value, a second derivative will checkntiieimality of «,

82 82 an+1

—(C,))==— =

Oa? (Cn) Oa? (a” — 1)

a® — a” — na™)(2na? !t — 2nan!
_( )(2na? ) ®
(a"—1)

Sincea > 1,n > 1, which inpliesa™ — 1 > 0, the denominator of Eq. (2) is always positive, thus the
numerator determines the sign. Ltdenote the numerator. Simplification of E yields,

E =2na®1 + (n2 + n) a™ (o — 1)

Sincea > 1,n > 1 anda™ — 1 > 0, All the terms in the righthand side of the equation abovepastive
and thereforel > 0, which implies that; gets minimal values whea = (n + 1)/, u
Corollary 5.3: MRSAMis complete.

Proof: The first important property established in Proposition &1hat if the targef” is reachable,
MRSAMwill find it. The second property is thaIRSAMwill find the target in a finite and limited time
and is deduced from the bound on the path length introduc&ttaposition 5.1. [ |

In order to compare the performanceMRSAMrunning more than one robot with the performance of
other algorithms running only one robot, we will compare thgper bound on the path lengthof the
robot that found the target faiRSAMwith multi-robot executionn — oc) and for MRSAMexecution



with only one robot(n = 1). This is done by calculating’,, for the two cases above. First, for the case
wheren — oo, it can easily be shown that goes tol,
lim (n +1)7 =1

and thusC,, approached, as well.

n+1 1
lim €, = lim — m

n—00 n—oo o — 1 n—00 n

On the other hand, for the second case, whete1,
a=1+1)""=2

therefore,
21+1 A
Cn = 21 — 1
And thus, )
8m 2mrg
l < Elgpt + D

The last result coincides with previous results of an opitiatgorithm for the same problem with one
robot [3]. It can immediately be seen that wher- co, MRSAMperforms 4 times faster than the optimal
algorithm which solves the same problem using one robohdukl be noted that for the constraints> 1
andn > 1 mentioned abovey is a monotonic rising function and thds, is a monotonic rising function,
as well.

Some more values af andC,, for several cases of are shown in Table I. When using one hundred
robots,C,, approaches one, alMdRSAMmultiplies the performance compared to execution with @it
by a factor of 3.78. Using 4 robot8)/RSAMdoubles the performance and with 13 robots and above it
triples the performance compared to one robot execution.

TABLE |
SOME o AND (', VALUES CORRESPONDING TQ? ENTRIES

n ]l o | G
1 ][ 2 4
1.732 || 2.598
1.495 || 1.869

13 || 1.225|| 1.319
100 || 1.04 || 1.058

Theorem 1:Quadratic competitive complexity class
The online multi-robots navigation problem belongs to thdyatic competitive complexity class.
Proof: A competitive complexity class, as defined in Definition 2fasmed from two bounds, lower
and upper bounds on the competitiveness of a task. Accotdingemma 3.1, the lower bound of the

problem discussed above has a quadratic-competitive exityland is
4

> N a2

L2 5 p ™ o

Since the upper bound aIRSAM, as demonstrated in Proposition 5.1, is also quadratig,in
2mant! 2mre

I < ——1[? 0

1= Dl 1) D

this navigation problem belongs to the quadratic competitomplexity class. [ |




VI. SIMULATION RESULTS

In the following exampleMRSAMalgorithm launched robots from a starting point to search for the
target7 in an unknown office-cubical environmérds depicted in figure 4. The area multiplication factor
for n = 4 is a = 1.495, and/a = 1.223, and in the initial global stez = 1 (local stepi = 1,2, 3,4)
each robot is assigned to one of the first four discs accortlings number. In this early stage of the
algorithm all the robots are assigned to a series of seasds dintil termination. It can be seen that the
target resides in disc 7, which belongs to robot 3, and thattéinget is unreachable to that robot from
disc 7. At first, each robot searches for the target until itecs all the reachable area of the disc it is
assigned to. The area that was not reachable in the curmemt lstit is connected, like the gray areas
depicted in Figure 3(a), will be covered in the next stepdd®d. finishes its local step in the first place
and thus start its next global step € 2) which is local stepi(= 5) searching in disc 5. Now the entire
area of the first disc can be covered, yet some parts of dismbotde covered (Figure 3(b)). In the
next two steps, robot 2 finishes its disc coverage and moves alisc 6 ¢ = 2,7 = 6) (Figure 3(c)),
and robot 3 moves on to disc % & 2,7 = 7) (Figure 3(d)). In both steps, again, some parts cannot
be reached and the target in particular. At last, robot 4hemdhe next global steg: (= 2,7 = 8),
where it moves to search in disc 8, and reaches the targelighah disc 7. We simulated an execution
of MRSAMwith four robots, and compared it to execution with one robontthe same environment,
including common starting and target points and identietial disc./,,; is marked in figure 4 with bold
dashed line. For the initial radiug = 22mm and D = 5mm the simulation results are, the optimal
off-line solutionl,,; = 126.8mm, the path length generated by robot 4, which found the tadjging
MRSAM execution,l; = 12121mm = 0.75l§ptmm, and the path length when running with one robot,
[ = 18730mm = 1.17l§ptmm. These results show thsfRSAMexecution with 4 robots was.545 times
faster than one robot execution. Observing table | one maydeohow coméMRSAMwas not 4 times
faster? The answer lies in the initial radiusthat was chosen in relation to the the distancd’dfom
S (or l,,:) which is discussed in detail in the conclusion. It shouldcbear that the values in table |
are the maximal values and as was seen in this example, thal @erformance, which depends on real
environments and optimal parameter initialization, is estme reduced.

VII. EXTENSIONS AND PRACTICAL SPEEDUPS OFMRSAM

Robustness is an important issue in practical situatiorsvdompletion of the task is a matter of great
significance and the units involved tend to fail or malfuantdue to hardware or software flawdRSAM
is robust in the sense that— 1 out of then robots can cease to work and yet the target will be found
not unboundedly. This robustness is achieved thanks todttetliat each consequent disc is larger and
contains the previous disc, such that if the setup includesncunication between the robotd RSAM
can adjust itself each time a robot fails by recalculating mlew multiplication factorvaccording to the
newn, and if there is no communication between the robots, edsbtwill continue its original search
plan and eventually find the target, producing a longer paigth.

A. MRSAM Extended to Deal with Multiple Targets

The basicMRSAM Algorithm is designed to find a single target whose positisrunmknown in an
unknown environment. The algorithm can easily be extendesbtve a similar problem with more than
one target, with a finite number of targets (a) or with unledinumber of targets in a bounded area (b).
Changing the algorithm is done by removing the directionh® rtobot to STOP after reaching the first
target (a) and (b), and adding a target counter and a direticSTOP after that counter has reached a
specific value (b), both in step 1b. In order to restrain theyeaof search, definition of the limitation on
the number of stepg)(the algorithm should perform before terminating is erdere

5This is merely a quarter of the symmetric environment.
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the robot will perform a full search on the whoiscdFurther improvement to that subcase is

7
i
7
U
%
%

The individual robot in the basiRIRSAMalgorithm is assigned to a disc in which it performsowerage
tour searching for the target. The average performance of tharitligh can be improved by directing
each robot to search only in the ring added to the last didchids already been searched by itself or by

one of the other robots, and that will be done only if the prasidisc connected area was totaly covered,

otherwise,

B. Practical Speedup
discussed in the second paragraph in the Conclusion (&ée¢tid).
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VIIl. CONCLUSION

The notion of competitive complexity classes generalihesttaditional notion of linear competitiveness
to a pair of bounds which up to constant coefficients satibey same functional relationship between
on-line performance and off-line optimal solution. In peutar, we have shown that on-line multi mobile
robot navigation to a target whose position is unknown bgdoto the quadratic competitive complexity
class. TheMRSAMalgorithm achieves the optimal quadratic bound while reqgionly a linear amount
of memory. The basidMRSAM algorithm has been consequently modified in order to exlabihore
efficient average case behavior, which was illustratedficesfike environments. An average performance
comparison of the modifieMRSAMalgorithm in comparison with earlier algorithms is curtgninder
preparation and will be reported later. In addition, we amkwng on an extension tMRSAMwhere
each robot begins it search from a different starting point.

A matter worth mentioning is the fact that the radius of thiahsearch discr, is determined prior
to algorithm execution and it affects the overall path lénghd running time oMRSAM. It should be



noted thatr, is closely related to the position of the targeétand tol,,,. Decreasing in the simulation
corresponds to enlargement of the distanc& dfom S, resulting in more execution steps and thus better
relative performance.

The following are some related open problems for furtheeaesh. First MRSAM assumes tactile
senors. More sophisticated sensors such as vision andskssors do not have a significant advantage on
tactile sensors in highly congested environments. Howeurectical environments tend to be reasonably
sparse, and an adaptationMRSAMto such sensors is an important open problem. Second, thstacin
coefficients in the quadratic upper bound EIRSAMand in the quadratic universal lower bound differ
by values of2(n +1)".

Closing of this gap is a major challenge that can yield nevordtigms that possess the quadratic
competitiveness dfIRSAMbut perform much better on average. Third, the case disdusdbe Practical
Speedup Subsection VII-B, where a robot needs to "returrd partially uncovered previous disc, can be
improved by means of a common environment map which is updatel shared by all the robots. That
way, the robot that needs to make a full disc cover will be d@blealculate the shortest path to return
to the area it didn’t cover. Creating and maintaining a comrgeometric map of the environment that
includes information about the area that was already cdvese save excess searching for the robots and
thus speedup the average performanc®BfSAM.Last, we assumed linear on-board memory. However,
many mobile robot tasks are sufficiently complex as to allawy @onstant memory. Given this stricter
memory limitation, one must re-explore the competitive ptexity class of the basic problem considered
in this paper.
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