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Abstract

We explore an on-line problem where a group of robots has to find a target whose position is unknown
in an unknown planar environment whose geometry is acquiredby the robots during task execution. The critical
parameter in such a problem is the physical motion time, which, under the assumption of uniform velocity of all the
robots, corresponds to length or cost of the path traveled bythe robot which finds the target. TheCompetitiveness
of an online algorithm measures its performance relative tothe optimal off-line solution to the problem. While
competitiveness usually means constant relative performance, this paper uses generalized competitiveness, i.e.
any functional relationship between online performance and optimal off-line solution. Given an online task, its
Competitive Complexity Classis a pair of lower and upper bounds on the competitive performance of all online
algorithms for the task, such that the two bounds satisfy thesame functional relationship. We classify a common
online motion planning problem into competitive class. In particular, it is shown that navigation to a target whose
position is recognized only upon arrival belongs to a quadratic competitive class. This paper describes a new on-line
navigation algorithm, calledMRSAM, which requires linear memory and has a quadratic competitive performance.
Moreover, it is shown that in general any on-line navigationalgorithm must have at least a quadratic competitive
performance. TheMRSAMalgorithm achieves the quadratic lower bound and thus has optimal competitiveness. The
algorithm is improved with some practical speedups and its performance is illustrated in office-like environments.

I. INTRODUCTION

The Problem of finding a target whose position is unknown in anunknown planar environment is very
important in many practical and academic research fields, the most significant are humanitarian robotics,
industry robotics and military robotics. Area coverage is acorresponding task, since the searching unit
will cover a certain area before finding the target1, and when the number of targets in a specific area is
unknown, the whole area must be covered. Examples for the problems above are demining, search/rescue
missions, cleaning supermarkets and train stations, detecting contaminated or radioactive substances in
factories, nuclear reactors or in the open field, planetary exploration and sample acquisition. This paper
is concerned with the aforementioned problem solved by multiple mobile robots.

The most critical parameter in mobile robot motion tasks is the physical travel time rather than on-board
computation time. Under a uniform velocity assumption, travel time corresponds to path length, and under
the assumption of uniform velocity among all the robots, travel time corresponds to the path length of
the robot that found the target, or of any other robot that terminated at the same time the target was
found, since all the robots travel the same path length per time unit. We denote the distance traveled by
each robot,l, and the optimal off-line solutionlopt. Under a uniform power output assumption, travel time
corresponds to path traversibility cost. Hence the algorithm discussed in this paper is classified in terms
of length or cost of the path traveled by one robot during algorithm execution.

In the problem discussed above, using a group of robots can have many advantages over using only
one robot, the most important is the shortening of the total mission time, another advantage is increased
robustness, since the multitude of robots can easily overcome a malfunction in one or more of the units, an
issue associated with redundancy. The decrease of the individual mechanical wear and power consumption
per mission maximizes the life span of each robot and prolongs the whole mission duration and range.
Other advantages concerns maintaining radio connectivitybetween the robots and the base station. Another
advantage of robot groups is a decreased sensor uncertaintydue to merging of overlapping information,
it has been shown in [1], that multiple robots localize themselves more efficiently, especially when they
have different sensor capabilities.

The purpose of this paper is to introduce a new algorithm,MRSAM (short for Multi Robot Search
Area Multiplication) to solve the problem of finding a target whose position is unknown in an unknown
planar environment with multiple robots, and to prove optimality of the MRSAMalgorithm. This is done
by proving that the problem itself belongs to the quadratic competitive complexity class and that the
performance ofMRSAMbelongs to that class. The notion of competitiveness compares the performance

1When dealing with limited sensors which detects the target upon arrival or within a specific constant range from the target which is much
smaller in magnitude than the typical length of the problem’s environment.



of an on-line algorithm to the optimal off-line solution forthe same problem. In particular, an algorithm
for a taskP is said to be competitive if its solution to every instance ofP is bounded by a constant
time lopt [2]. GeneralizedCompetitive Complexityand Competitive Complexity Classesare introduced
and discussed in [3], however, most of the papers dealing with competitiveness strive to identify specific
classes of environments in which constant competitivenesscan be achieved. In contrast, our objective is to
identify the competitive relationship governing the fullygeneral on-line navigation problem for multiple
robots. MRSAM is based on the area doubling strategy ofSAD1 algorithm introduced in [3], which
launches one robot to search for a target whose position is unknown in an unknown environment.SAD1
assigns a search disc to the robot, which is doubled at each step, if the target is not found.

Recent works related to the subject of mobile multi-robots motion planning deals with many aspects of
the problem. A major issue is whether the group architectureis centralized or decentralized, i.e. wether
there is only one control agent, or not. In the second case each robot is autonomous and there is neither a
centralized component, nor any other global coordination needed. Communication is a very close subject,
since, when there is no communication between the robots or when it is limited, the system cannot be
centralized. Intermediate systems represent real-world setups better, for example, the semi-decentralized
approach in [4], where robot teams cover the space independent of each other, but robots within a team
communicate state and share information. Limited communication plays an important role when dealing
with ant-like robots, where messages between the robots arepassed mainly or only through marking they
leave on the terrain, [5]. A solution to a problem can change according to the availability of information on
the environment prior to algorithm execution. Online solutions assume no knowledge of the environment
when the algorithm starts, while off-line solutions rely onapriori knowledge. An off-line algorithm is
presented in the notable early paper [6], and a new work in that area [7] focuses on robustness, and
completeness of the algorithm. Robustness measures the performance in case of failures and an algorithm
is considered complete if for any input it correctly reportswhether or not there is a solution in a finite
amount of time. A limited-communication complete algorithm is presented in [8]. Our solution is complete
and robust and can be decentralized or centralized, depending on the setup communication.

The structure and contributions of the paper are as follows.In the next section we state a key assumption
that the robot has a physical sizeD such thatD > 0. While this assumption may seem obvious, only
few papers make use of this assumption (e.g. [9], [3]). We also present some definitions regarding
competitiveness. In Section III we show that for every on-line algorithm, there is a worst case path
that yields a cost which iscl2opt. TheMRSAMalgorithm is presented in Section IV and its competitiveness
is analyzed in Section V. It is shown that the length of the path traveled by the robot during execution
of MRSAMis at most quadratic inlopt, implying that up to the constant coefficientsMRSAMhas optimal
competitiveness. In the same Section (Sec. V)MRSAM is proved to be complete. Simulation results of
MRSAMexecution in an office-like environment are described in Section VI .An extension version of
the algorithm handling multi-target environment is displayed in Section VII along with some practical
speedups of the algorithm. Finally, we conclude and discussadditional research directions and future
work.

II. BASIC SETUP AND DEFINITION OF COMPETITIVENESS

Our basic assumptions are as follows. Each mobile robot is a freely moving planar body of sizeD,
whereD > 0 is a given constant. One may think of the mobile robots as discs of diameterD. Each robot
is equipped with three sensors which are assumed ideal. The first sensor measures the robot position with
respect to a fixed reference frame. The second sensor is an obstacle detection tactile or short range sensor
which allows tracing of an obstacle boundary. The third sensor is a target recognition sensor. The robots
use onboard and/or central calculation unit and can communicate with each other and/or with a central
base station, at least upon starting and ending of the execution. The robots or the base station are assumed
to have enough memory for the calculations needed and they all move in the same uniform velocity.

Next we describe the parameters governing the performance of mobile robot tasks. The three most
significant parameters are physical travel time, on-board computation time, and on-board memory. In



order to simplify the ensuing analysis, we associate physical travel time with lengthl of the path traveled
by the robot. As for on-board computation time, we limit our discussion to algorithms that take polynomial
time to compute each physical motion step of the robot. Sincethe time required for a physical motion
step is typically several orders of magnitudes longer than the execution time of an on-board computation
step, we focus onl as the main performance parameter. Last, we limit the discussion to algorithms whose
storage requirement is at most linear in the size of the environment. This memory requirement may prove
impractical in tasks such as planetary navigation, and may need to be revised in future work.

Thusl denotes length of the path traveled by the robot whilelopt denotes length of the optimal off-line
path. The following definition generalizes the traditionalnotion of linear competitiveness to any functional
relationship betweenl and lopt.

Definition 1 (generalized competitiveness):An on-line algorithm solving a taskP is f(lopt)- compet-
itive when l is bounded from above by a scalable functionf(lopt) over all instances ofP . In particular,
l ≤ c1lopt + c0 is the traditional linear competitiveness, whilel ≤ c2l

2
opt + c1lopt + c0 is quadratic

competitiveness, where theci’s are positive constant coefficients that depend on the robot sizeD.
The meaning of scalability is as follows. When performance is measured in physical units such as meters
m, one must ensure that both sides of the relationshipl ≤ f(lopt) posses the same units, so that change of
scale would not affect the bound . For instance, the coefficient c2 in the relationshipl ≤ c2l

2
opt +c1lopt +c0

must have units ofm−1, c1 must be unitless, andc0 must have units ofm. Note that the definition of
f(lopt)-competitiveness focuses on a particular algorithm solving the taskP . However, our objective is to
characterize the lowest upper bound that can be achieved over all on-line algorithms forP . This objective
requires a universal lower bound on the performance of all on-line algorithms forP . If the lower and
upper bounds satisfy the same functional relationship, we associate the functional relationship withP
itself. This notion is made formal in the following definition.

Definition 2 (Competitive Complexity Class):A universal lower bound on the competitiveness of a task
P is a lower boundl ≥ g(lopt) over all on-line algorithms forP . If a competitive upper boundf(lopt)
and a universal lower boundg(lopt) for P are the same function up to constant coefficients, this function
is the competitive complexity class ofP .

The competitive complexity class of a taskP is thus a pair of lower and upper bounds on the competitive
performance of all on-line algorithms forP , such that the two bounds are identical up to constant
coefficients. Note that competitive complexity characterizes the taskP itself, not of any specific algorithm
for P . The remainder of the paper characterizes the competitive complexity class of the multi-robots on-
line navigation problem.

III. U NIVERSAL LOWER BOUND

In this section we establish a universal lower bound on the competitive complexity for the problem of
navigation to a target which is recognized only upon arrivalby a group of robots. The environment that
serves to establish the lower bound is a disc containingD-width corridors that emanate radially from the
start pointS (Figure 1). Initially a small disc centered atS is free of obstacles. At a certain distance
from S eight equally spaced point-size obstacles appear, such that the distance between the obstacles
is D (the number eight has no special meaning here). The eight obstacles extend radially as lines and
form the boundary of eight passable corridors for the robot.The width of the eight corridors increases
as they stretch radially away fromS. When the width of a corridor becomes2D, the corridor splits into
two D-width corridors separated by a cone-shaped obstacle (Figure 1(b)). By symmetry all corridors split
simultaneously. Hence the cone obstacles that separate corridors just before splitting are truncated at the
splitting radius, and become radial lines from this radius onward. A close inspection of Figure 1(b) reveals
that the cone obstacles occupy one third of the disc’s total area. Finally, the tip of each cone obstacle
is symmetrically ”shaved”, so that its tip would lie at a distanceD away from the truncated cone lying
closer toS (Figure 1(b)). This shaving allows aD-size robot to enter the two corridors generated by
splitting. Note that the shaved off area becomes negligiblerelative to the cone’s total area as the radius
of the environment increases.



Fig. 1. (a) The radial corridors environment. (b) Close up view of the environment.

The following theorem establishes a quadratic lower bound on the performance of all on line navigation
algorithms for a group of robots to a target whose position isrecognized only upon arrival.

Lemma 3.1:Let A be any navigation algorithm forn robots in an unknown planar environment to a
target whose position is recognized only upon arrival. Letl be the length of the path generated byA for
one of the robots, and letlopt be the length of the optimal off-line path. Thenl satisfies the quadratic
lower bound,

l ≥ 4π

3nD
(1 − ǫ)l2opt

whereD is the robot size andǫ is an arbitrary small positive parameter.
Proof: Consider the corridor environment with the targetT placed at the end of a distal corridor,

at a distancer from S. Since the robots have no knowledge of the environmentand has no information
whereT might lie, they must in worst case inspect every corridor including all distal corridors. (IfA is
deterministic, we can enforce this worst case scenario by first watching the behavior ofA, then placing
the target in the last inspected corridor. IfA is non-deterministic, we can only guarantee that one outcome
of the algorithm would match this worst case scenario.) By construction every distal corridor can be
approached fromS along a simple radial path. Moreover, the robots must eventually move twice through
every corridor of the environment - once in order to inspect adistal corridor and once in order to exit
the corridor. An exception to this rule is the last corridor which is considered below. The total area of
the obstacles in the corridor environment is almost one third of the disc area, with the approximation
becoming arbitrary close to one third as the disc’s radius increases. The total area inspected by the robots
is therefore2πr2/3. Since all corridors have a widthD which is identical to the robots size, the total
length of the path traveled by the robots satisfies in worst case the inequalityltot ≥ 4πr2/3D − r, where
the substraction ofr is due to the last corridor which need not be traced backward.In the best case
where none of the robots travel any part of the path of the other robots, the total length of the path
traveled by one robot satisfiesl ≥ 4πr2/3nD − r/n. SinceT is placed at a radial distancer from S
we have thatlopt = r + ǫ′, where ǫ′ is an arbitrary small positive parameter. Substituting forr gives
l ≥ (4π/3nD)l2opt − lopt/n − ǫ′ .We can write the last inequality asl ≥ l2opt(c − (lopt/n + ǫ′)/l2opt), where



c = 4π/3nD. Since the quantityǫ = (lopt/n + ǫ′)/l2opt can be made arbitrarily small for sufficiently large
environments, we obtain the lower boundl ≥ c(1 − ǫ)l2opt.

IV. MRSAM A LGORITHM

MRSAMalgorithm launches multiple robots from a common starting point S and assigns each robotj
to a disc to search for the targetT in it, all the discs are concentric andS is their center. The first robot

S

T

D1

2

disc1 
searched
by robot1

disc2 
searched
by robot2

0r

0rα

0
)2/1( rα

disc3 
searched by
robot1 in the
second step

Fig. 2. A group of two robots launched byMRSAMsearching for the target.

(j = 1) is designated to the initial disc of areaS0, and each of the following robots starts its search in a



disc of area larger than the previous disc by a factor of2 α > 1, namely, the areas of the discs will be
S0,αS0,α2S0,α3S0 . . . . For example, in Figure 2, robot 1 is initially assigned to search for the target inside
a disc of areaS0 and robot 2 is assigned to search inside a disc of areaαS0. After robot 1 completes
covering the entire portion of disc 1 which is accessible from S, it starts searching for the target inside
disc 3 of areaα2S0, in this case, robot 1 will find the target while searching in disc 3, before or after
robot 2 completed searching in disc 2 and moved on to disc 4 of areaα3S0. Each robot searches for the
target in the accessible portion of the disc allocated to himuntil the target is detected, or until the entire
region accessible fromS is explored without findingT . The search process in each disc is as follows.
The robot imposes an on line discretization of the continuous area into a grid ofD-size cells [10], [11].
The grid consists only of free cells and is surrounded by partially occupied cells. The robot executes a
standard area coverage tour on the grid of free cells, while scanning each new cell for the target. Once
entering a new cell, the robot additionally scans the neighboring partially occupied cells forT . If the
discretization preserves the connectivity of the accessible region (this assumption can be relaxed by a
more sophisticated algorithm that monitors local connectivity breakage), then clearly all free and partially
occupied cells in the region accessible fromS are eventually inspected by the robot.

The robots cover the area of the discs until they reach the Target. If the target was not detected in the
initial disc, the robot is assigned to the next non-occupieddisc. A formal description of the algorithm
follows.

Basic MRSAM Algorithm:
Sensors:A position and orientation sensors. An obstacle detection sensor.
Input: A Start pointS, An initial Search Radiusr0, A group ofn searching robots{R1, R2, . . . , Rn}.
Initialization: For each robotRj , j = 1, . . . , n:

Set Multiplication factorα = (n + 1)1/n.
Set current search discpj = j,

Set initial search radius3 rj(pj) = α
pj−1

2 r0.
For each robotj, Repeat:

1) Execute a coverage tour on the grid contained in the disc ofradiusrj(pj) with center at S.
a) Scan each new free cell and its partially occupied neighbor cells for T .
b) STOP ifT is found.

2) If no new free cell is encountered during theith coverage tour: STOP, the target is unreachable.
3) Setpj = pj + j,

Set rj(pj) = α
pj−1

2 r0

(End of Repeat loop)
Rather than give a formal proof of correctness, we make some informal remarks on the algorithm. First,

during the initialization section, after getting the values of n and r0, each robot can calculate its future
search discs and the corresponding radii, which means that the robots does not need to communicate with
each other till the rest of the execution, apart from a stopping signal when the target is found. This implies
a decentralized approach with no or limited communication.Second, a robot that finished searching a disc
will immediately proceed to the next disc assigned to it. Thecoverage tour in step IV can be executed
with a trivial DFS algorithm using linear memory. The algorithm’s average performance can be improved
if each robot covers in each step only those cells which lie inthe ring added to the previous disc, this
is discussed in detail later in this paper. Fourth, if the target is inaccessible fromS, the algorithm would
stop only when it has completely covered the connected component of the environment containingS. A
detailed example ofMRSAMexecution appears in Section VI.

2This is an important property, since the search area must be extended in each step in order to reach the target when the target is positioned
outside the first search disc.

3rj(pj) = α
pj−1

2 r0 is the radius of theith disc which is assigned to robotj.



V. COMPETITIVE COMPLEXITY ANALYSIS OF MRSAM

We now establish an upper bound on the path length ofMRSAM in terms of lopt. The following
proposition establishes a quadratic competitive upper bound onMRSAM.

Proposition 5.1: If the targetT is reachable fromS, MRSAMfinds the target usingn robots and the
path lengthlj traveled by the robot which found the target satisfies the quadratic inequality,

lj <
2παn+1

D(αn − 1)
l2opt +

2πr2
0

D

whereD is the robot size,r0 is the initial search radius,α is the multiplication factor which is a function
of n only, andlopt is the length of the optimal off-line path fromS to T . Note that the upper bound is
scalable, in the sense that both summands have units of length.

Proof: First consider the case wherelopt > r0. In this case the initial search disc area is expanded
at least once before the target is found. Suppose the search disc is expandedi−1 times until the target is
found (in disci). Since the radius of a disc is increased by a factor of

√
α at each step, its area increases

in each step by a factor ofα. Let S0 = πr2
0, and letSj denote the total area of the regions inspected by

robot j which found the target after searching ink discs4 (these areas include free as well as partially
occupied cells inspected by the robot.), thenSj is bounded by:

Sj ≤ S(j) + S(j + n) + S(j + 2n) + ... + S(i) =

= αj−1S0 + αj−1+nS0 + αj−1+2nS0 + ... + α(i−1)S0.

Substitutingi = j + n(k − 1) yields

α(i−1)S0 = αj−1+n(k−1)S0.

And thus we get:

Sj≤αj−1S0 + αj−1+nS0 + αj−1+2nS0 + . . .

. . . + αj−1+n(k−1)S0 =

=αj−1S0[(α
n)0 + (αn)1 + (αn)2 + . . . + (αn)k−1] =

=αj−1S0
(αn)k − 1

αn − 1
= S0

αj−1(αn)k − 1

αn − 1
≤

≤S0
αj−1(αn)k

αn − 1
,

where we usedq = αj−1, λ = (αn), andw = k in the formula:

q + qλ + qλ2 + qλ3 + ... + qλw−1 =
q(λw − 1)

(λ − 1)
.

Since the disc of radiuslopt already contains at least one path fromS to T , MRSAMfinds the target in a
disc of radius at most

√
αlopt. It follows that the area of theith search disc,αi−1S0, satisfies the inequality

αi−1S0 < απl2opt. Substituting this inequality into the bound onSj gives:

Sj<
παj(αn)k

(αn − 1)αi−1 l2opt =
παjαnk

(αn − 1)αj+n(k−1)−1
l2opt =

=
παjαnk

(αn − 1)αjαnkα−nα−1 l2opt =
π

(αn − 1)α−nα−1 l2opt =

=
πα

1 − α−n l2opt =
παn+1

αn − 1
l2opt

Sj< π
αn+1

αn − 1
l2opt (1)

4k can be considered a global step. In the initial global step the n robots search in the firstn consequent discs, in the next global step
the robots search in the nextn consequent discs and so on.



Now recall thatMRSAMguides the robot only through free grid cells. The total areaof the free grid
cells is at mostSj. Hence the total number of grid cells visited by the robot (including repetitive visits),
denotedm, is bounded bym ≤ Sj/D

2. On line coverage algorithms such as DFS guide the robot along
a path whose length in cells is at most twice the total number of grid cells. Since each cell has sizeD,
the total length of the path traveled by the robot islj ≤ 2mD. Thus,

lj ≤ 2mD ≤ 2

D
Sj <

2παn+1

D(αn − 1)
l2opt = Cn

2π

D
l2opt

where we substituted the inequalitySj < παn+1

αn
−1

l2opt, and Cn = αn+1

αn
−1

is constant per execution since it
depends onn alone. Finally, the constant term2πr2

0/D bounds the path length traveled by the robot in
the case wherelopt≤ r0. In this case the target is found inside the initial search disc of radiusr0.
The following lemma, inspired by [12], asserts that search area multiplying is indeed an optimal strategy.

Lemma 5.2:The Competitive Complexity ofMRSAM is minimal when the multiplication factorα
equalsα = (n + 1)1/n.

Proof: Let n be the number of robots searching for the target, and supposethe target was found in
the ith disc by robot numberj after covering that disc entirely. The area of thexth disc isS(x) = αx−1S0

whereα is the area multiplying factor andS(1) = S0. The total areaSj covered by that robot as obtained
in Eq.(1) is:

Sj < πCnl
2
opt, whereCn =

αn+1

αn − 1

Minimizing for α while taking into accountα > 1 as explained before, andn ≥ 1 for realistic execution,

∂

∂α
(Cn) =

∂

∂α

(

αn+1

αn − 1

)

=
αn (αn − n − 1)

(αn − 1)2

Equating with zero yields
α = (n + 1)1/n.

This is an extremum value, a second derivative will check theminimality of α,

∂2

∂α2
(Cn)=

∂2

∂α2

(

αn+1

αn − 1

)

=

=
(α2n − αn − nαn)(2nα2n−1 − 2nαn−1)

(αn − 1)4
(2)

Sinceα > 1, n ≥ 1, which inpliesαn − 1 > 0, the denominator of Eq. (2) is always positive, thus the
numerator determines the sign. LetE denote the numerator. Simplification of E yields,

E = 2nα2n−1 +
(

n2 + n
)

αn−1 (α2n − 1)

Sinceα > 1, n ≥ 1 andαn −1 > 0, All the terms in the righthand side of the equation above arepositive
and thereforeE > 0, which implies thatlj gets minimal values whenα = (n + 1)1/n.

Corollary 5.3: MRSAMis complete.
Proof: The first important property established in Proposition 5.1, is that if the targetT is reachable,

MRSAMwill find it. The second property is thatMRSAMwill find the target in a finite and limited time
and is deduced from the bound on the path length introduced inProposition 5.1.

In order to compare the performance ofMRSAMrunning more than one robot with the performance of
other algorithms running only one robot, we will compare theupper bound on the path lengthlj of the
robot that found the target forMRSAMwith multi-robot execution(n → ∞) and forMRSAMexecution



with only one robot(n = 1). This is done by calculatingCn for the two cases above. First, for the case
wheren → ∞, it can easily be shown thatα goes to1,

lim
n→∞

(n + 1)
1

n = 1

and thus,Cn approaches1, as well.

lim
n→∞

Cn = lim
n→∞

αn+1

αn − 1
= lim

n→∞

n + 1

n
= 1

On the other hand, for the second case, wheren = 1,

α = (1 + 1)1/1 = 2

therefore,

Cn =
21+1

21 − 1
= 4

And thus,

l <
8π

D
l2opt +

2πr2
0

D

The last result coincides with previous results of an optimal algorithm for the same problem with one
robot [3]. It can immediately be seen that whenn → ∞, MRSAMperforms 4 times faster than the optimal
algorithm which solves the same problem using one robot. It should be noted that for the constraintsα > 1
andn ≥ 1 mentioned above,α is a monotonic rising function and thusCn is a monotonic rising function,
as well.

Some more values ofα andCn for several cases ofn are shown in Table I. When using one hundred
robots,Cn approaches one, andMRSAMmultiplies the performance compared to execution with one robot
by a factor of 3.78. Using 4 robots,MRSAMdoubles the performance and with 13 robots and above it
triples the performance compared to one robot execution.

TABLE I

SOME α AND Cn VALUES CORRESPONDING TOn ENTRIES

n α Cn

1 2 4

2 1.732 2.598

4 1.495 1.869

13 1.225 1.319

100 1.04 1.058

Theorem 1:Quadratic competitive complexity class
The online multi-robots navigation problem belongs to the quadratic competitive complexity class.

Proof: A competitive complexity class, as defined in Definition 2, isformed from two bounds, lower
and upper bounds on the competitiveness of a task. Accordingto Lemma 3.1, the lower bound of the
problem discussed above has a quadratic-competitive complexity and is

l ≥ 4π

3nD
(1 − ǫ)l2opt

Since the upper bound ofMRSAM, as demonstrated in Proposition 5.1, is also quadratic inlopt,

lj <
2παn+1

D(αn − 1)
l2opt +

2πr2
0

D

this navigation problem belongs to the quadratic competitive complexity class.



VI. SIMULATION RESULTS

In the following exampleMRSAMalgorithm launches4 robots from a starting pointS to search for the
targetT in an unknown office-cubical environment5 as depicted in figure 4. The area multiplication factor
for n = 4 is α = 1.495, and

√
α = 1.223, and in the initial global stepk = 1 (local stepi = 1, 2, 3, 4)

each robot is assigned to one of the first four discs accordingto its number. In this early stage of the
algorithm all the robots are assigned to a series of search discs until termination. It can be seen that the
target resides in disc 7, which belongs to robot 3, and that the target is unreachable to that robot from
disc 7. At first, each robot searches for the target until it covers all the reachable area of the disc it is
assigned to. The area that was not reachable in the current step, but is connected, like the gray areas
depicted in Figure 3(a), will be covered in the next steps. Robot 1 finishes its local step in the first place
and thus start its next global step (k = 2) which is local step (i = 5) searching in disc 5. Now the entire
area of the first disc can be covered, yet some parts of disc 5 cannot be covered (Figure 3(b)). In the
next two steps, robot 2 finishes its disc coverage and moves onto disc 6 (k = 2, i = 6) (Figure 3(c)),
and robot 3 moves on to disc 7 (k = 2, i = 7) (Figure 3(d)). In both steps, again, some parts cannot
be reached and the target in particular. At last, robot 4 reaches the next global step (k = 2, i = 8),
where it moves to search in disc 8, and reaches the target thatlies in disc 7. We simulated an execution
of MRSAM with four robots, and compared it to execution with one roboton the same environment,
including common starting and target points and identical initial disc. lopt is marked in figure 4 with bold
dashed line. For the initial radiusr0 = 22mm and D = 5mm the simulation results are, the optimal
off-line solution lopt = 126.8mm, the path length generated by robot 4, which found the target, during
MRSAMexecution,lj = 12121mm = 0.75l2optmm, and the path length when running with one robot,
l = 18730mm = 1.17l2optmm. These results show thatMRSAMexecution with 4 robots was1.545 times
faster than one robot execution. Observing table I one may wonder how comeMRSAMwas not 4 times
faster? The answer lies in the initial radiusr0 that was chosen in relation to the the distance ofT from
S (or lopt) which is discussed in detail in the conclusion. It should beclear that the values in table I
are the maximal values and as was seen in this example, the actual performance, which depends on real
environments and optimal parameter initialization, is sometime reduced.

VII. EXTENSIONS AND PRACTICAL SPEEDUPS OFMRSAM

Robustness is an important issue in practical situations when completion of the task is a matter of great
significance and the units involved tend to fail or malfunction due to hardware or software flaws.MRSAM
is robust in the sense thatn − 1 out of then robots can cease to work and yet the target will be found
not unboundedly. This robustness is achieved thanks to the fact that each consequent disc is larger and
contains the previous disc, such that if the setup includes communication between the robots,MRSAM
can adjust itself each time a robot fails by recalculating the new multiplication factorαaccording to the
new n, and if there is no communication between the robots, each robot will continue its original search
plan and eventually find the target, producing a longer path length.

A. MRSAM Extended to Deal with Multiple Targets

The basicMRSAM Algorithm is designed to find a single target whose position is unknown in an
unknown environment. The algorithm can easily be extended to solve a similar problem with more than
one target, with a finite number of targets (a) or with unlimited number of targets in a bounded area (b).
Changing the algorithm is done by removing the direction to the robot to STOP after reaching the first
target (a) and (b), and adding a target counter and a direction to STOP after that counter has reached a
specific value (b), both in step 1b. In order to restrain the range of search, definition of the limitation on
the number of steps (i) the algorithm should perform before terminating is entered.

5This is merely a quarter of the symmetric environment.
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Fig. 3. Four steps ofMRSAMexecution. The gray area is the unreachable parts of the disc’s robot in each step.

B. Practical Speedup

The individual robot in the basicMRSAMalgorithm is assigned to a disc in which it performs acoverage
tour searching for the target. The average performance of the algorithm can be improved by directing
each robot to search only in the ring added to the last disc that has already been searched by itself or by
one of the other robots, and that will be done only if the previous disc connected area was totaly covered,
otherwise, the robot will perform a full search on the whole disc. Further improvement to that subcase is
discussed in the second paragraph in the Conclusion (Section VIII).
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VIII. C ONCLUSION

The notion of competitive complexity classes generalizes the traditional notion of linear competitiveness
to a pair of bounds which up to constant coefficients satisfy the same functional relationship between
on-line performance and off-line optimal solution. In particular, we have shown that on-line multi mobile
robot navigation to a target whose position is unknown belongs to the quadratic competitive complexity
class. TheMRSAMalgorithm achieves the optimal quadratic bound while requiring only a linear amount
of memory. The basicMRSAM algorithm has been consequently modified in order to exhibita more
efficient average case behavior, which was illustrated in office-like environments. An average performance
comparison of the modifiedMRSAMalgorithm in comparison with earlier algorithms is currently under
preparation and will be reported later. In addition, we are working on an extension toMRSAMwhere
each robot begins it search from a different starting point.

A matter worth mentioning is the fact that the radius of the initial search discr0, is determined prior
to algorithm execution and it affects the overall path length and running time ofMRSAM. It should be



noted thatr0 is closely related to the position of the targetT and tolopt. Decreasingr0 in the simulation
corresponds to enlargement of the distance ofT from S, resulting in more execution steps and thus better
relative performance.

The following are some related open problems for further research. First,MRSAM assumes tactile
senors. More sophisticated sensors such as vision and lasersensors do not have a significant advantage on
tactile sensors in highly congested environments. However, practical environments tend to be reasonably
sparse, and an adaptation ofMRSAMto such sensors is an important open problem. Second, the constant
coefficients in the quadratic upper bound onMRSAMand in the quadratic universal lower bound differ
by values of3

2
(n + 1)

n+1

n .
Closing of this gap is a major challenge that can yield new algorithms that possess the quadratic

competitiveness ofMRSAMbut perform much better on average. Third, the case discussed in the Practical
Speedup Subsection VII-B, where a robot needs to ”return” toa partially uncovered previous disc, can be
improved by means of a common environment map which is updated and shared by all the robots. That
way, the robot that needs to make a full disc cover will be ableto calculate the shortest path to return
to the area it didn’t cover. Creating and maintaining a common geometric map of the environment that
includes information about the area that was already covered can save excess searching for the robots and
thus speedup the average performance ofMRSAM.Last, we assumed linear on-board memory. However,
many mobile robot tasks are sufficiently complex as to allow only constant memory. Given this stricter
memory limitation, one must re-explore the competitive complexity class of the basic problem considered
in this paper.
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