
MRSAM: A Quadratically Competitive Multi-Robot
Online Navigation Algorithm

Shahar Sarid and Amir Shapiro
Department of Mechanical Engineering

Ben Gurion University of the Negev, Israel

{sarids,ashapiro}@bgu.ac.il

Yoav Gabriely
Department of Mechanical Engineering

Technion, Israel Institute of Technology

meeryg@tx.technion.ac.il

Abstract— We explore an online problem where a group of
robots has to find a target whose position is unknown in an
unknown planar environment whose geometry is acquired by
the robots during task execution. The critical parameter in
such a problem is the physical motion time, which, under the
assumption of uniform velocity of all the robots, corresponds
to length or cost of the path traveled by the robot which finds
the target. The Competitiveness of an online algorithm measures
its performance relative to the optimal offline solution to the
problem. While competitiveness usually means constant relative
performance, this paper uses generalized competitiveness, i.e. any
functional relationship between online performance and optimal
offline solution. Given an online task, its Competitive Complexity
Class is a pair of lower and upper bounds on the competitive
performance of all online algorithms for the task, such that the
two bounds satisfy the same functional relationship. We classify
a common online motion planning problem into competitive
class. In particular, it is shown that group of robots navigation
to a target whose position is recognized only upon arrival
belongs to a quadratic competitive class. This paper describes
a new online navigation algorithm, called MRSAM (short for
Multi-Robot Search Area Multiplication), which requires linear
memory and has a quadratic competitive performance. Moreover,
it is shown that in general any online navigation algorithm
must have at least a quadratic competitive performance. The
MRSAM algorithm achieves the quadratic lower bound and thus
has optimal competitiveness. The algorithm’s performance is
illustrated in an office-like environments.

I. INTRODUCTION

The Problem of finding a target whose position is unknown

in an unknown planar environment is very important in many

practical and academic research fields, the most significant are

industry robotics, humanitarian robotics and military robotics

where demining is a good example for the last two. In

such problems, area coverage is a corresponding task since

the searching unit will cover a certain area before finding

the target,1 An extended problem deals with multiple tar-

gets whose position is unknown, examples are search/rescue

missions, cleaning supermarkets and train stations, detecting

contaminated or radioactive substances in factories, nuclear

reactors or in the open field, planetary exploration and sample

acquisition. This paper is concerned with the aforementioned

problem solved by multiple mobile robots.

1Assuming a finite non zero sized robot equipped with target detection
sensors which detect the target upon arrival or within a specific constant
range from it. This specific range is at least in order of magnitude smaller
than the distance between the start and target points.

The most critical parameter in mobile robot motion tasks is

the physical travel time rather than onboard computation time.

Under a uniform velocity assumption, travel time corresponds

to path length, and under the assumption of uniform velocity

among all the robots, travel time corresponds to the path

length of the robot that found the target, or of any other

robot that terminated at the same time the target was found,

since all the robots travel the same path length per time unit.

We denote the distance traveled by each robot, l, and the

optimal offline solution lopt. Under a uniform power output

assumption, travel time corresponds to path traversibility cost.

Hence the algorithm discussed in this paper is classified in

terms of length or cost of the path traveled by one robot during

algorithm execution.

In the problem discussed above, using a group of robots

can have many advantages over using only one robot, the

most important is the shortening of the total mission time,

another advantage is increased robustness, since the multitude

of robots can easily overcome a malfunction in one or more of

the units, an issue associated with redundancy. The decrease

of the individual mechanical wear and power consumption per

mission maximizes the life span of each robot and prolongs the

whole mission duration and range. Other advantages concerns

maintaining radio connectivity between the robots and the

base station, as well as a decreased sensor uncertainty due

to merging of overlapping information. it has been shown in

[1], that multiple robots localize themselves more efficiently,

especially when they have different sensor capabilities.

The purpose of this paper is to introduce a new algorithm,

MRSAM, to solve the problem of finding a target whose

position is unknown in an unknown planar environment with

multiple robots, and to prove optimality of the MRSAM
algorithm. This is done by proving that the problem itself

belongs to the quadratic competitive complexity class and that

the performance of MRSAM belongs to that class. The notion

of competitiveness compares the performance of an online

algorithm to the optimal offline solution for the same problem.

In particular, an algorithm for a task P is said to be competitive

if its solution to every instance of P is bounded by a constant

times lopt [2]. Generalized Competitive Complexity and Com-
petitive Complexity Classes are introduced and discussed in

[3], however, most of the papers dealing with competitiveness

strive to identify specific classes of environments in which



constant competitiveness can be achieved. In contrast, our

objective is to identify the competitive relationship governing

the fully general online navigation problem for multiple robots.

MRSAM is based on the area doubling strategy of SAD1
algorithm introduced in [3], which launches one robot to

search for a target whose position is unknown in an unknown

environment. SAD1 assigns a search disc to the robot, which

is doubled at each step, if the target is not found.

Recent works related to the subject of mobile multi-robot

motion planning deals with many aspects of the problem. A

major issue is whether the group architecture is centralized

or decentralized, i.e. wether there is only one control agent,

or not. In the second case each robot is autonomous and

there is neither a centralized component, nor any other global

coordination needed. Communication is highly related to this

subject, since, when there is no communication between the

robots or when it is limited, the system cannot be central-

ized. Intermediate systems represent real-world setups better,

for example, the semi-decentralized approach in [4], where

robot teams cover the space independent of each other, but

robots within a team communicate state and share information.

Limited communication plays an important role when dealing

with ant-like robots, where messages between the robots are

passed mainly or only through marking they leave on the

terrain, [5]. A solution to a problem can change according

to the availability of information on the environment prior to

algorithm execution. Online solutions assume no knowledge

of the environment when the algorithm starts, while offline

solutions rely on apriori knowledge. An offline algorithm is

presented in the notable early paper [6], and a new work in

that area [7] focuses on robustness, and completeness of the

algorithm. Robustness measures the performance in case of

failures and an algorithm is considered complete if for any

input it correctly reports whether or not there is a solution in

a finite amount of time. A limited-communication complete

algorithm is presented in [8]. Our solution is complete and

robust and can be decentralized or centralized, depending on

the communication setup.

The structure and contributions of the paper are as follows.

In the next section we state a key assumption that the robot has

a physical size D such that D > 0. While this assumption may

seem obvious, only few papers make use of this assumption

(e.g. [9], [3]). We also present some definitions regarding

competitiveness. In Section III we show that for every online

algorithm, there is a worst case path that yields a cost which

is cl2opt, where c is a constant. The MRSAM algorithm is

presented in Section IV and its competitiveness is analyzed

in Section V. It is shown that the length of the path traveled

by the robot during execution of MRSAM is at most quadratic

in lopt, implying that up to the constant coefficients MRSAM
has optimal competitiveness. In the same Section (Sec. V)

MRSAM is proved to be complete. Simulation results of

MRSAM execution in an office-like environment are described

in Section VI. Finally, we conclude and discuss additional

research directions and future work.

II. BASIC SETUP AND DEFINITION OF COMPETITIVENESS

Our basic assumptions are as follows. Each mobile robot is

a freely moving planar body of size D, where D > 0 is a

given constant. One may think of the mobile robots as discs of

diameter D. Each robot is equipped with three sensors which

are assumed ideal. The first sensor measures the robot position

with respect to a fixed reference frame. The second sensor

is an obstacle detection tactile or short range sensor which

allows tracing of an obstacle boundary. The third sensor is

a target recognition sensor. The robots use onboard and/or

central calculation unit and can communicate with each other

and/or with a central base station, at least upon starting and

ending of the execution. The robots or the base station are

assumed to have enough memory for the calculations needed

and they all move in the same uniform velocity.

Next we describe the parameters governing the performance

of mobile robot tasks. The three most significant parame-

ters are physical travel time, onboard computation time, and

onboard memory. In order to simplify the ensuing analysis,

we associate physical travel time with length l of the path

traveled by the robot. As for onboard computation time, we

limit our discussion to algorithms that take polynomial time to

compute each physical motion step of the robot. Since the time

required for a physical motion step is typically several orders

of magnitudes longer than the execution time of an onboard

computation step, we focus on l as the main performance

parameter. Last, we limit the discussion to algorithms whose

storage requirement is at most linear in the size of the

environment. This memory requirement may prove impractical

in tasks such as planetary navigation, and may need to be

revised in future work.

Thus l denotes length of the path traveled by the robot

while lopt denotes length of the optimal offline path. The

following definition generalizes the traditional notion of linear

competitiveness to any functional relationship between l and

lopt.

Definition 1 (Generalized Competitiveness): An online al-

gorithm solving a task P is f(lopt)-competitive when l is

bounded from above by a scalable function f(lopt) over all

instances of P . In particular, l ≤ c1lopt + c0 is the traditional

linear competitiveness, while l ≤ c2l
2
opt + c1lopt + c0 is

quadratic competitiveness, where the ci’s are positive constant

coefficients that depend on the robot size D.

The meaning of scalability is as follows. When performance

is measured in physical units such as meters m, one must

ensure that both sides of the relationship l ≤ f(lopt) posses

the same units, so that change of scale would not affect the

bound . For instance, the coefficient c2 in the relationship

l ≤ c2l
2
opt + c1lopt + c0 must have units of m−1, c1 must be

unitless, and c0 must have units of m. Note that the definition

of f(lopt)-competitiveness focuses on a particular algorithm

solving the task P . However, our objective is to characterize

the lowest upper bound that can be achieved over all online

algorithms for P . This objective requires a universal lower

bound on the performance of all online algorithms for P .



If the lower and upper bounds satisfy the same functional

relationship, we associate the functional relationship with P
itself. This notion is made formal in the following definition.

Definition 2 (Competitive Complexity Class): A universal

lower bound on the competitiveness of a task P is a lower

bound l ≥ g(lopt) over all online algorithms for P . If a

competitive upper bound f(lopt) and a universal lower bound

g(lopt) for P are the same function up to constant coefficients,

this function is the competitive complexity class of P .

The competitive complexity class of a task P is thus a pair

of lower and upper bounds on the competitive performance

of all online algorithms for P , such that the two bounds are

identical up to constant coefficients. Note that competitive

complexity class characterizes the task P itself, not any spe-

cific algorithm for P . The remainder of the paper characterizes

the competitive complexity class of the multi-robot online

navigation problem.

III. UNIVERSAL LOWER BOUND

In this section we establish a universal lower bound on the

competitive complexity for the problem of navigation to a

target which is recognized only upon arrival by a robot from

a group of robots. The environment that serves to establish

the lower bound is a disc containing D-width corridors that

emanate radially from the start point S (Figure 1). Initially

a small disc centered at S is free of obstacles. At a certain

distance from S eight equally spaced point-size obstacles

appear, such that the distance between the obstacles is D
(the number eight has no special meaning here). The eight

obstacles extend radially as lines and form the boundary of

eight passable corridors for the robot. The width of the eight

corridors increases as they stretch radially away from S. When

the width of a corridor becomes 2D, the corridor splits into

two D-width corridors separated by a cone-shaped obstacle

(Figure 1(b)). By symmetry all corridors split simultaneously.

Hence the cone obstacles that separate corridors just before

splitting are truncated at the splitting radius, and become

radial lines from this radius onward. A close inspection of

Figure 1(b) reveals that the cone obstacles occupy one third

of the disc’s total area. Finally, the tip of each cone obstacle

is symmetrically ”shaved”, so that its tip would lie at a

distance D away from the truncated cone lying closer to S
(Figure 1(b)). This shaving allows a D-size robot to enter the

two corridors generated by splitting. Note that the shaved off

area becomes negligible relative to the cone’s total area as the

radius of the environment increases.

The following theorem establishes a quadratic lower bound

on the performance of all online navigation algorithms for a

group of robots to a target whose position is recognized only

upon arrival.

Lemma 3.1: Let A be any navigation algorithm for n robots

of size D in an unknown planar environment to a target whose

position is recognized only upon arrival. Let l be the path

length generated by A for one of the robots, and let lopt be

the optimal offline path length. Then l satisfies the quadratic

Fig. 1. (a) The radial corridors environment. (b) Close up view of the
environment.

lower bound,

l ≥ 4π

3nD
(1 − ε)l2opt

where ε is an arbitrary small positive parameter.

Proof: Consider the corridor environment with the target

T placed at the end of a distal corridor, at a distance r from

S. Since the robots have no knowledge of the environment

and has no information where T might lie, they must in worst

case inspect every corridor including all distal corridors. (If

A is deterministic, we can enforce this worst case scenario

by first watching the behavior of A, then placing the target

in the last inspected corridor. If A is non-deterministic,

we can only guarantee that one outcome of the algorithm

would match this worst case scenario.) By construction every

distal corridor can be approached from S along a simple

radial path. Moreover, the robots must eventually move twice

through every corridor of the environment - once in order

to inspect a distal corridor and once in order to exit the

corridor. An exception to this rule is the last corridor which

is considered below. The total area of the obstacles in the

corridor environment is almost one third of the disc area,

with the approximation becoming arbitrary close to one third

as the disc’s radius increases. The total area inspected by the

robots is therefore 2πr2/3. Since all corridors have a width

D which is identical to the robots size, the total length of

the path traveled by the robots satisfies in worst case the

inequality ltot ≥ 4πr2/3D. This value of ltot is obtained

when none of the robots travel any part of the path of the

other robots (In any other situation the total length will be

greater). Thus, the total length of the path traveled by one

robot satisfies l ≥ 4πr2/3nD − r, where the subtraction

of r is due to the last corridor which need not be traced

backward2. Since T is placed at a radial distance r from S
we have that lopt = (1 + ε′)r, where ε′ is an arbitrary small

positive parameter. (The multiplication by (1 + ε′) is due to

a fixed-length transition between successive radial corridors.)

Substituting for r gives l ≥ cl2opt/(1 + ε′)2 − lopt/(1 + ε′),

2n is restricted to be as large as the number of corridors in order to maintain
l ≥ 4πr2/3nD − r ≥ lopt
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Fig. 2. A group of two robots launched by MRSAM searching for the target.

where c = 4π/3nD. We can write the last inequality as

l ≥ cl2opt

(
1

(1+ε′)2 − 1

clopt(1+ε′)

)
= cl2opt

(
1 − ε′′ − 1

clopt(1+ε′)

)
,

where we substituted 1/(1 + ε′)2 = 1 − ε′′. The term

ε = ε′′ + 1/clopt(1 + ε′) contains the quotient D/lopt

which can be made arbitrarily small for sufficiently large

environments, hence l ≥ c(1 − ε)l2opt.

IV. MRSAM ALGORITHM

MRSAM algorithm launches multiple robots from a common

starting point S and assigns each robot j to a disc to search

for the target T in it, all the discs are concentric and S is their

center. The first robot (j = 1) is designated to the initial disc of

area S0, and each of the following robots starts its search in a

disc of area larger than the previous disc by a factor of 3 α > 1,

namely, the areas of the discs will be S0,αS0,α2S0,α3S0 . . . .
For example, in Figure 2, robot 1 is initially assigned to

search for the target inside a disc of area S0 and robot 2

is assigned to search inside a disc of area αS0. Each robot

searches for the target in the accessible portion of the disc

allocated to him until the target is detected, or until the entire

region accessible from S is explored without finding T . The

search process in each disc is as follows. The robot imposes

an online discretization of the continuous area into a grid of

D-size cells [10], [11]. The grid consists only of free cells and

is surrounded by partially occupied cells. The robot executes

a standard area coverage tour on the grid of free cells, while

scanning each new cell for the target. Once entering a new cell,

the robot additionally scans the neighboring partially occupied

cells for T . If the discretization preserves the connectivity of

the accessible region (this assumption can be relaxed by a

more sophisticated algorithm that monitors local connectivity

breakage), then clearly all free and partially occupied cells in

the region accessible from S are eventually inspected by the

robot.

3This is a significant property, since the search area must be extended in
each step in order to reach the target when the target is positioned outside
the first search disc.

The robots cover the area of the discs until they reach

the Target. If the target was not detected in the initial disc,

the robot is assigned to the next non-occupied disc. In our

example (Figure 2) after robot 1 completes covering the

entire portion of disc 1 which is accessible from S, it starts

searching for the target inside disc 3 of area α2S0, in this

case, robot 1 will find the target while searching in disc 3. A

formal description of the algorithm follows.

Basic MRSAM Algorithm:
Sensors: A position and orientation sensors. An obstacle

detection sensor.

Input: A Start point S, An initial Search Radius r0, A group

of n searching robots {R1, R2, . . . , Rn}.

Initialization: For each robot Rj , j = 1, . . . , n:

Set Multiplication factor α = (n + 1)1/n.

Set current search disc pj = j,

Set initial search radius4 rj(pj) = α
pj−1

2 r0.
For each robot j, Repeat:

1) Execute a coverage tour on the grid contained in the

disc of radius rj(pj) with center at S.

a) Scan each new free cell and its partially occupied

neighbor cells for T .

b) STOP if T is found.

2) If no new free cell is encountered during the ith coverage

tour: STOP, the target is unreachable.

3) Set pj = pj + n,

Set rj(pj) = α
pj−1

2 r0

(End of Repeat loop)

Rather than give a formal proof of correctness, we make

some informal remarks on the algorithm. First, during the

initialization section, after getting the values of n and r0,

each robot can calculate its future search discs and the

corresponding radii, which means that the robots do not need

to communicate with each other apart from a stop signal when

the target is found. This implies a decentralized approach

with no or with limited communication. Second, a robot that

finished searching a disc will immediately proceed to the next

disc assigned to it, regardless of the state of the other robots.

Next, the coverage tour in step 1a can be executed with a

trivial DFS algorithm using linear memory. Last, if the target

is inaccessible from S, the algorithm would stop only when

it has completely covered the connected component of the

environment containing S. Clearly this is a limitation of the

problem itself, which assumes no knowledge of the target

location. A detailed example of MRSAM execution appears

in Section VI.

V. COMPETITIVE COMPLEXITY ANALYSIS OF MRSAM

We now establish an upper bound on the path length of

MRSAM in terms of lopt. The following proposition establishes

a quadratic competitive upper bound on MRSAM.

4rj(pj) = α
pj−1

2 r0 is the radius of the ith disc which is assigned to
robot j.



Proposition 5.1: If the target T is reachable from S,

MRSAM finds the target using n robots and the path length

l traveled by the robot which found the target satisfies the

quadratic inequality,

l <
2π

D

(
αn+1

αn − 1

)
l2opt +

2πr2
0

D

where D is the robot size, r0 is the initial search radius, α is

the multiplication factor which is a function of n, and lopt is

the length of the optimal offline path from S to T .

Note that the upper bound is scalable, in the sense that both

summands have units of length.
The proof of this proposition was relegated to [12]. The

following lemma, inspired by [13], asserts that search area

multiplying is indeed an optimal strategy.
Lemma 5.2: Let n be the number of robots searching for

the target, The Competitive Complexity of MRSAM is minimal

when the multiplication factor α equals α = (n + 1)1/n.
Proof: Suppose the target was found in the ith disc

by robot number j after covering that disc entirely. The

total area Sj covered by that robot as obtained in (Prop.

5.1) is Sj < π
(

αn+1

αn−1

)
l2opt = βnπl2opt, Minimizing5 for α and

equating with zero yields, α = (n + 1)1/n.
This is an extremum value, a second derivative will check

the minimality of α, ∂2

∂α2 (βn) > 0, which implies that l gets

minimal values when α = (n + 1)1/n.
The following corollary asserts that if a path from the start

point S to the target T exist, MRSAM algorithm will find T .

Corollary 5.3: MRSAM is complete.

Proof: The first important property established in Propo-

sition 5.1, is that if the target T is reachable, MRSAM will find

it. The second property is that MRSAM will find the target in

a finite and limited time and is deduced from the bound on the

path length introduced in Proposition 5.1. The two properties

implies the completeness of MRSAM.

In order to compare the performance of MRSAM running

more than one robot with the performance of other algorithms

running only one robot, we will compare the upper bound on

the path length l of the robot that found the target for MRSAM
with multi-robot execution (n → ∞) and for MRSAM execu-

tion with only one robot (n = 1). This is done by calculating

βn for the two cases above. First, for the case where n → ∞, it

can easily be shown that α goes to 1, limn→∞(n + 1)
1
n = 1

and thus, βn approaches 1, as well. On the other hand, for

the second case where n = 1, α = (1 + 1)1/1 = 2, therefore,

βn = 21+1

21−1 = 4 and thus l < 8π
D l2opt + 2πr2

0
D . The last result

coincides with previous results of an optimal algorithm for the

same problem with one robot [3]. It can immediately be seen

that when n → ∞, MRSAM performs 4 times faster than the

optimal algorithm which solves the same problem using one

robot. It should be noted that for the constraints α > 1 and

n ≥ 1 mentioned above, α is a monotonic rising function and

thus βn is a monotonic rising function, as well.

5while taking into account α > 1 and n ≥ 1 for realistic execution, which
implies αn − 1 > 0

It can easily be calculated that using 4 robots, MRSAM
doubles the performance compared to execution with one

robot, when using 13 robots MRSAM triples the performance

and with one hundred robots, βn approaches one, and MRSAM
multiplies the performance by a factor of 3.78.

Theorem 1: The online multi-robot navigation problem be-

longs to the quadratic competitive complexity class.

Proof: A competitive complexity class, as defined in

Definition 2, is formed from two bounds, lower and upper

bounds on the competitiveness of a task. According to Lemma

3.1, the lower bound of the problem discussed above has a

quadratic-competitive complexity and is l ≥ 4π
3nD (1 − ε)l2opt

Since the upper bound of MRSAM, as demonstrated in Propo-

sition 5.1, is also quadratic in lopt, l < 2π
D

(
αn+1

αn−1

)
l2opt + 2πr2

0
D

this navigation problem belongs to the quadratic competitive

complexity class.

VI. SIMULATION RESULTS

In the following example MRSAM algorithm launches 4 robots

from a starting point S to search for the target T in an

unknown office-cubicle environment depicted in Figure 3.

The area multiplication factor for n = 4 is α = 1.495,√
α = 1.223, and in the initial global step k = 1 (local steps

p1 = 1, p2 = 2, p3 = 3, p4 = 4) each robot is assigned to one

of the first four discs according to its number. In this early

stage of the algorithm all the robots are assigned to a series of

search discs until termination. At first, each robot searches for

the target until it covers all the reachable area of the disc it

is assigned to. The area that was not reachable in the current

step, but is connected, like the gray areas depicted in Figure

3(a), will be covered in the next steps. Robot 1 finishes its local

step in the first place and thus start its next global step, k = 2,

which is local step, p1 = 5, searching in disc 5. Now the entire

area of the first disc can be covered, yet some parts of disc

5 cannot be covered. In the next two steps, robot 2 finishes

its disc coverage and moves on to disc 6, k = 2, p2 = 6, and

robot 3 moves on to disc 7, k = 2, p3 = 7 (Figure 3(b)). It can

be seen that the target resides in disc 7, which is assigned to

robot 3, and that the target is unreachable to that robot from

disc 7. In both steps, again, some parts cannot be reached and

the target in particular. At last, robot 4 reaches the next global

(a) (b)

Fig. 3. The gray area marks the unreachable parts of the discs for each robot
for (a) the first 4 steps, (b) the next 4 steps.



step, k = 2, p4 = 8, where it moves to search in disc 8, and

reaches the target that lies in disc 7.

We simulated an execution of MRSAM with four robots,

and compared it to execution with one robot on the same

environment, including common starting and target points

and identical initial disc. For the initial search disc radius

r0 = 22mm and robot radius D = 5mm the simulation

results are as follows: the path length of the optimal offline

solution lopt = 126.8mm, the path length generated by

robot 4, which found the target, during MRSAM execution,

l = 12121mm ∼= 0.75l2optmm, and the path length when

running with one robot, l = 18730mm ∼= 1.17l2optmm. These

results show that MRSAM execution with 4 robots was 1.545
times faster than one robot execution, but, according to the

previous section, MRSAM suppose to perform more than two

times faster. The difference result from the selection of r0

that was chosen relatively large in comparison to lopt, which

is discussed in the conclusion. It should be clear that the

calculated values of βn are the maximal values and as was

seen in this example, the actual performance, which depends

on real environments and optimal parameter initialization, is

sometime reduced.

VII. CONCLUSION

The robustness of MRSAM as well as extensions of the

algorithm to deal with multiple targets and some practical

speedup are discussed in detail in [12].

The notion of competitive complexity classes generalizes

the traditional notion of linear competitiveness to a pair of

bounds which up to constant coefficients satisfy the same

functional relationship between online performance and offline

optimal solution. In particular, we have shown that online

multi-robot navigation to a target whose position is unknown

belongs to the quadratic competitive complexity class. The

MRSAM algorithm achieves the optimal quadratic bound while

requiring only a linear amount of memory. The basic MRSAM
has been consequently modified in order to exhibit a more

efficient average case behavior, which was illustrated in office-

like environments. An average performance comparison of the

modified MRSAM with earlier algorithms is currently under

preparation and will be reported later. In addition, we are

working on an extension to MRSAM where each robot begins

its search from a different starting point.

A matter worth mentioning is the fact that the radius of

the initial search disc r0, is determined prior to algorithm

execution and affects the overall path length of MRSAM. It

should be noted that r0 is closely related to lopt, such that

decreasing r0 corresponds to enlargement of lopt, resulting in

more execution steps and eventually in reduced search area.

The following are some related open problems for further

research. First, MRSAM assumes tactile senors. More sophis-

ticated sensors such as vision and laser sensors do not have

a significant advantage on tactile sensors in highly congested

environments. However, practical environments tend to be rea-

sonably sparse, and an adaptation of MRSAM to such sensors

is important. Second, the constant coefficients in the quadratic

upper bound on MRSAM and in the quadratic universal lower

bound differ by values of 3
2 (n+1)

n+1
n . Closing of this gap is a

major challenge that can yield new algorithms that possess the

quadratic competitiveness of MRSAM but perform much better

on average. Third, the practical speedup subject discussed in

[12], where a robot needs to ”return” to a partially uncovered

previous disc, can be improved by means of a common

environment map which is updated and shared by all the

robots. That way, the robot that needs to make a full disc cover

will be able to calculate the shortest path to return to the area it

did not cover. Creating and maintaining a common geometric

map of the environment that includes information about the

area that was already covered can save excess searching for the

robots and thus speedup the average performance of MRSAM.

Last, we assumed linear onboard memory. However, many

mobile robot tasks are sufficiently complex as to allow only

constant memory. Given this stricter memory limitation, one

must re-explore the competitive complexity class of the basic

problem considered in this paper.
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