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Abstract 7his paper presents an immobilization-
based control method for spider-like robots that move
quasistatically in tunnel environments. The control
method is based on an immobilization theory which
ensures that when a spider-like mechanism 1s bracing
against the environment at an immobile posture, the
naturally occurring compliance at the contacts stabi-
lizes the mechanism as a single body. Based on this
result, we present two versions of a position control
law for general k-limbed spider robots. We show that
if the controller’s stiffness (i.e. proportional gain) is
above a lower limat determined by the spider and envi-
ronment parameters, stability of the closed-loop spider
system 1s guaranteed. We present dynamic simula-
tions of a spider robot mouving in a tunnel under the
influence of the immobilization-based control law. The
stmulations show excellent convergence properties of
the control algorithm. A four-legged spider prototype
has been built, and we conclude with a description of
initial experiments with this robot.

1 Introduction

Conventional mobile robots are wheeled vehicles that
require a sufficiently flat terrain in order to perform
their tasks. However, many robotic tasks are more
suited for legged robots that interact with the envi-
ronment in order to achieve stable locomotion. For
example, surveillance of collapsed structures for sur-
vivors, inspection and testing of complex pipe sys-
tems, and maintenance of hazardous structures such
as nuclear reactors, all require motion in congested,
unstructured, and complex environments. Spider-like
mechanisms are examples of robots that can move qua-
sistatically in congested environments.

In this paper we present a control algorithm that
guarantees stable locomotion of spider-like robots un-
der the following assumptions. First, each limb of the
spider contacts the environment only through its dis-
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Figure 1: Conceptual designs of (a) four-legged, and
(b) five-legged spider robots.

tal link, called the footpad. The footpads have no suc-
tion cups and can only push against the environment.
Second, we study locomotion in two-dimensional hori-
zontal tunnels with piecewise smooth walls (Figure 1).
However, real tunnel walls may be wet, oily, or icy.
Hence we assume slippery tunnel walls, so that locomo-
tion must proceed without using friction. This restric-
tion excludes tunnels of a particular simple geometry
(such as two parallel walls), but most unstructured
congested tunnels do have a complex geometry with
many possible footholds within reach of the robot.
Furthermore, since friction enhances the stability of a
mechanism contacting the environment, a frictionless
locomotion plan can also be executed in a frictional
environment. Qur last assumption is that the spider
moves quasistatically, by stably bracing against the
tunnel walls while changing its internal configuration
to allow motion of its free parts to the next position.
This approach enables the robot to reliably operate in
the presence of unpredicted external forces.

We now describe the control problem associated
with quasistatic locomotion of spider-like robots. Let
a spider mechanism have k limbs, each having n ac-
tuated degrees of freedom. As illustrated in Figure 1,
the limbs are interconnected by a central base that has
three unactuated degrees of freedom. A spider robot
thus has kn+3 degrees of freedom, of which only kn de-
grees of freedom are actuated. Regarding the spider’s
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configuration space as , the control problem is

how to induce forces and torques on the spider in or-



der to bring it to a desired configuration. Existing
solutions to the problem make specific assumptions
either on the spider’s structure or the environment’s
geometry. Pfeiffer et al. [9] assume that the spider
limbs have a negligible mass relative to the central-
base mass. This assumption induces a decoupling of
the limbs and central-base dynamics. Another con-
trol approach is proposed by Dubowsky et al. [1] in
the context of ladder climbing. They attach virtual
springs to the spider footpads and central base such
that the springs’ setpoints reflect the desired spider
configuration. However, their approach seems to rely
on the specific geometry of a ladder and lacks a formal
proof of convergence.

In contrast, we present a control approach which is
guaranteed to work no matter what 1s the mass dis-
tribution of the spider or the geometry of the environ-
ment. Qur approach is based on the kinematic im-
mobilization of the spider with respect to the tunnel
walls. Using classical Form Closure theory [12], four
“point” footpads suffice to immobilize a mechanism
by a suitable selection of the contact point positions.
Figure 1(b) illustrates such an immobilizing posture
for a five-legged spider. Using the recent immobi-
lization theory of Rimon and Burdick [10], a mecha-
nism can additionally exploit surface curvature effects
to immobilize itself using only three footpads. Fig-
ure 1(a) illustrates such an immobilizing posture for
a four-legged spider. In both cases, the key property
of immobilizing postures is that the bracing mecha-
nism (considered as a single rigid body) is stabilized
by the compliance of the footpads and tunnel walls at
the contacts. In other words, as long as the footpads
maintain an immobilizing posture with respect to the
environment, the reaction forces generated by the nat-
urally occurring compliance at the contacts stabilize
the mechanism as a single rigid body. Note, however,
that we are still free to guide the spider’s central base
and other free parts along any desired trajectory, as
long as the contacting footpads maintain an immobi-
lizing posture with respect to the environment.

This paper begins with a short review of a compli-
ant contact model which is compatible with the classi-
cal Hertz contact theory. Using this model, we demon-
strate that a kinematically immobile mechanism (con-
sidered as a single rigid body) has a positive definite
stiffness matrix. Then we present two versions of the
immobilization-based control law. The first version is
simple but requires a specification of the desired spi-
der configuration in terms of joint values. The second
version 1s more intuitive and allows the use of virtual
springs to specify the desired spider configuration. We
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Figure 2: The overlap segment representing the inter-
penetration of A; and B.

analyze the stability of the control laws, and show that
if the controller’s stiffness is above a lower limit de-
termined by the robot and environment parameters,
stability of the system is guaranteed. Next we present
dynamic simulations of a spider robot moving in a tun-
nel under the influence of the immobilization-based
control law. The simulations take into consideration
the dynamics of the spider and the compliance at the
contacts, and they show excellent convergence prop-
erties of the control algorithm. A four-legged spider
prototype has been built, and we describe initial ex-
periments with this robot.

2 Compliant Contact Mechanics

Compliant stabilization of an immobile object is
the basis for the control laws presented below. In
this section we review this key fact by presenting a
configuration-space based model for compliant con-
tacts. Using this model, we introduce the stiffness ma-
trix of a compliant grasp or posture, and demonstrate
that this matrix is positive definite when the grasped
object or posturing mechanism is immobilized by its
surrounding bodies.

2.1 Compliance Modeling

Let k stationary and frictionless finger bodies A;,-
..., A hold an object B in an equilibrium grasp. Equiv-
alently, let a k-limbed mechanism brace itself against
an environment in a static equilibrium posture. In the
latter case the mechanism plays the role of B, while
the tunnel walls play the role of A;,..., Ax.

Our compliant contact model i1s based on overlap
functions introduced in Ref. [10]. These functions
represent the continuous elastic deformation at a con-
tact by a lumped parameter characterizing the inter-
penetration of the undeformed bodies. In the absence
of deformation, two bodies B and A; contact at a sin-
gle point. After deformation occurs, the two bodies
inter-penetrate as illustrated in Figure 2. Let B be at
a configuration q. Then the overlap between B and A;,



denoted §;(q), is the minimum amount of translation
of B that would separate it from A;. By definition,
3;(q) vanishes when B is disjoint from .4;. When the
overlap is positive and small, there is a unique seg-
ment, called the overlap segment, whose endpoints lie
on the boundary of B and A;, such that the length of
the segment is §; and its orientation gives the direc-
tion of separating translation. The overlap segment is
also collinear with the normals to the boundaries of B
and A;. The net contact force is assumed to act on
B’s endpoint of the overlap segment, in the direction
of the overlap segment. The magnitude of the con-
tact force depends on the overlap in terms of a func-
tion f;(4;), which is required to be differentiable, zero
when its argument is zero, and positive when its ar-
gument is positive. The simplest model assumes that
fi is a linear function of the overlap: f;(é;) = k;é;,
where the coefficient x; represents the combined stiff-
ness of B and A;. While this model is linear in §;,
it is typically not linear in g, since §;(g) is in general
nonlinear in ¢. The Hertz model [3] which has been
verified theoretically and experimentally, establishes
that f;(8;) = miJ?/Q, where x; is a specific function of
the bodies’ material and geometric properties.

Consider now an equilibrium grasp or posture,
where B is at a configuration ¢g in contact with sta-
tionary bodies A, ..., Ax. Then the elastic potential
energy of the system of bodies is:

k

di(q)
2/0 £ (8)dé. (1)

1=1

M(q) =

It can be verified that é;(g) is differentiable almost
everywhere, and consequently TI(q) is twice differen-
tiable. In the absence of a disturbing wrench, an equi-
librium at qq is characterized by the condition:

k
VII(g0) = ) £i(6:(a0))VBi(g0) =0, (2)
i=1

where the gradient vector VII(gqg) represents the
derivative DII(qo).

2.2 The Stiffness Matrix of a Compliant
Grasp or Posture

When an object B is held in equilibrium grasp at a
configuration qq, the grasp’s stiffness matriz is defined
as the Hessian, K = D?TI(qo), of the elastic potential
energy II(g) at go. Similarly, when a mechanism B is
bracing against the environment in static equilibrium,
we may treat the mechanism as a single rigid body and
then K = D?TI(qo) is the posture’s stiffness matrix.
Since VII(gg) = 0, the behavior of IT in the vicinity of

qo 1s determined by K. If K is positive definite gq is

a local minimum of II and the grasp is stable [10].
To compute the stiffness matrix, we take the deriva-

tive of VII(q) given in (2), and obtain the formula:

K= Z £1(6:(90))V;(q0) Vi (o)™ + £: (6:(90)) D?6:(0),

where f/ = df;/dS;. General formulas for D?6;(qo)
appear in Ref. [7]. We note that the first summand
depends on the contact-point positions and contact-
normal directions, while the second summand addi-
tionally depends on the surface curvature at the con-
tacts. In other words, the first summand accounts for
first-order geometrical effects, while the second sum-
mand accounts for second-order, or surface curvature,
effects. This phenomenon has been observed at vari-
ous levels of generality in Refs. [4, 8, 10].

2.3 Kinematic Immobility Implies Com-
pliant Stability

Immobilization theory studies the mobility of a rigid
object B grasped by rigid finger bodies A, ..., Ag.
Roughly speaking, B is immobile to first-order when
the bodies’ first-order geometrical properties (i.e. con-
tact point positions and contact normal directions)
prevent any instantaneous motion of 5. This notion is
equivalent to classical form closure [12]. An object B
is immobile to second-order when the combination of
first and second-order geometrical effects (i.e. surface
curvatures) prevent any instantaneous motion of B.

We now draw a connection between immobiliza-
tion and compliant stability. The following theorem
asserts that kinematic immobilization guarantees dy-
namic stability when elastic deformation at the con-
tacts is taken into account. The theorem assumes that
we start with an immobilizing “unloaded” equilibrium
grasp, then press the fingers against B along the re-
spective contact normals. This is a reasonable as-
sumption, since in most real grasps the fingers start in
an unloaded grasp, then increase their contact forces
until the final loaded grasp is reached.

Theorem 1 ([10]). Let an object B be immobilized to
first or second-order by finger bodies A;,..., A;,. Then
there exist positive upper bounds 81 max,-.., Ok max Such
that all equilibrium grasps obtained by pressing the
fingers along the contact normals with 6; €(0,6; max]
(i=1,..., k) have a positive definite stiffness matriz.

When the theorem 1s applied to a mechanism immobi-
lized against its environment in static equilibrium, the
posture’s stability 1s quaranteed only if the mechanism
1s treated as a single rigid body. The ensuing control



laws exploit this stabilization effect to induce forces
and torques on the spider’s unactuated central base.

3 TImmobilization Based Control Laws

In this section we present two immobilization-based
control laws for k-limbed spider robots. We first de-
scribe the dynamics of spider robots, then present the
control laws, and finally analyze their stability. The
spider’s configuration parameters are denoted as fol-
lows. The base configuration (position and orienta-
tion) is denoted py € IR®. Each limb possesses n actu-
ated joints, and the joints of the ** limb are denoted
p; € IR™. The joint vector of the entire spider is de-
noted € IR*", and the configuration of the entire
spider (i.e. central-base configuration and joint val-
ues) is denoted p = (po,p) € R™+3,

3.1 Dynamics of K-Limbed Spider Robots

Let us identify the external forces and torques that act
on the spider. First, the spider’s actuators apply joint
torques denoted (0,7), where 0 € IR® represents the
absence of central-base actuation, and 7 € R rep-
resents the nk joint torques. Second, the tunnel walls
apply reaction forces on the spider’s footpads. The net
wrench due to these forces is given by the negated gra-
dient —VII(p). Finally, the spider’s motion as a single
rigid body incurs damping. Since we assume friction-
less tunnel walls, a chief source for this damping are
viscoelastic losses due to material compression at the
contacts [2]. However, in our experimental appara-
tus the spider is supported by roller bearings against
a horizontal plane, and frictional losses in these bear-
ings 1s an additional source of damping. Since only the
central-base configuration pg varies when the spider
moves as a single rigid body, we write these damping
effects as (—Dopo,ﬁ), where Dy is a 3 x 3 positive-
definite matrix and 0 € R™".
external influences, the spider’s dynamics is:

. . 0 Dyp
M(p)p + B(p,p) = <T>Vﬂ(p)< %p°>, (3)
where M (p) is the spider_’s (kn + 3)x (kn + 3) inertia

m‘jitrix, a.nd. B(p,p) = M(p) ) — %pT(%M(p))p con-
tains Coriolis and centrifugal forces.

Summarizing all the

3.2 The Control Laws

We now present two control laws for k-limbed spider
robots. In order to bring all parts of a spider robot to a
desired configuration, we induce forces and torque on
the spider’s unactuated central-base as follows. Con-
sider for example the four-legged spider robot depicted

in Figure 1(a). The spider immobilizes itself against
the tunnel walls using three limbs, and i1t has to bring
its fourth limb to a new position specified by a higher-
level motion planner. During this motion, all parts
of the spider are free to move, provided that the three
footpads contacting the environment remain stationary
with respect to each other. This condition ensures that
from the perspective of the tunnel walls, the spider
remains immobilized as a single rigid body through-
out its motion. In order to realize this behavior, the
motion planner specifies an immobile target configura-
tion, and the controller specifies a closed-loop behav-
ior under which the mechanism approximates a rigid-
body in terms of its interaction with the environment.
Let p* = (p}, p*) denote the spider’s desired config-
uration. Then the first control law is the PD rule:

m(t) = —P(p(t) — p*) — Dp(t), (4)

where P and D are nk x nk positive-definite matrices
of proportional gains and damping coefficients. Note
that in the case where P and D are diagonal matri-
ces, (4) becomes a decentralized control law, where
each joint needs only measure its own angular state.
This approach allows straightforward implementation
of (4) using standard controller boards. The PD rule
(4) can also be written as 7(t) = —V&(p) — Dp(t),
where ®(p) = %(]3 —p*)T P(p — p*) is a quadratic po-
tential function with a minimum at p*. The second
control law generalizes the quadratic potential to any
potential function ®(p):

7(t) = —V&(p(t)) — Dp(t), (5)

where ®(p) is a smooth function with a non-degenerate
local minimum at p*. The control law (5) can be used
to specify a desired controller behavior in terms of vir-
tual springs. That is, we can attach three-degrees-of-
freedom springs between each footpad and the central-
base. These springs vary only as a function of the joint
values p, and they induce a potential function ®(p) on
the spider’s joints. For example, in the case of a four-
legged spider bracing with three limbs, we can set the
contacting footpads’ springs at their contact positions
with respect to the central-base, and set the fourth
limb’s spring at its desired position with respect to the
central-base. Moreover, additional repulsive springs
between the limbs can prevent inter-limb collision.

3.3 Proof of Stability

Substituting the control laws in the dynamical equa-
tion (3) gives the closed-loop system:

M)+ B6.5) = (gayy )~ VI6) - Q6 ()



where ) = diag(Dg, D) is a positive definite damping
matrix. (Note: V®(p) is a vector in R™ while VII(p)
is a vector in 1R"k+3.) Our first task is to identify the
static equilibrium point of (6). Substituting p = 0 in
(6) gives the equilibrium condition:

5, 5,
0 M(po,p) =0 and 8—]31_[(1?0,15):

By construction, the motion planner specifies an im-

—Ve(p). (7)

mobilizing equilibrium posture for the spider. This
posture determines the desired spider configuration
p* that appears in the control laws. The equilibrium
point of the closed-loop system is achieved by pressing
the footpads against the tunnel walls at the specified
contacts, until the equilibrium condition (7) is satis-
fied. The first part of (7) requires that the net wrench
on the central-base due to the tunnel’s reaction forces
be zero. The second part of (7) requires that the joint
actuators balance the torques induced by the tunnel’s
reaction forces. The following lemma establishes that
such a balance i1s achieved during penetration of the
footpads along the contact normals.

Lemma 2 Let p* be a spider configuration at which
m limbs (3<m< k) press against the environment in
an equilibrium posture. Let §7,...,8,, be the footpad
penetrations corresponding to p*. Then there exrist in-
termediate penetration values, 0<Si<5f (i=1,...,m),
at which the closed-loop system (6) is in equilibrium.

Let p denote the spider’s configuration at which the
closed-loop system (6) is at an equilibrium. The fol-
lowing theorem establishes the local asymptotic sta-
bility of p under the PD control law. This stability
result 1s a key contribution of this paper.

Theorem 3 Let a k-limbed spider mechanism brace
against the enwvironment in an immobilizing equilib-
rium configuration p € IR™™¥2. Then under the PD
control law (4), there ezist lower bounds on the pro-
portional gains matriz P, such that for all gains above
these bounds the zero-velocity state (P, 0) of the closed-
loop system (6) is locally asymptotically stable.

We need the following fact concerning the stability
of damped mechanical systems. A Lagrangian me-
chanical system, & apT(p,p) — %T(p,p) = w, is a
damped mechanical system governed by a potential
energy function when w(¢) is of the form w(t) =
—VU(p) + fa(p,p), where U(p) is a potential energy
function and f;(p,p) is a dissipative vector field. The
stability result, attributed to Kelvin [6], is: the local
mimema of U, with zero velocity, of a damped mechan-

ical system are local attractors of its flow.

Proof:

The closed-loop spider system (6) is sub-
jected to a composite potential energy U(p) =

®(p) +

II(p), where ®(p) is the potential energy associated
with the PD law, and TI(p) is the elastic energy as-
sociated with the deformation at the contacts. The
closed-loop system (6) is also subjected to a dissipa-
tive vector field f4(p,p) = —Qp. By Kelvin’s result,
local asymptotic stability is assured if we can demon-
strate that the equilibrium configuration p is a local
minimum of the potential energy function U(p).
Since p satisfies the equilibrium condition (7),
VU (p) = 0. Hence, in order to show that p is a lo-
cal minimum of U(p), it suffices to show that the
(nk+3)x (nk+3) second-derivative matrix D2U(]5) =
D?®(p) + D?TI(p) is positive definite.
sider the matrix D*®(p).
nkxnk proportional gains matrix P is block diagonal,
P = diag(P1, ..., Pi), where each P; is nxn. Hence
D?®(p) = diag(0, Py, ..., Py).
trix D?TI(p). Let us assume a linear compliance rela-

tionship, so that II(p) = 2 1k52( ), where k>0

First con-
We may assume that the

Next consider the ma-

1=1 2
1s a uniform material stiffness coefficient. Let us as-
sume for simplicity that P, — o3, for 2 = 1,... k,

where o; 1s a positive parameter. In order to es-
tablish lower bounds on the o;’s which guarantee
that D?U(p) is positive definite, we write this ma-

trix as the sum D?U(p) = A + B(O'l,...,sz), where

A= d|ag(03><3, Kgl )y ] Kl(ck))’ and
Koo Ko Koo . Kok
Kf Kitod 0 - °
B=| KT, 0 K vosl - 0
KT, 0 0 Ky ol

In this decomposition, K;; — K(P) + K(N), where
K(P) = k(ap 5')(3%151') and K(N) = kd; B‘Zp 4;. Note
that the 3 x 3 submatrix Kgg represents the stiffness
of the mechanism as a single rigid body at the equi-
librium posture. The matrix A consists of outer-
products of the form uu”, and is therefore positive
semi-definite. Thus, DU (p) > 0 if B(0'1, ey 0) > 0.
Let v = (v, v1, ..., vk) be a vector in IR™**3, such that
vo € R and v; € R™ fori = 1,...k; let o > 0 de-
note the minimal eigenvalue of Kgg; and for a given
matrix F, let ||E|| denote the matrix norm induced
by the Euclidean norm'. Then it can be shown that
if the controller’s stiffness parameters are above the

following lower bound [11]:

k
al>||K(N)||+U—||K0i||2 fori=1,. k (8
6]

the quadratic form vT B(o4, ..., o1 )v is positive for all
v € IR™ 2. Note that vT By — v Kogug when v; = 0

'The matrix norm is: [|E]| = max{||Bul|} over all ||u|| < 1.
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Figure 3: (a) The four-legged spider used in the simu-

lations. The start and target postures during (b) limb
lifting, and (c) limb repositioning.

for 2 = 1,..., k. Hence the positive definiteness of Kqq
1s necessary for the positive definiteness of B. Since
the mechanism is immobilized as a single rigid body,
Theorem 1 implies that Ky is positive definite. Thus
any value of the ;’s above the lower bounds (8) guar-
antees that the matrix D?U(p) is positive definite, and
consequently that p is a local minimum of U. (I

Finally, the potential-function based control law (5)
assumes a potential function ®(p) with a local mini-
mum at the configuration p*. The stability proof of
this control law is identical to the stability proof of
the PD control law, with the second-derivative matrix
of ® replacing the matrix P.

4 Simulations and Experiments

In this section we present dynamic simulations and ex-
periments of a four-legged spider robot performing two
basic motions using the PD control law. The first mo-
tion is lzmb lifting (Figure 3(b)). During this motion
the spider braces against the environment with three
limbs while moving its fourth limb to a new foothold
position. The second motion is limb repositioning (Fig.
3(c)). During this motion the spider slides two limbs
along the tunnel walls, while the other two limbs main-
tain a fixed contact with the environment.

The simulations use the data listed in Ref. [11],
which corresponds to our experimental prototype.
Each of the spider’s four limbs has four revolute joints,
so that the spider has a total of nineteen degrees of
freedom. The footpads have a sufficiently large radius-
of-curvature as to guarantee second-order immobiliza-
tion during limb lifting. In the simulation of compliant
contacts, we assume that the footpads are wrapped
by a soft material such as rubber. Finally, we assume
that the ** reaction force is linearly proportional to
the penetration §;.

The results of running the closed-loop spider system
during limb-lifting appear in Figure 4. The spider’s
task 1s to retain its contacting footpads stationary,
while moving its central-base two centimeters ahead

1 4 5
ok, dy,8 ol }/\/——{ 2 }‘/\/——1 0 }A\—{ -~ central base
1 0 5
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Figure 4: The spider’s configuration parameters dur-
ing limb lifting. Time is measured in seconds, central-
base position is given in cm, joint angles in degrees.

and bringing its free limb to the target position de-
picted in Figure 3(b). Figure 4 shows the time history
of the central-base position and orientation and the
sixteen joint angles. The graphs indicate a conver-
gence of all configuration parameters to their desired
values with zero velocity in less than 0.6 seconds. Note
that the central-base orientation is the slowest param-
eter to converge. This behavior can be expected, since
the convergence of the central-base is achieved through
immobilization of the spider as a single rigid body by
the tunnel walls. In this immobilization, first-order ge-
ometrical effects immobilize the central-base position,
while second-order effects immobilize the central-base
orientation. It has been shown in Ref. [7] that second-
order immobilizing effects are typically weaker than
first-order effects, except in the limit where the con-
tacting bodies have a closely matched curvature.

The results of running the closed-loop spider system
during limb-repositioning are not shown here. Rather,
we provide in Ref. [11] graphs analogous to the ones
in Figure 4, for the task of sliding two footpads two
centimeters ahead along the tunnel walls. In this sim-
ulation the convergence time is 0.2 seconds, which 1s
shorter than the convergence time during three-legged
immobilization. This shorter convergence time can
be expected, since during four-legged immobilization
both position and orientation of the central-base are
stabilized by first-order effects.

Initial locomotion experiments were conducted
with the four-legged spider prototype shown in Fig-
ure 5. The first experiment is limb-lifting motion us-
ing the PD law. The entire motion was divided into
fifteen intermediate targets that move the free limb
along a pre-planned path while translating the central-
base 2b cm downward with fixed orientation. Figure
6(a) shows the spider’s start and target configurations,
as well as measurements of the central-base location
during this motion. The total motion took 63 sec-
onds. The second experiment is limb-repositioning,



(b)

Figure 6: Measurements of the spider’s central-base

position during (a) limb lifting, and (b) limb reposi-
tioning experiments.

where the spider slides two footpads 10 cm along the
tunnel walls. Figure 6(b) shows the spider’s start and
target configurations, as well as measurements of the
central-base location during this motion. This motion
took 10 seconds. Both experiments corroborate the
stable behavior of the immobilization-based PD con-
trol law as predicted in the analysis and simulations.
However, the spider prototype is still being developed,
and additional experimental results will appear in a
future paper.

5 Concluding Discussion

We described an immobilization based control method
for spider-like robots that move quasistatically in fric-
tionless tunnel environments. In order to induce forces
and torques on the spider’s unactuated central base,
we used an immobilization theory that determines the
conditions under which a mechanism is immobile as a
single body against the environment. When compli-
ance at the contacts is taken into account, immobility
yields passive stabilization of the mechanism as a sin-
gle body. Using this result, we presented two control
laws for general k-limbed spider robots. The first law
is a simple PD rule. The second law generalizes the
PD rule to potential functions that can be specified
via virtual springs. We showed that both laws are
locally stable, provided that the controller’s propor-
tional gains are higher than a lower bound specified
in terms of the robot and environment parameters.
Dynamic simulations of the PD law show excellent
convergence of the closed-loop spider system during
three and four-legged immobilization. However, con-

vergence of the central-base orientation is slower dur-
ing three-legged immobilization, since in this case sta-
bilization is achieved with second-order rather than
first-order effects. This result highlights the trade-off
incurred in the design of multi-limbed robots. A spi-
der robot with a small number of limbs has simpler
structure and better maneuverability in congested en-
vironments. On the other hand, a smaller number of
contacts requires more precise control of the robot’s
interaction with the environment, with contact forces
that typically yield slower convergence of the mecha-
nism.
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