On the Mechanics of Natural Compliance
In Frictional Contacts and its Effect
on Grasp Stiffness and Stability

Amir Shapiro Elon Rimon Joel W. Burdick
Dept. of ME, Technion Dept. of ME, Technion Dept. of ME, Caltech

Abstract— The mechanics of friction and compliance in multi- linear spring approach is not supported by the solid meckani
contact arrangements is key to understanding and predictig |iterature. In particular, without knowledge of an undanty
grasp stability and dynamic response to external loads. Tl \qpjinear contact model there is no way to select the spring
paper introduces a comprehensive model for the nonlinear fce- . L .
displacement relationship at a frictional contact. The moa! is F:oeff_|C|ents. Moreover, it is |ntU|_t|ver_ Clear (and rigorsly
given in an analytic lumped parameter form suitable for on-ine  justified below) that the tangential stiffness increaseshas
grasping applications, and is entirely determined by mateial bodies are pressed harder together. Yet none of the linear-
and geometric properties of the contacting bodies. The foe  spring models proposed in the literature accounts for this
displacement law predicts a nonlinear tangential stiffenig as the phenomenon, which can potentially lead to grasp instgbilit

normal load increases. As a result, the composite stiffnegsatrix In th lid hani literat th v f d effort
of a frictional grasp is asymmetric, indicating that such grasps n the solid mechanics literaiure, the only Tocused etor

are not governed by any potential energy. The consequencesOn formulating analytical friction-compliance models iy b
for grasp stability are investigated. We formulate a rule fa Mindlin and Deresiewicz [7], [8][1949-1953]. They inves-
preloading frictional grasps which guarantees stable respnse at  tigated the case where a contact is initially loaded along
the individual contacts. Then we obtain a criterion for sel€ting e normal direction in accordance with the Hertz normal
contact points which guarantees overall grasp stability. Tie . . .
synthesis rule and its effect on grasp stability is illustréed with C_Omp"ance model. The_n they analyze _the tangent_lal tractio
a simple 2D example. field generated by applying pure tangential loads while thre n
mal penetration remains constant. Their investigatioeatd
. INTRODUCTION highly nonlinear and complex phenomena such as micro-slip
Friction effects play a key role in virtually all lightto med and hysteresis [9]. For almost half a century there has been
ate duty grasping and manipulation applications. For msta no substantial progress in this area. Motivated by granular
friction allows stable grasping with a much smaller numbenaterial packing applications, Walton [10] derived in 198V
of contacts than would otherwise be required—two contaasalytical friction-compliance model which is more relata
rather than four in 2D, and two or three contacts rather théor grasping applications. This model was later refined kat&l
seven in 3D. Since friction effects act in tandem with ndturfl1]. Walton’s law assumes that a contact is loaded alongesom
compliance effects, the two phenomena must be integratethtive linear motionbetween the contacting bodies. Under
into a single comprehensive contact model. This paper hags assumption (and using a different analysis approaah th
two main objectives. The first is to properly integrate foat Mindlin’s), he derives a closed form formula for the tangant
and nonlinear compliance contact phenomena into a singlempliance force at a frictional contact. Our ensuing rssul
law which would be theoretically justified by results fromare based on Walton’s tangential compliance model.
solid mechanics. The law must appear in an analytic lumpedThe structure and contributions of the paper are as follows.
parameter form suitable for on-line grasping applicatjovith In the next section we review Walton’s contact model. Our
all its parameters being material coefficients and geometdescription is limited to 2D bodies with spherical tips, but
parameters of the contacting bodies. The second objedtivahie model extends to 3D bodies. In Section Il we compute
to analyze the stiffness and stability of multi contact geasthe stiffness matrices associated with the individual @ctst
based on the friction-compliance model. This analysis tughhese matrices, called tleentact stiffness matricedetermine
to lead to synthesis rules indicating which contact poimid athe composite stiffness matrix of the entire grasp. A funeiam
what preloading profiles guarantee stable grasps. tal new result is thathe contact stiffness matrices as well as
The modeling of the nonlinearormal compliance is well the composite grasp stiffness matrix are non-symmelhds
understood in the robotics literature [1], [2], [3]. In coedt, result indicates that frictional grasps are not governedainy
there has been no systematic effort to incorporate reswlts f potential energy. Hence grasp stability must be determined
the solid mechanics literature into a concise law that ptsdi by the full nonlinear dynamics of the contact arrangement,
the tangential force due to friction and natural complianceather than being a simple local-minimum test. Sectionldba
effects. Rather, roboticists have resorted to postulaohdpoc contains a characterization of the linear loading profilest t
linear springs that act tangentially in tandem with thedigi guarantee stability of the individual contact stiffnesgncas.
body Coulomb friction law (e.g. [4], [5], [6]). However, theln Section IV we conduct a stability analysis of the full
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Fig. 1. (a)B's c-space(dy,dy,0). (b) The overlap segment betweety 4. (b) Tangential loading of8 causes tangential displacementfvithout
and 5. any macro-slip.

Fig. 2. (a) An initial contact area generated by normal lngdif B against

from A;. The overlap segmenis the unique segment whose

dynamics, and derive a concise grasp stability criteriaat thendpoints lie on the boundary Bfand.A4;, such that the length
can be interpreted as a rule for selecting contact points thd the segment i$}' and its orientation gives the direction of
guarantees grasp stability. The concluding section ds&sisseparating translation. For sufficiently small, the overlap
extension to 3D and on-going experimental validation of theegment is collinear with the normals to the boundaries of
model predictions. and A;. In this lumped parameter form of modeling, the net
normal force induced by the local deformation is assumed to
act atB’s endpoint of the overlap segment,, in the direction

We describe generic nonlinear models for the normal aflthe overlap segment. The magnitude of the net normal force
tangential compliance at a frictional contact. Considerasg £, is assumed to depend 6f in terms of a functiory; (57').
or fixture arrangement where a 2D objebt is held by This function is required to be differentiable, zero whéhis
stationary 2D bodiesd,. .., A, which represent fingertips zero, and monotonically increasing whé is positive. The
or fixels. The usual assumption made in the solid mechanigsrmal compliant force is:
literature is that the contacting bodies greasi-rigid meaning
that their deformations due to compliance effects are ipedl neoN n nyst sn §N
to the vicinity of the contacts [9]. This assumption is gextigr 1i'(a) = 9i(07(0)) + (83, 07, 0; )
valid for all bodies which are not made of exceptionally soft s.t.g;(6;") > 0 whend;’ > 0.
material and do not contain slender substructures [3]. Thge functiony! represents damping due to viscoelastic ef-
quasi-rigidity assumption allows us to describe the oVerdkcts. It is differentiablap?(ét 67",0) = 0, and being damping

motion of B relative to the stationary bodie4;, ..., A; using function satisfies the condli,tic;q;;?(éﬁ,é?,is?) . (5? < 0. It

rigid body kinematics. Since the grasping bodies are staty) s important to note that a wide variety of contact models
we focus onB’s configuration spacgc-space). C-space iscan be represented in this framework. The simplest contact
parametrized by = (d,6) € IR* x IR, whered is B's position model assumes thaj; is a linear function of the overlap:
and# is a parametrization oB’s orientation. Velocity vectors . (57) = x;6%, where the coefficienk; represents the com-
take the formj = (v,w), wherev € IR® andw € IR® are the pined stifiness of3 and A; at the contact [1]. The nonlinear
linear and angular velocities df. Hertz model [12] which has been verified theoretically and ex
perimentally, establishes that quasi-rigid bodies withesjral

A. Normal Compliance Models . . :
© é P ) ) ) tlﬁs of radii Ry and R, satisfy the law:
We review a generic normal compliance modeling approac

that ignores the details of compliant surface deformations n w S8GVR |, 3/2

and models the resultant contact force as a functio8’sf fi'=9i(67)= 3(1—v) (67)7%, @)
configuration [2]. Consider a single contact betwédgrand RiRo i
A;. In the absence of deformation, the two bodies contaf'€ef = 717, andG andv are material shear modulus
at a single point. When pushed together, the two contactif§d Poisson’s ratio [9]. The overlap representation isulsef
surfaces deform. One can conceptually think of the tw/en for modeling _bod|e_s which are not necessarily quasi-
rigid bodies inter-penetrating, or overlapping their uiodmed '19id. such as soft fingertips [13].

shapes, as illustrated in Figure 1(b). IZbe at a configuration B. Tangential Compliance Models

q. Then theoverlap: between3 and A;, denoteds} (q), is the
minimum amount of translation d$ that would separate it

Il. FRICTION-COMPLIANCE MODELS

The process underlying tangential compliance at a friefion
contact is as follows. When two quasi-rigid bodies are
1The notion of overlap used here is consistent with the canaefrelative prelogded along the normal direction, they Ipc_:ally defo_"d a
approach” in contact mechanics [9]. establish a contact area centered at the original contaet po



(Figure 2(a)). The deformed bodies generate a normal for¢angential and normal displacementsand 7. The function
field which is continuously distributed along the contaeiear ! represents damping due to micro-slip. It is differentiable
(The integral of this force-field over the contact area gives @(52, 6%,0)=0, and satisfies the conditiqm'g(é’;, o, 5:) 5: <

net normal force described above.) When the two bodies gre

next loaded along a tangential direction, they locally d&fo Walton’s tangential compliance model Walton assumes that
in a way that generates a tangential force-field which isragai contact is loaded along a linear loading profile satisfying
continuously distributed along the contact area (Figut®)2( §¢ = ;6" such thatc; is constant throughout the loading
The usual assumption made in the solid mechanics literatyi@cess. Under this assumption, he derives the following
is thatthe normal and tangential force-fields interact at thégrmula for the elastic part of the tangential complianceséo
individual points of the contact area according to Coulomb’[10],

law [8]. Under this assumption, elasticity theory as well as

experimentals indicate that the tangent force-field comgif 16GVER

two regimes. At points in an outer ring of the contact area Il = hi(8t,67) = ———~—/o74!

the tangent forces exceed the friction cone constrainsiogu 3(2-v) ©)
micro-slip at these points. At points along the complemgnta such thatc;| < M%-

inner disc of the contact area the tangent forces lie withé t (2-1)

friction cone, and at these points no micro-slip takes plack® conditione;| <pusr—5 results from substituting formulas

As the magnitude of the tangential loading increases the afé) and (3) for f* and f{ in the friction cone constraint

of the stationary inner disc shrinks. Finally, when the nefil < wff". Walton's formula isextremely relevant for

tangential loading reachgstimes the net normal loading:( 9rasping applicationssince one can readily implement a

being the coefficient of friction), the inner disc shrinksao linear preloading of the grasp's contacts. As noted in the

point and the two bodies experience macro-slip at the cantdftroduction, Walton’s formula indicates a nonlinear tangal
Based on this insight, we formulate a generic tangentiliffening at a contact for larger normal penetrations.

compliance law, assuming that the contacting bodies deform 1. THE CONTACT STIFENESSMATRIX

but do not slip. This law covers most of the tangential | et ¢, denote the configuration df at the preloaded grasp.
compliance models that have been proposed in the literattige contact stiffness matrix¥s;, is the2x2 matrix representing

[11], [8], [10], and is therefore quite general. First we @heethe linearized force-displacement relationship at thetain
to introduce notation. Recall that; is B's endpoint of the

overlap segment. Let; denote the same point expressed in ( Aff > — Ki(g) ( AY; ) 4)
B's body frame (Figure 1(a)). Then; is related tor; by the Afr ) 0 AV

rigid body transformationt; = X (ri,q) = R(#)ri +d, where \e wish to derive a formula fods; based on the Hertz-
R(9) is the orientation matrix of. Let X,,(q) denote the \aiton model. However, Walton's model is valid only for
rigid body transformation with; held fixed. WhenB3 moves  |ineqr [0ading profiles. Hence the linearized Walton law dou
alondg a c-space tra%e.ctoq(t), the \;elouty of X, is given give the tangential force corresponding to a linear loading
by 5 Xr.(a(t)) = Giq(t), whereGj = DX, is the2x3  phrofile which leads directly tdd%(go), 87 (go))+ (ASE, Ad™).
Jacobian matrix of(,,. Now let % (q(t)) denote the tangential On the other handk; in (4) gives the contact force obtained
displacement oB relative to thei'" contact due to motion of by first loading along a linear profile towar& (¢0), 67 (¢0)),

B (Figure 2(b)). Then the derivative 6 alongq(t) is given then loading along a small changas’, As”?). In order to

i

by projection of the velocity ofX;, along the unit vectot; gpiain a formula fork;, we introduce a practical assump-

which is orthogonal to the current overlap segment: tion that closely matching loading profiles generate closely
matching tangential traction field8Vhile a formal justification
d t y T - . . . . . . .
S0ila®) = —ti- Xy, = —ti - G 4(0). (2) of this assumption is under investigation, it is clearly a

) o S reasonable assumption. Under this continuity-with-respe
Note that in contrast witd;'(¢), the tangential d|splacement|0<.jujing_proﬁ|e assumption, the formula faf; is precisely the

is not a direct function of, but requires integration of (2) |inearized Hertz-Walton laws. The following propositioves

over the entire loading trajectorf][p. 221]. the formula.
The magnitude of the net tangential forcg, obeys a
generic law of the form: Proposition Ill.1. Let two quasi-rigid bodies with spherical

tips of radii R; and R, be preloaded along a linear path
6% (q) = ¢;i67(q) such that|c;| < ;LQ((Q;”V)). Then the stiffness
matrix of the loaded contact is:

L= hi(64,87) + oL(5%, 67, 67)

iV

as long asf;' > 0 and|f!| < uf/,

4
wherey is the coefficient of friction. The functioh; repre- K; = 4G/ R6}'(qo) { 3(20_") ey
sents the elastic part of the tangential force. It is difféigble, L=v
hi(0,97) = 0, and for any fixed positive); is monoton- whered?(go) is the normal penetrationi? = R’ffgz, andG
ically increasing ind%. Note thath; depends both on the and v are material shear modulus and Poisson’s ratio.




in this sector "
contact force lies d;
inside friction ¢one

The formula forK; is obtained by first taking the derivative
of (f, f}) given in (1) and (3) with respect t@?, !). Then
substitutingg = ¢o and the loading path relatiod(q) =
¢id; (qo)- Note that the resulting contact stiffness matrix is
asymmetricWe shall see below that the composite stiffness
matrix of the entire grasp is consequently asymmetric.
For purposes of grasp stability analysis, we need to establi
when the symmetric part d&; is positive definite. (This con- 5.0
dition was characterized as a “stabl&’; in the introduction.) !
Let (Ki)s — %(Kz’ + KZT) denote the symmetric part dt;, Fig. 3. Two sectors idéf,é?)—pla_ne assqciated with Eositive definiteness
and let(K:)as = 1 (K; _KzT) denote the skew-symmetric partof (K;)s and friction cone constraint. Typically < 56.3°, 8 < 80.5°.
of K;, whereK; = (K;)s + (K;)as. A surprising result is that
the positive definiteness ¢f;), depends solely on the slopeA. Linearized Grasp Dynamics

(Kj)s 1s positive
definite in this sector

.th
i™ contact

of the linear loading profile. We derive the linearized dynamics of a quasi-rigid object
Proposition IIl.2. If a contact is loaded along a IinearB held in equilibrium grasp by statiopary quasi-rigid bodies
loading profile whose slope; satisfies Az, Er A under tyvo a_ssumpnons. First, we assume that the
bodies have spherical tips at the contacts. Second, we assum
o] < 2 M, that each contact is preloaded along a linear loading profile
(1-v) Let F; denote thei® finger force acting or3, where F;

is expressed in a fixed world frame. Sin¢€ (q, q), fI*(q))
are the tangential and normal componentdgfwe write F;
as Fi(q, ). The formula forF; in terms of (ff, fI') is F; =
Proof: Let A1, \» denote the eigenvalues @K ;). Then(K;), Ri(Q)( ff:' ) whereR;(q) is the2 x 2 matrix R; (q) = [t; ni).

the symmetrized contact stiffness mat(iX;); is positive
definite.

is positive definite iffA;, A, > 0. First consider the trace of eyt consider the wrench (i.e. force and torque) induced by
(K;)s. The trace is positive when < 1. But for almost all F, on B. It can be verified that this wrench is given by

practical materials Poisson’s ratio is bounded from above Gi(q)Fi(q, ), where G; = DXT was introduced above
(3 (2 3 1 T r; N

by 0.5 [9]. Hencetr(K;)s = A + X2 > 0. Next we compute jging this notation, the dynamics & under the influence of

the determinantlet(K;)s = Aiz. Since A + Ay > 0, the ;. ooniact forces, without any other external influences sisch a
positive definiteness d¢fK;); would follow from the condition gravity, is:

A1z > 0. Ignoring the positive coefficiertG/Ré%(qo), the
determinant of K;); is: k
M(q)ij+Clg,4) = > Gi(9)Fi(q, d), (5)
4 02 i=1
det(K;)s = - —.
3(1-v)(2-v) 92-v) whereM (¢q) andC(q, ¢) are B’s 3x3 inertia matrix and vector

The inequalitydet(K;)s > 0 becomest/3(1 — v)(2 —v) > of centrifugal and Coriolis forces.
c?/9(2 — v)?. Taking the square root of both sides gives the Recall thatg, denotes the equilibrium grasp configuration
result. O of B. We wish to determine the linearized dynamics/ht

Example: For typical values o» < 0.5, the loading path the equilibrium statgq,§) = (qo,0). Let (p1,p2) = (¢.4)
slope must satisfyc;| < 6 for (K;)s to be positive definite. denote the state variables. Then (5) is given by
The corresponding angle, denotgdn Figure 3, must satisfy
B < 80.5°. However,c; must also satisfy the friction cone PL=ps
constraint|e;| < u(2 — v)/2(1 — v). For typical values of Po=M~"(p1) (5, Gi(p1) Fi(p1, p2) — C(p1, p2)) -
p < 1, the loading path slope must satisfy;| < 1.5. The =1 e ’
corresponding angle, denotedin Figure 3, must satisfg < The following lemma gives the linearized dynamics [®fat
56.3°. Thus we see that the positive definiteness requirementi¢ equilibrium state.
significantly less restrictivéhan the friction cone constraint.| e mma V1. The linearized dynamics df at (
Since friction cone constraint must always be satisfied, V(ﬁo-o)
conclude tha{ K;); is typically positive definite. '

A'pl 0 1 Api
IV. STABILITY ANALYSIS <A'102>:[_M71(q0)1(p(q0) —M*l(qo)Kd(qo)](Am)

Our objective is to determine the stability of frictionabgps \\here K- and K, are the grasp3x3 stiffness and damping
under the Hertz-Walton model. We first derive the ”nearizenﬂatricesl.) The stiffness matrix is given by
dynamics of53. The resulting system contains an asymmetric
stiffens matrix. Hence we develop a general stability dote
for asymmetric linear systems, then applied the criterion t
our grasping system.

p1,p2) =
is given by

k
K,=Y GiRKR[GI - (DG! + (DR)R])F;

i=1



where K; is the i" contact stiffness matrix. The damping

matrix is given by 0 I b1
—Kp —Kd (%)
Ea () (0
- Yem| W |w s s ) M
[ ad; J Clearly, A = 0 cannot be an eigenvalue of. Since X # 0,

_ h _ _ _ it follows thatv; # 0 andwvs # 0. Hence we may assume
where; is thei™" tangential damping function. without loss of generality that} - v; = 1, wherex denotes
The detailed proof is relegated to Ref. [14]. In the proof, W(éomplex conjlig:;\te transE)ose. Bas*ed on this choice, we can
first observe that the linearization off (p;) and C(py,ps) Writ€ A* = ”1*>‘ vi = viAvy = v (=Kpu — Kquy) =
vanishes at the equilibrium state. Then we focus on the”él; PV~ M}éKdvl'I"{"hereS"_"e U}ed th% r(::]atlomll E”Q

and \vy = —K,u 4v2. Since Ky > 0, the scalar =

matrices:K), = g, ‘(pl p2)=(000) Yiz1 Gilp)Filpr, p2), and v} K v, is positive real. Similarly, the scaldr = v7 (K,),v1
K,= % ~ ZZ L Gi(p1)F;(p1,p2), whereAp, = IS also. p9§|t|ve real. SINC&K,),s ‘IS skew—symrpe;nc, we
(P1,p2)=(q0.0) L can write j5 = v} (K,)asv1, Wherej = /=1 and 7 is real.

Ag = q—qo, andAp, = ¢ — 0. Note that the linearized grasp

dynamics can also be written as Substituting these scalars into the quadratic equationgifes

. , A+ BA+a+ 55 =0. )
M (q0)Ad + Ka(q0)Ad + Kp(g0)Ag = 0, (6)
Note that every eigenvalue of satisfies this equation. The
such thatM (qo) and K4(qo) are symmetric matrices, while solution of (8) is:

K,(qo) is asymmetric.

_ l _ > "’2 _ ~ .« ~
B. Stability of2"?-Order Asymmetric Linear Systems M2 =g ( BB -4 +”)> ' ©)

Consider the second order linear asymmetric system: Let us pause to recall how one computes the square root of a
complex number. Consider a complex numbet a + jb with
P+ Kap+ Kpyp=0, (7) anorm|z| = vVa? + b2 and argument = arctan(b/a). Then
vz = £(a® + b3 Aﬁ and in cartesian coordinategz =

where K; € RR" " is symmetric positive definitek, € +(a? + b2)% (cos (¢ )+]sm( ). Sincecos() = s,
R"™"™ is asymmetric, while its symmetric paftk,)s is ) ; 1+COVS(29;“
positive definite. The following theorem states that if tkeve- W€ use the trigonometric identityos (3) = |/~~~ to

symmetric part of,,, (K;)as, is sufficiently small, the system obtain
(7) is globally asymptotically stable.

2 2y % 5
Theorem 1 (global asymptotic stability). Consider the sys- Re{\/z} =+ (a” + 1) (1 + 2a 2) ’ .
tem of (7). Let3 € IR be the minimal eigenvalue df;. Let V2 vas +b

a € IR be the minimal eigenvalue ¢f,);, and lety € IR In our casex = 32 — 4& andb = —47, and (9) implies that
be the matrix norrh of the skew-symmetric part &,. Then
if

RE{ALQ} = —g )
=9 ~\2 < z ~ 1
<a (°-1a)*+167") * (°-18) _\3
] < Vap + e 1+ 75
the system (7) is globally asymptotically stable. The requiremenRe{)\; >} < 0 introduces an inequality in
Proof: The system (7) can be written as &, f#, and#. Rearranging terms in this inequality gives the
equivalent inequality,

p SN2 - 2
( P > (4a+82) > (5 -4a) +167"
Cancelling similar terms yields the inequality
For global asymptotic stability, it suffices to show that the _
real part of the eigenvalues of is negative. Let\ € C 7] < VaB. (10)
be an eigenvalue oft with corresponding eigenvectar =

(v1,v2) € C* (v # 0). Note that each; is a complex vector
in C™. Then

d(p)_ 0 I
dt p N _Kp _Kd
| S —

A

For stability we must ensure that the inequality (10) holats f
everya, 8, and4. In other words, (10) must hold for every
eigenvalue\ and associated eigenvectoof A. Therefore we

2The matrix norm is defined a8E|| = maxz{||Eu||} over all vectors bounda, 5, and¥ as follows. First) < o = Apin ((KP)S) =
[lull < 1. v} (Kp)sv1 = é&. Secondl < 8 = Apin (Kq) < viKgqv1 =

A
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Fig. 4. An example of two-fingered grasp, where the fingers aad 1[cm].

B. Third, [7] = [[(Kp)asll > [0f(Kp)asor| = 73] =[5
Using these boundsy < /af implies that|y| < Va3 for
everya, 3, andy. O

asymmetry ofK,. Therefore, theorem 1 which bounds the
amount of asymmetry ok, practically bounds the angle be-
tween the contact force and the normal. For comparison, if we
analyze this grasp with the classical convention of Coulomb
friction model, takingu = 0.3 (Aluminum on Aluminum), we
would get¢ < 16.7°. Our model is conservative as stated in
section IV. However, it predicts the same qualitative bétrav
as the classical Coulomb friction model.

V. CONCLUSION

The Hertz-Walton contact model allows concise analyticeep
sentation of the contact forces as a function of the contiat p
displacements. Based on the contact model, we derivedatonta
stiffness matrices, which are asymmetric matrices. As altres
the grasp stiffness matrix of the entire grasp is asymmetric

Application to grasp stability. The linearized grasp system\We obtained a concise condition for the global asymptotic

contains an additional term, the inertia matfiX(qo) which

stability of the grasp linearized dynamics, and therefore a

multiplies . The following corollary adapts the theorem tdocal asymptotic stability for the nonlinear system. Thateat

a global asymptotic stability criterion for the linearizgtasp
system.

Corollary IV.2. Consider the linearized grasp system

Mp+ Kgp+ Kpp =0, (11)

where all parameters are as above, except for the maitfix
IR™*™ which is symmetric positive definite. L&t> 0 be the
minimal eigenvalue of\/ /2K, ,M~1/2. Leta > 0 be the
minimal eigenvalue of\/ ~'/2(K,),M /%, and lety € R
be the matrix norm of/ ~'/2(K,),s M /2. Then if

| < Vap
the system (11) is globally asymptotically stable.

model and the grasp stability analysis seem to exterllio
grasps under a hard-finger model (i.e. no frictional torque
about the contact normal). Finally, we are in process of
constructing an experimental grasp arrangement for ggstin
theoretical predictions [15].
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