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Abstract Thre classical notion of force closure
was originally formulated for multi-fingered robot
hands, where the grasping fingers actively apply any
desired force consistent with friction constraints at
the contacts. Active force closure requires sophisti-
cated contact-force sensors and agile feedback con-
trollers for its implementation. This paper consid-
ers a simpler notion of passive force closure recently
wntroduced by Yoshikawa [17]. In passive force clo-
sure the fingers apply initial grasping forces, and the
grasped object s passively stabilized against external
disturbances by the frictional contacts. After motiwvat-
ing the usefulness of passive force closure, we char-
acterize the conditions for its existence. Then we in-
troduce the passive stability set, defined as the collec-
tion of external wrenches that can be passively resisted
by a gwen grasp. We introduce a class of grasp ar-
rangements where the grasping mechanism s compli-
ant while the grasped object 1s rigid. Such compliant-
rigid systems are common, and for these systems the
passive closure set can be computed in closed form.
Simulation results demonstrate the computation of
the passive closure set for two and three-finger pla-
nar grasps.

1 Introduction

The classical notion of force closure was originally
defined for multi-fingered robot hands [4, 14]. This
notion should be called active force closure, since it
requires that the fingers be able to actively balance
any disturbing wrench (i.e. force and torque) acting
on the grasped object. Active force closure requires
sophisticated contact-force sensors and agile feedback
controllers for its implementation, bringing the cost
of such systems to prohibitive levels. However, in ap-
plications such as fixturing the grasping elements are
simple devices that are preloaded against an object
with initial grasping forces [8]. Physical processes at
the contacts, such as friction and compliance, provide
passive stabilization of the object against external
Another important application con-
cerns articulated mechanisms that establish an ini-

disturbances.

tial grasp of an object using simple position-based
controllers. In this case the effective compliance of
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Figure 1: (a) A multi-fingered hand grasping an ob-
ject. (b) A multi-limbed robot bracing against a tun-
nel environment.

the grasping mechanism together with friction at the
contacts provide passive stabilization of the grasped
object (Figure 1(a)). Another application is a multi-
limbed robot bracing against a tunnel-like environ-
ment in static equilibrium (Figure 1(b)). Here the
tunnel walls play the role of the grasped object, and
the robot passively stabilizes itself by pushing against
the walls using position-based controllers. In all of
these examples stabilization is achieved by passive
means, without active control of the contact forces.
The notion of passive force closure recently in-
troduced by Yoshikawa [17] provides a framework for
investigating passively stable grasps. By definition, a
grasp 1s passive force closure if for suitably selected
initial grasping forces, the contacts can passively bal-
ance any external wrench in a neighborhood about
the origin. (A formal definition appears below.) This
definition includes the fixturing and position-servoed
grasps mentioned above. The definition also applies
to objects held by multiple contacts against grav-
ity. Such arrangements were originally considered
by Reuleaux [13], and in the context of robotic ma-
nipulation by [1, 11, 15]. In this paper we consider
passive stabilization by a combination of friction and
compliance effects, and regard gravity as an exter-
nal disturbing force. It should be emphasized at this
stage that actwe force closure is necessary but not
sufficient for passive force closure. The literature on
active force closure is therefore only partially useful
for establishing passive force closure grasps®. Exam-
ples of works on friction-based active force closure are

L Form closure is another means for establishing stable
grasps [16]. Form closure can be interpreted as passive force
closure specialized to frictionless contacts.



[7, 12, 16], and examples of works that additionally
consider the structure of the grasping mechanism are
[2, 3, 6, 9].

In contrast with active force closure, a system-
atic study of passive force closure has only recently
begun [17]. A fundamental challenge in the study of
passive force closure is to characterize the conditions
for its existence. Another challenge is to character-
1ze the set of external wrenches that can be passively
resisted by a given grasp. This set, called the pas-
swe closure set, depends on the grasp geometry, the
amount of friction at the contacts, the kinematics and
dynamics of the grasping mechanism, as well as the
forces that establish the initial grasp. This paper
describes a technique for computing the passive clo-
sure set under certain assumptions. The paper be-
gins with a definition and characterization of active
force closure. Then passive force closure is defined,
and necessary and sufficient conditions for its exis-
tence are considered. Next the problem of computing
the passive closure set is described. This computa-
tion involves a recursive relation which is connected
to the static indeterminacy of multiply-contacted ob-
jects. The paper considers a class of grasp arrange-
ments where a compliant mechanism holds a rigid
object. Such compliant-rigid systems arise in multi-
fingered hands and multi-limbed robots that interact
with rigid objects using simple position-based con-
trollers. We show that for compliant-rigid grasps the
passive closure set can be computed in closed form.
Then we demonstrate the computation of the passive
closure set for two and three-fingered planar grasps.
Experimental results are currently being collected,
and these results will be reported in the final version
of this paper.

2 Definition of Passive Force
Closure

In this section we introduce terminology for frictional
grasps and review the notion of active force closure.
Then we define passive force closure and describe nec-
essary and sufficient conditions for its existence.

2.1 Frictional Grasps Terminology

We study 2D or 3D grasps, where a rigid object 55
1s held in frictional point contact by %k rigid bod-
ies Ajp,...,Ax. The bodies Ajy,...,A; represent fix-
turing elements or the fingertips of a multi-fingered
hand. Although we use the language of grasping,
these bodies can also represent the footpads of a
multi-limbed robot. The contact point between A;
and B is denoted r; when expressed in B’s body

frame, and z; when expressed in a fixed world frame
(Figure 2). The two representations of the i" con-
tact point are related by the rigid-body transforma-
tion: z; = X(ri, (d, R)) 2 Rr; + d, where d and R
are the position and orientation of B with respect
to the world frame. The orientation matrices R are
parametrized by the exponential map, R(#) = exp(9),
where § € IR in 2D and 6 € IR® in 3D. The object con-
figuration is parametrized by ¢ = (d, ) € IR™, where
m = 3 in 2D and m = 6 in 3D. The rigid-body trans-
formation is consequently written as X (r;,¢). When
a force F; acts on B at the it* contact, it gives rise to
a wrench (force and torque) denoted w;. The wrench
w; is determined by the formula: w; = (DX,,)T F;
where DX, is the derivative of X (r;, ¢) with respect
to g, such that r; is held fixed. Evaluation of this
derivative gives the familiar wrench formula:

T\ pix F

In this formula p; is a vector from B’s origin to the
point z;, described in world coordinates. The torque
in this formula, p, X F;, becomes in 2D a scalar times
a vector perpendicular to the 2D plane. The collec-
tion of wrenches that act on B at a particular con-
figuration is called wrench space. This space can be
identified with IR™.

We assume the standard Coulomb friction
model: |Ff| < p|F|, where Ff and F[* are the tan-
gent and inward normal components of F;, and y is
the coefficient of Coulomb friction®. The force F; can
only push on the object, and this constraint is de-
scribed by the inequality F* > 0. The friction cone
at the ** contact, denoted FC;, is the collection of
all frictional forces that can be applied to B at z;,
and it is given by

> where p, = R(6)r;.

FC;={F;: F'>0and —uF < F} < uF'}.

The set of wrenches generated by all forces in FC;
forms a cone in wrench space. The i* wrench cone
1s denoted W, and is given by

W; = {wl w; = [_DXH]TF“ VF; € FCl}
When B i1s held by %k fingers, we say that B is in

frictional equilibrium if in the absence of any external
wrench there exist wrenches w; € W; for:=1,... )k

such that Zle w; = 0.
2.2 Active Force Closure

Active force closure 1s the standard notion of force
closure [12, 16]. The collection of wrenches that can

2In 3D there is also frictional torque about the contact nor-
mal. However, the generation of this torque requires surface
contact rather than point contact between A; and 5.
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Figure 2: Basic notation for frictional grasps.

be generated by k frictional contacts is given by the
set sum: Wi+ 4+ W, ={w1 +- -+ wg : w; €
W; for ¢ = 1,...,k}. This notation is used in the
following definition.

Definition 1. Let an object B be held in equilibrium
grasp by k frictional point contacts. Let W; be the
wrench cone of the it* contact. Then the grasp is
active force closure if the sum of the wrench cones
W1 + -« + Wy spans the entire wrench space R™,
where m=3 in 2D and m=6 wn 3D.

The active aspect of the grasp lies in the assumption
that the grasping bodies can generate any contact
force within the respective friction cones. In prac-
tice, even a fully active grasping system can generate
only bounded contact forces. However, in contrast
with passive closure discussed below, knowledge of
the active contact force bounds allows an immediate
characterization of the external wrenches that can be
actively resisted by the grasp. Next we give a sim-
ple rule for determining active force closure. In the
following, a grasp is non-marginal when the contact
forces are non-zero and lie in the interior of their re-
spective friction cones.

Theorem 1 (Active force closure). Let a 2D or
3D object B be grasped by k frictional contacts, such
that the contacts do not lie along the same spatial line
when the grasp is 8D. Then the grasp is active force
closure iff it is possible to establish a non-marginal
equilibrium grasp of B.

This result appears for 2D grasps in Ref. [12].

Proof: The grasp matric G = [DXT, ---DX[T ]
maps the contact forces Fy,...,F; to the net wrench
acting on B. This matrix is 3 x 2k for 2D grasps and
6 x 3k for 3D grasps. According to [10, Proposition
5.2], the following two conditions are necessary and
sufficient for active force closure. The first is the ex-
1stence of a non-marginal equilibrium grasp as stated
in the proposition. The second is that G be full rank.
To show the latter condition, let (v,w) denote the

instantaneous velocity of B, where v and w are B’s
linear and angular velocities. (In the 2D case w is
an instantaneous rotation of 5 about an axis perpen-
dicular to the 2D plane.) Then the derivative DX,

satisfies £ X,,(d(t), R(t)) = DX,, < : > = vFwXp;.

If the matrix G is not full rank, there must exist a
non-zero velocity (v, w) satisfying:

I v4w X pg 0

v+ w X py 0

In this equation w # 0, otherwise (1) would imply
that v = 0. By moving v to the right in each row
of (1), we obtain that w x p; = -+ = w x p. It
follows that w x (p; — p;) = 0 for 1 < 4,5 < k such
that ¢ # j. In the 2D case the vectors p; — p; lie in
the 2D plane while w is perpendicular to this plane.
Hence w x (p; — p;) # 0 and G is full rank. In the 3D
case the vanishing of the cross-products w x (p; — p;)
implies that the vectors p,,...,p, are all parallel to
w. However, each p; is a vector from 5’s origin to z;.
Hence if there are £ > 2 contacts, these contacts must
lie along the same spatial line, in contradiction with
the proposition’s hypothesis. Hence G is full rank in
the 3D case too. O

Two comments are in order here. First, the theorem
asserts that a 2-fingered frictional grasp of a 3D ob-
ject 1s not active force closure. Indeed, the fingers
cannot generate torque about the line connecting the
two contacts. To achieve force closure in this case, the
fingers must establish surface contact with the object,
so that frictional torques about the contact normals
can be generated. Second, the proof is based on the
fact that the velocities %Xh cannot simultaneously
The condition d%Xh =0
means that B instantaneously rolls about the station-
ary point z;. Indeed, a 2D object cannot simultane-
ously roll about two or more stationary points, while
a 3D object can execute such a simultaneous rolling
only when the contact points are arranged along a
common line.

vanish at the k contacts.

2.3 Passive Force Closure

Active force closure 1s determined solely by the ar-
rangement of the frictional contacts on the boundary
of the grasped object 5. The notion of passive force
closure additionally depends on the grasping mecha-
nism. To formalize this notion, we define three types
of contacts that encapsulate three common types of
restraining mechanisms.

Definition 2. A passive rigid-body contact is
a stationary rigid body that passively interacts with



B through a frictional contact. An active fixed-
force contact is a frictional point contact that ap-
plies a specific force at the contact point. An active-
compliance contact is a frictional contact that ap-
plies force according to a specific force-displacement

relationship of the contact point.

Let us give examples of these types of contacts. Pas-
sive rigid-body contacts are commonly used in fix-
turing applications to restrict the motions of a work-
plece. Note that a passive rigid-body contact gen-
erates force only when B presses against it. Ac-
tive fixed-force contacts are generated by mechanisms
such as force-screw fixturing elements and force-
controlled robot grippers. Active compliance con-
tacts are generated by finger and limb mechanisms
whose joints are controlled by position-servoed con-
trollers. While the above three types of contacts are
the most common, another important type of contact
arise naturally in high-load fixturing applications. In
these applications small elastic deformations of the
contacting bodies change the idealized passive rigid-
body contacts into passive compliant contacts. How-
ever, we do not consider such high-load applications
in this paper. Another type of contact occurs when
several active contacts are coupled together by the
grasping mechanism. In order to avoid such coupled
contacts, we assume that each contact is generated by
its own independent mechanism. We are now ready
to define passive force closure.

Definition 3. Let an object B be held in equilibrium
grasp by k independent frictional contacts of the types
defined above. Then the grasp 1s passive force clo-
sure if any external wrench in a netghborhood about
the origin s passively balanced by the contacts.

Passive grasps can be implemented with controllers
that simply maintain fixed joint torques or fixed joint
positions, while the balancing of external wrenches
1s performed automatically by the contacts. Let us
now discuss several properties of passive force closure
grasps. First active force closure is necessary for the
existence of passiwve force closure, since a neighbor-
hood about the origin in wrench-space can be ex-
panded to the entire space by actively increasing the
contact-force magnitudes. However, active force clo-
sure does not automatically tmply passive force clo-
sure. Figure 3(a) shows a 2-fingered frictional grasp
of a rectangular object. If the two contacts are fully
active the grasp is active force closure according to
Theorem 1. But when the two contacts are fixed-force
contacts the grasp is not passive force closure, since
the contacts cannot generate a net horizontal force on
B. On the other hand, if one contact is passive while
the other applies a fixed force, the grasp becomes pas-
sive force closure. Another example is the 3-fingered

no force is applied when
Azisapassiverigid body

Al>§ﬁ
@ (b)

Figure 3: (a) A 2D grasp which is not passive force
closure when 4; and A; apply a fixed force. (b) A
3D grasp which is not passive force closure when 4,
and A, apply active-compliance forces while A3 is a
passive rigid body.

frictional grasp of cylindrical object depicted in Fig-
ure 3(b). If the three contacts are fully active, The-
orem 1 implies that the grasp is active force closure.
But when A; and A5 apply active-compliance forces
while A3 is a passive rigid body, the grasp is not pas-
sive force closure since the contacts cannot generate a
torque about the cylinder’s axis. On the other hand,
if all three fingers apply active-compliance contacts,
the grasp is passive force closure.

We now give necessary and sufficient conditions
for passive force closure of grasps having fixed-force or
active-compliance contacts. The conditions are based
on the following notion of potential energy function.
The force generated by an active-compliance con-
tact at z; depends on the position of the contact
point. The position of z; is determined in turn by
B’s configuration ¢. The wrench generated by an
active-compliance contact can therefore be written as
—WU;(q), where U;(q) is the elastic potential
energy function induced on B by the it* compliant
contact®. Similarly, the wrench generated by a fixed-
force contact 1s induced by a potential function which
18 linear in z;. The total potential energy of B is the

sum U(q) = Zle Ui(q).

Proposition 2.1. Let a 2D or 8D object B be

held in equilibrium grasp by k fized-force or active-

compliance contacts, such that the contacts do not lie
along a common line when the grasp is 8D. Let qq

be the object equilibrium configuration, and let U(q)

be the potential energy induced on B by the contacts.

Then the following two conditions are sufficient for

passive force closure:

1. The wtial equiltbrium grasp is non-marginal.

2. The equilibrium qq s a non-degenerate local min-
imum of the elastic energy function U(q) (i.e.
D2U(qo) > 0).

Moreover, in all generic grasps conditions (1) and (2)

are necessary for passive force closure.

w; =

3The potential function U;(q) is identically zero when the

1th contact is broken.



The first condition of the proposition simply states
the necessary condition that the grasp must be active
force closure if the contacts are made fully active.
The second condition is a key to understanding the
difference between active and passive closure. This
condition ensures that when an external wrench acts
on B, the object would automatically settle at a new
configuration in the vicinity of go where the contact
forces balance the external wrench.

The proposition admits two generalizations.
First, the proposition also applies to frictionless
passive-rigid-body contacts. (In this case the object
and finger-tips must be modeled as quasi-rigid.) Sec-
ond, the proposition can be generalized to include
frictional passive-rigid-body contacts, provided that
these contacts kinematically constrain the object to
move along a submanifold of its configuration space.
The two conditions of the proposition apply in that
case to the submanifold of allowed motions of B. The
characterization of passive force closure under gen-
eral frictional passive-rigid-body contacts is the topic
of current research.

3 Computation of the Passive
Stability Set

Given a passive force closure grasp, the passive sta-
bility set is the collection of external wrenches which
are automatically balanced by the contacts of the
grasp. In this section we derive a closed-form for-
mula for the passive stability set of compliant-rigid
grasps. Before describing this class of grasps, let us
depict a fundamental difficulty in computing the pas-
sive stability set. The Coulomb friction model allows
generation of tangential forces at the contacts up to
a limit determined by u times the normal component
of the contact forces. In passive grasps the normal
component of the contact forces is determined by the
initial grasp, and can change only in response to an
external wrench we,; acting on B. In other words,
the normal loadings at the contacts cannot “sponta-
neously” change as they do in fully active contacts.
We consequently write the feasible wrench cones as
Wi(wWezt). An external wrench can be possibly bal-
anced by the contacts only when the recursive rela-
tion Wept € Wi(Wept) + -+ - + Wi(wez:) holds true.
The solution of this recursive relation is a key step in
computing the passive stability set.

The compliant-rigid grasps are defined as grasps
where a rigid object B is held by compliant finger
mechanisms. This class of grasps also includes multi-
limbed robots bracing against a rigid environment.
The rigidity of B is an excellent approximation even
though all objects exhibit some degree of compliance

at the contacts. This natural compliance 1s negligible
relative to the compliance induced by the joints of
the grasping mechanism. Consider for example our
experimental multi-limbed robot which resembles the
one depicted in Figure 1(b). Each limb of this robot
has four joints actuated by Maxon motors that gener-
ate a stiffness of 2 N/mm at the footpads. In contrast,
the stiffness of objects made of Aluminum is 4.5 - 10%
N/mm. However, not all grasps fall into the category
of compliant-rigid grasps. For example, fixturing ar-
rangements are designed to exhibit high stiffness at
the contacts, and cannot be considered as compliant-
rigid grasps.

We make the following simplifying assumptions.
First, the finger mechanisms are assumed to interact
with B through sharp or pointed finger-tips. This as-
sumption implies that when a finger-tip rolls on the
surface of B, the location of the contact point remains
fixed. A second assumption is that each finger gen-
erates the linear active-compliance law*:

F; = F - Ki(zi — z}), (2)
where FP and z? are the contact forces and contact
points at the initial equilibrium grasp, and K; is an
n X n positive semi-definite matrix (n = 2 in 2D and
n = 3 in 3D). The fingers should also apply damping
forces in order to ensure stability of the grasp. These
damping forces are not listed in (2), as these forces
vanish in the static analysis performed here.

Our first step 1s to express the contact forces as
a function of the object configuration ¢ = (d, ). The
ith contact point is given by z; = R(8)r; +d, where r;
1s the description of z; in B’s body coordinates. Let
r? denote the coordinates of 7; at the initial grasp.
Let F@Q denote the collection of B’s configurations
where the contact forces lie in their respective friction
cones. (The set F@ is considered below.) Then the
pointed-finger assumption together with the rigidity
of B guarantee that the points r; remain fized in the
object frame, for all configurations ¢ € F@. Thus we
may write z; = R(6)r{ +d for i = 1, ..., k. Substitut-
ing for the z;’s in (2) gives the desired expression for
the contact forces:

F,(d,0) = F — K;((R(8)r? + d) — )

i=1,...,k

(3)
Next we write an expression for the set of feasible
configurations 7. This set is given by the intersec-
tion FQ = N;_; FQ;, where F@Q); denotes the collec-
tion of B’s configurations where the ** contact force
F;(q) lies in the friction cone FC;. Let n; denote the
inward normal to the boundary of B at r;, written

4The analysis generalizes to any compliance law of the form:
F; = F? + f,(z;), such that f; vanishes when z; = 20

5.



in B’s body coordinates. And let N; be the inward
unit normal to the boundary of B at z;, expressed
in world coordinates. Then N; = R(6)n;, and the
normal component of the i** contact force is: F* =
F; - N; = F; - (B(0)n;). The tangential component of
Fis: FY = |[[[ - N;NTIF)| = ||l - nnT|RO)T ||
Substituting for F* and F} in the inequalities that
define F'C; gives:

FQi= {q=(d,0): F;-(R(f)n;) >0 and

I — nind JR(6)T Fi|| < pFi - (R(6)na)},

where p is the coefficient of friction. Substituting for
the forces F; according to (3) gives:

FQi={¢=1(d,0): F;(d,0)-(R(6)n;) >0 and
1T —ninT1R(8)" Fi(d, )| < p (. 8)- (R(8)m:) ).

The desired set F@ is the intersection of the sets
F@Q;. Our final step is to identify the configurations
that guarantee stable convergence of B to the equi-
librium induced by an external wrench. This condi-
tion is captured by the requirement that the second-
derivative matrix of the grasp potential energy func-
tion, D2?U(q), be positive definite. A formula for
D?U(q) is listed in the following lemma. A proof
of the formula appears in the appendix. Given a vec-
tor u € IR®, [ux] denotes the 3x 3 skew-symmetric
matrix satisfying [ux]v = u x v for all v € IR>.

Lemma 3.1. Let a riged object B be grasped by k
active-compliance contacts each satisfying the linear
compliance law (2). Then the formula for D?U(q) in
the 3D case 1s:

D*U(q) =

i Hile:x ]

Ki
[[mX]TKi [o: X1 K [py X1+ ([Fi x][p; X])s

(4)
where for a given matriz A, A, = %(A—i—AT). The
formula for D2U(q) in the 2D case 1s:

2 _ K; KiJp;
LR Y PR A

(5)

whereJ:[_Ol (1)]

The set of configurations that satisfy the stability
condition, denoted P, is given by

P={q=(d,8): Amin(D?U(q)) > 0},

where Ay,;, denotes the minimal eigenvalue of a ma-
trix. The net wrench generated on B by the contact
forces is w = Zle(Fi,pi x F;). Since F; and p; are
functions of ¢, w can be interpreted as a mapping

Figure 4: Passive force closure grasps of an elliptical
object using (a) tow and (b) three fingers.

from configuration space to wrench space. The pas-
sive stability set, denoted Whyassive, is the image in
wrench-space of the configurations ¢ in FQ NP under
the mapping w(g):

k

F;
W”““”e:{wzz<p¢(Q)>Eq1;i(q)> h TQHP}'

=1

Any wrench wez: in Wpassive would be automatically
balanced by the contacts of the grasp.

4 Simulation Results

In this section we compute the passive stability set of
the 2-finger and 3-finger passive force closure grasps
depicted in Figure 4. In both grasps the object is
an ellipse with major and minor axes whose length
1s four and two length-units. In both examples the
contacts are frictional with a coefficient of friction
¢ = 0.3. In both examples the fingers apply active-
compliance forces, with a stiffness matrix of K; = 1.
That is, each finger applies a uniform one-unit force
per one-unit of deflection of the respective contact
point. In the 2-finger grasp the magnitudes of the
initial forces are set to ||FY|| = ||F2|| = 50 force
units. Figure 5(a) shows the collection of feasible
configurations FQ NP, where FQ = FQ1 N FQ-.
The coordinates in the figure are (dy,dy,8), where
(dz,dy) are in length-units and 6 in radians. Note
that the dy-coordinate of 7@ NP varies in the inter-
val [—10, 10], while the d,-coordinate of this set varies
in the interval [—20,20]. This difference can be ex-
plained by the fact the deflection of the ellipse along
the y-axis generates pure tangential forces which are
bounded by u times the normal forces generated by
deflection of the ellipse along the z-axis. The pas-
sive stability set Wpassive of the 2-finger grasp is
depicted in Figure 5(b). The coordinates in this
figure are (F,, Fy, 7). Note that the asymmetry of
FQ@ NP now appears as an asymmetry of Wyassive
along the F, and F, axes. Finally, the magnitudes
of the initial forces in the 3-finger grasp are set to
I|FR]| = || FS|| = 25 and || F2|| = 50 force units. Figure
6(a) depicts the set of feasible configurations FQNP,



Figure 5: The feasible configurations set and the pas-
sive stability set of the 2-finger grasp.

Figure 6: The feasible configurations set and the pas-
sive stability set of the 3-finger grasp.

where FQ = FQ1 N FQ2 N FQs. Figure 6(b) shows
the stability set Wyasssve for the 3-finger grasp.

5 Conclusion

In active force closure grasps the fingers resist exter-
nal wrenches by actively applying the required forces
at the contacts. Active grasping systems require so-
phisticated contact-force sensors and agile feedback
controllers for their implementation. In passive force
closure grasps the contacts establish initial grasping
forces, and the balancing of external wrenches is per-
formed automatically by the contacts. Passive grasp-
ing systems can be implemented with controllers that
simply maintain fixed joint torques or fixed joint posi-
tions. Using the framework established by Yoshikawa
[17], we defined three types of contacts that com-
monly occur in passive grasps: active-compliance
contacts, fixed-force contacts, and passive-rigid-body
contacts. Then we formally defined passive force clo-
sure, and provided necessary and sufficient conditions
for generic passive force closure grasps. These condi-
tions imply that active force closure is necessary but
not sufficient for passive force closure. To guarantee
passive force closure, the grasped object must auto-
matically converge to a nearby equilibrium where the
contact forces balance the external wrench. It should
be noted that the necessary and sufficient conditions
admit active-compliance and fixed-force contacts, but

only special cases of passive-rigid-body contacts.
Next we computed the passive stability set of
compliant-rigid grasps. In this class of grasps a rigid

. object B is held by compliant grasping mechanisms.

Compliant-rigid grasps provide an excellent approxi-
mation for common scenarios where a multi-fingered
hand grasps hard objects, or a multi-limbed robot
braces against a rigid environment. Assuming that
the mechanisms generate active-compliance forces,
we derived a closed-form expression for the passive
stability set. A key component in this derivation has
been the ability to express the contact forces as a
function of the object configuration, thereby avoid-
ing the static indeterminacy problem. Simulation re-
sults depict the passive stability set for 2-finger and

_ 3-finger grasps. A thorough investigation of the pas-

sive stability set i1s currently in progress. In particu-

- lar, we are studying the effect of contact points loca-

tion, amount of friction, and magnitude of grasping
forces on the size and shape of the passive stability
set. Finally, we are in the process of constructing
an experiment that would allow us to measure the
passive stability set and compare this data with our
analytical results.

Future extensions of this work will include the
following two topics. First, we wish to obtain neces-
sary and sufficient conditions for passive grasps hav-
ing frictional rigid-body contacts. The main chal-
lenge in this work is the need to account for complex
phenomena such as micro-slip, wedging, and hystere-
sis. A second future research topic is the development
of planning tools which are based on the passive sta-
bility set. These tools would be useful for object ma-
nipulation by passive grasps, as well as for locomotion
of multi-limbed robots.

A Conditions for Passive Force
Closure

Proof sketch of Proposition 2.1: Let A be a
small neighborhood of configurations about gq. As
B’s configuration varies in A, the contact forces vary
in a neighborhood about the contact forces of the ini-
tial grasp. Since the initial grasp is non-marginal, by
a continuity argument all contact forces generated by
varying B’s configuration in A still lie in their respec-
tive friction cones. (This statement holds true even
when the location of some contact points changes due
to local rolling of 5.)

Next we establish that any external wrench in
a neighborhood about the origin can be balanced by
feasible contact forces. When B is at a configura-
tion ¢ € A, the net wrench generated by the con-
tacts is given by the negated gradient —VU(g). Con-



sider now the gradient VU(q) as a mapping from
configuration space to wrench space. By assump-
tion VU (go) = 0. According to the Inverse Function
Theorem, VU maps an open neighborhood about ¢q
to an open neighborhood about the zero wrench if
the derivative of VU at g0, D?U(qo), is non-singular.
Since go is a non-degenerate local minimum of U,
D?U(qo) is non-singular as required.

Finally we establish that B would automatically
settle at a configuration where the contact forces bal-
ance the external wrench acting on B. Let wgy: de-
note a fixed external wrench acting on B. The dy-
namics of B is governed by the equation: M(q)d +
B(q,4) = —VU(q) + wez:. (The contacts also ap-
ply damping forces which we ignore for simplicity.)
The external influences on B can be written as the
negated gradient of a composite potential function:
®(q) = U(q) — Weye - ¢. A general result concerning
the dynamics of mechanical systems states that the
flow of a damped mechanical system governed by a
potential function ® is attracted to the local minima
of ® [5]. We have already shown that for every w.y:
in a neighborhood about the origin there exists a con-
figuration ¢; such that V®(¢q;) = 0. The equilibrium
point ¢; is a stable attractor if it is a local minimum
of ® ie., if D?®(q;) > 0. But D?®(q) = D?*U(q),
and the entries of D?U(q) vary continuously with g.
Since the eigenvalues of a matrix vary continuously
with its entries, D?U(q) remains positive definite in
a neighborhood of ¢o. By shrinking A if necessary,
we conclude that ¢; is a local minimum of &, and 5
would automatically settle at ¢;.

The necessity of condition (2) is based on the
following argument. Suppose that B settles at the
equilibrium ¢; induced by weg:. If the equilibrium
point g; is not a local minimum of &, then it must
be either a degenerate local minimum or a saddle of
®. A degenerate local minimum can occur only in
non-generic grasps. A saddle is an unstable equilib-
rium that generically attracts only a thin set of initial
points. If the equilibrium at ¢; is a saddle, the trajec-
tory of B that starts at gg would generically diverge
away from the saddle. |

B Computation of D*U(q)

In this appendix we compute the two formulas for
D?U(q) which appear in Lemma 3.1. To begin with,
U(g) = Zle Ui(q) where U;(q) is the elastic energy
induced by the ** active-compliance contact. Using
the linear compliance law (2), the elastic energy in-
duced by the it* contact is:

yr? + d. The first deriva-

where z; _X( 11‘1) = R(#
= —DX,,(q)T F,(q), where

tive of U; 1is: Ui(q)

Fi(q) = F? — K'(:ci(q) — z?). The second derivative
of U; 1s:
D?Ui(q) = DX (9)KiDX,,(¢) — D* X (0)" Fi(q)-

(6)
Recall that [ux] is the 3 x 3 skew-symmetric ma-
trix satisfying [ux]Jv = wu x v for all v € IR
Then DX, (q) = [I,(—p;)Xx]. The second derivative,
D?X,,(q), is a vector-valued symmetric bilinear func-
tion. To obtain a formula for D?X, (q), we compute
the derivative of DX, (g) along a configuration-space
trajectory q(t). The velocity of B along ¢(¢) is de-
noted ¢ = (v,w), where v and w are B’s linear and an-
gular velocities. Since p; = R(8)r?, £ DX,,(q(t)) =

s Tir G
[0,(=Rr?)x] = [0,(p; xw)x]. The action of this

derivative on the force Fj is: (%DXTI(q(t)))TFi =
0 . . .

< (0. x w) x F, > Using a triple cross-product iden-

tity, we obtain that (p; X w) x F; = [(p, - F:)I —

p;FFlw = —[F;x][p;x]w. On the other hand, the

chain rule implies that (D*X,,(q))q.

# DX, (a(t)) =
Hence the action of D?X, (¢q) on F; is given by the
following matrix:

2 0 0
D?X,,(9)7F: = [ 0 —((Fix]lp;x)). ] |

Substituting for DX, (¢) and D?X, (¢)TF; in (6)

gives:

Kilp; x] ]
lo:x]TK; [y X" Ki [p;x] + ([Fix][p;x))s |~
(7)
The summation D?U(q) = Zl . D*U;(q) gives for-
mula (4) for 3D grasps. In the 2D case, we evaluate
each D?U;(q) of (7) along a velocity vector ¢ = (v,w)
such that v = (vs,vy,0) and w = (0,0,w,). In
particular, [p;X|w = w,Jp; where J = [ _01 (1) ],
and [F;x][p;x]Jw = (p; - Fi)w,. When these terms
are substituted into (7) and the sum D2?U(q) =
Zle D2U;(q) is taken, formula (5) is obtained.
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