
Immobilization Based Control ofSpider-Like Robots in Tunnel EnvironmentsAmir Shapiro Elon Rimon Shraga ShovalDept. of ME, Technion Dept. of ME, Technion Dept. of IE, Ariel Collegeamirs@tx.technion.ac.il elon@robby.technion.ac.il shraga@hitech.technion.ac.ilAbstract This paper presents an immobilization-based control method for spider-like robots that movequasistatically in tunnel environments. The controlmethod is based on an immobilization theory whichensures that when a spider-like mechanism is bracingagainst the environment at an immobile posture, thenaturally occurring compliance at the contacts stabi-lizes the mechanism as a single body. Based on thisresult, we present two versions of a position controllaw for general k-limbed spider robots. We show thatif the controller's sti�ness (i.e. proportional gain) isabove a lower limit determined by the spider and envi-ronment parameters, stability of the closed-loop spidersystem is guaranteed. We present dynamic simula-tions of a spider robot moving in a tunnel under theinuence of the immobilization-based control law. Thesimulations show excellent convergence properties ofthe control algorithm. A four-legged spider prototypehas been built, and we conclude with a description ofinitial experiments with this robot.1 IntroductionConventional mobile robots are wheeled vehicles thatrequire a su�ciently at terrain in order to performtheir tasks. However, many robotic tasks are moresuited for legged robots that interact with the envi-ronment in order to achieve stable locomotion. Forexample, surveillance of collapsed structures for sur-vivors, inspection and testing of complex pipe sys-tems, and maintenance of hazardous structures suchas nuclear reactors, all require motion in congested,unstructured, and complex environments. Spider-likemechanisms are examples of robots that can move qua-sistatically in congested environments.In this paper we present a control algorithm thatguarantees stable locomotion of spider-like robots un-der the following assumptions. First, each limb of thespider contacts the environment only through its dis-

(a) (b)Figure 1: Conceptual designs of (a) four-legged, and(b) �ve-legged spider robots.tal link, called the footpad. The footpads have no suc-tion cups and can only push against the environment.Second, we study locomotion in two-dimensional hori-zontal tunnels with piecewise smooth walls (Figure 1).However, real tunnel walls may be wet, oily, or icy.Hence we assume slippery tunnel walls, so that locomo-tion must proceed without using friction. This restric-tion excludes tunnels of a particular simple geometry(such as two parallel walls), but most unstructuredcongested tunnels do have a complex geometry withmany possible footholds within reach of the robot.Furthermore, since friction enhances the stability of amechanism contacting the environment, a frictionlesslocomotion plan can also be executed in a frictionalenvironment. Our last assumption is that the spidermoves quasistatically, by stably bracing against thetunnel walls while changing its internal con�gurationto allow motion of its free parts to the next position.This approach enables the robot to reliably operate inthe presence of unpredicted external forces.We now describe the control problem associatedwith quasistatic locomotion of spider-like robots. Leta spider mechanism have k limbs, each having n ac-tuated degrees of freedom. As illustrated in Figure 1,the limbs are interconnected by a central base that hasthree unactuated degrees of freedom. A spider robotthus has kn+3 degrees of freedom, of which only kn de-grees of freedom are actuated. Regarding the spider'scon�guration space as IRkn+3, the control problem ishow to induce forces and torques on the spider in or-



der to bring it to a desired con�guration. Existingsolutions to the problem make speci�c assumptionseither on the spider's structure or the environment'sgeometry. Pfei�er et al. [9] assume that the spiderlimbs have a negligible mass relative to the central-base mass. This assumption induces a decoupling ofthe limbs and central-base dynamics. Another con-trol approach is proposed by Dubowsky et al. [1] inthe context of ladder climbing. They attach virtualsprings to the spider footpads and central base suchthat the springs' setpoints reect the desired spidercon�guration. However, their approach seems to relyon the speci�c geometry of a ladder and lacks a formalproof of convergence.In contrast, we present a control approach which isguaranteed to work no matter what is the mass dis-tribution of the spider or the geometry of the environ-ment. Our approach is based on the kinematic im-mobilization of the spider with respect to the tunnelwalls. Using classical Form Closure theory [12], four\point" footpads su�ce to immobilize a mechanismby a suitable selection of the contact point positions.Figure 1(b) illustrates such an immobilizing posturefor a �ve-legged spider. Using the recent immobi-lization theory of Rimon and Burdick [10], a mecha-nism can additionally exploit surface curvature e�ectsto immobilize itself using only three footpads. Fig-ure 1(a) illustrates such an immobilizing posture fora four-legged spider. In both cases, the key propertyof immobilizing postures is that the bracing mecha-nism (considered as a single rigid body) is stabilizedby the compliance of the footpads and tunnel walls atthe contacts. In other words, as long as the footpadsmaintain an immobilizing posture with respect to theenvironment, the reaction forces generated by the nat-urally occurring compliance at the contacts stabilizethe mechanism as a single rigid body. Note, however,that we are still free to guide the spider's central baseand other free parts along any desired trajectory, aslong as the contacting footpads maintain an immobi-lizing posture with respect to the environment.This paper begins with a short review of a compli-ant contact model which is compatible with the classi-cal Hertz contact theory. Using this model, we demon-strate that a kinematically immobile mechanism (con-sidered as a single rigid body) has a positive de�nitesti�ness matrix. Then we present two versions of theimmobilization-based control law. The �rst version issimple but requires a speci�cation of the desired spi-der con�guration in terms of joint values. The secondversion is more intuitive and allows the use of virtualsprings to specify the desired spider con�guration. We
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finger or sectionFigure 2: The overlap segment representing the inter-penetration of Ai and B.analyze the stability of the control laws, and show thatif the controller's sti�ness is above a lower limit de-termined by the robot and environment parameters,stability of the system is guaranteed. Next we presentdynamic simulations of a spider robot moving in a tun-nel under the inuence of the immobilization-basedcontrol law. The simulations take into considerationthe dynamics of the spider and the compliance at thecontacts, and they show excellent convergence prop-erties of the control algorithm. A four-legged spiderprototype has been built, and we describe initial ex-periments with this robot.2 Compliant Contact MechanicsCompliant stabilization of an immobile object isthe basis for the control laws presented below. Inthis section we review this key fact by presenting acon�guration-space based model for compliant con-tacts. Using this model, we introduce the sti�ness ma-trix of a compliant grasp or posture, and demonstratethat this matrix is positive de�nite when the graspedobject or posturing mechanism is immobilized by itssurrounding bodies.2.1 Compliance ModelingLet k stationary and frictionless �nger bodies A1,-...,Ak hold an object B in an equilibriumgrasp. Equiv-alently, let a k-limbed mechanism brace itself againstan environment in a static equilibrium posture. In thelatter case the mechanism plays the role of B, whilethe tunnel walls play the role of A1,...,Ak.Our compliant contact model is based on overlapfunctions introduced in Ref. [10]. These functionsrepresent the continuous elastic deformation at a con-tact by a lumped parameter characterizing the inter-penetration of the undeformed bodies. In the absenceof deformation, two bodies B and Ai contact at a sin-gle point. After deformation occurs, the two bodiesinter-penetrate as illustrated in Figure 2. Let B be ata con�guration q. Then the overlap between B and Ai,



denoted �i(q), is the minimum amount of translationof B that would separate it from Ai. By de�nition,�i(q) vanishes when B is disjoint from Ai. When theoverlap is positive and small, there is a unique seg-ment, called the overlap segment, whose endpoints lieon the boundary of B and Ai, such that the length ofthe segment is �i and its orientation gives the direc-tion of separating translation. The overlap segment isalso collinear with the normals to the boundaries of Band Ai. The net contact force is assumed to act onB's endpoint of the overlap segment, in the directionof the overlap segment. The magnitude of the con-tact force depends on the overlap in terms of a func-tion fi(�i), which is required to be di�erentiable, zerowhen its argument is zero, and positive when its ar-gument is positive. The simplest model assumes thatfi is a linear function of the overlap: fi(�i) = �i�i,where the coe�cient �i represents the combined sti�-ness of B and Ai. While this model is linear in �i,it is typically not linear in q, since �i(q) is in generalnonlinear in q. The Hertz model [3] which has beenveri�ed theoretically and experimentally, establishesthat fi(�i) = �i�3=2i , where �i is a speci�c function ofthe bodies' material and geometric properties.Consider now an equilibrium grasp or posture,where B is at a con�guration q0 in contact with sta-tionary bodies A1; :::;Ak. Then the elastic potentialenergy of the system of bodies is:�(q) = kXi=1 Z �i(q)0 fi(�)d�: (1)It can be veri�ed that �i(q) is di�erentiable almosteverywhere, and consequently �(q) is twice di�eren-tiable. In the absence of a disturbing wrench, an equi-librium at q0 is characterized by the condition:r�(q0) = kXi=1 fi(�i(q0))r�i(q0) = ~0; (2)where the gradient vector r�(q0) represents thederivative D�(q0).2.2 The Sti�ness Matrix of a CompliantGrasp or PostureWhen an object B is held in equilibrium grasp at acon�guration q0, the grasp's sti�ness matrix is de�nedas the Hessian, K = D2�(q0), of the elastic potentialenergy �(q) at q0. Similarly, when a mechanism B isbracing against the environment in static equilibrium,we may treat the mechanism as a single rigid body andthen K = D2�(q0) is the posture's sti�ness matrix.Since r�(q0) = 0, the behavior of � in the vicinity of

q0 is determined by K. If K is positive de�nite q0 isa local minimum of � and the grasp is stable [10].To compute the sti�ness matrix, we take the deriva-tive of r�(q) given in (2), and obtain the formula:K= kXi=1 f 0i (�i(q0))r�i(q0)r�i(q0)T+fi(�i(q0))D2�i(q0);where f 0i = dfi=d�i. General formulas for D2�i(q0)appear in Ref. [7]. We note that the �rst summanddepends on the contact-point positions and contact-normal directions, while the second summand addi-tionally depends on the surface curvature at the con-tacts. In other words, the �rst summand accounts for�rst-order geometrical e�ects, while the second sum-mand accounts for second-order, or surface curvature,e�ects. This phenomenon has been observed at vari-ous levels of generality in Refs. [4, 8, 10].2.3 Kinematic Immobility Implies Com-pliant StabilityImmobilization theory studies the mobility of a rigidobject B grasped by rigid �nger bodies A1; :::;Ak.Roughly speaking, B is immobile to �rst-order whenthe bodies' �rst-order geometrical properties (i.e. con-tact point positions and contact normal directions)prevent any instantaneous motion of B. This notion isequivalent to classical form closure [12]. An object Bis immobile to second-order when the combination of�rst and second-order geometrical e�ects (i.e. surfacecurvatures) prevent any instantaneous motion of B.We now draw a connection between immobiliza-tion and compliant stability. The following theoremasserts that kinematic immobilization guarantees dy-namic stability when elastic deformation at the con-tacts is taken into account. The theorem assumes thatwe start with an immobilizing \unloaded" equilibriumgrasp, then press the �ngers against B along the re-spective contact normals. This is a reasonable as-sumption, since in most real grasps the �ngers start inan unloaded grasp, then increase their contact forcesuntil the �nal loaded grasp is reached.Theorem 1 ([10]). Let an object B be immobilized to�rst or second-order by �nger bodies A1;:::;Ak. Thenthere exist positive upper bounds �1;max;:::; �k;max suchthat all equilibrium grasps obtained by pressing the�ngers along the contact normals with �i2(0; �i;max](i=1;:::; k) have a positive de�nite sti�ness matrix.When the theorem is applied to a mechanism immobi-lized against its environment in static equilibrium, theposture's stability is guaranteed only if the mechanismis treated as a single rigid body. The ensuing control



laws exploit this stabilization e�ect to induce forcesand torques on the spider's unactuated central base.3 Immobilization Based Control LawsIn this section we present two immobilization-basedcontrol laws for k-limbed spider robots. We �rst de-scribe the dynamics of spider robots, then present thecontrol laws, and �nally analyze their stability. Thespider's con�guration parameters are denoted as fol-lows. The base con�guration (position and orienta-tion) is denoted p0 2 IR3. Each limb possesses n actu-ated joints, and the joints of the ith limb are denotedpi 2 IRn. The joint vector of the entire spider is de-noted �p 2 IRkn, and the con�guration of the entirespider (i.e. central-base con�guration and joint val-ues) is denoted p = (p0; �p) 2 IRkn+3.3.1 Dynamics of K-Limbed Spider RobotsLet us identify the external forces and torques that acton the spider. First, the spider's actuators apply jointtorques denoted (0; � ), where 0 2 IR3 represents theabsence of central-base actuation, and � 2 IRkn rep-resents the nk joint torques. Second, the tunnel wallsapply reaction forces on the spider's footpads. The netwrench due to these forces is given by the negated gra-dient �r�(p). Finally, the spider's motion as a singlerigid body incurs damping. Since we assume friction-less tunnel walls, a chief source for this damping areviscoelastic losses due to material compression at thecontacts [2]. However, in our experimental appara-tus the spider is supported by roller bearings againsta horizontal plane, and frictional losses in these bear-ings is an additional source of damping. Since only thecentral-base con�guration p0 varies when the spidermoves as a single rigid body, we write these dampinge�ects as (�D0 _p0;~0), where D0 is a 3� 3 positive-de�nite matrix and ~0 2 IRnk. Summarizing all theexternal inuences, the spider's dynamics is:M (p)�p+B(p; _p) = � 0� ��r�(p)� � D0 _p0~0 �; (3)where M (p) is the spider's (kn+ 3)�(kn+ 3) inertiamatrix, and B(p; _p) = _M (p) _p � 12 _pT ( ddpM (p)) _p con-tains Coriolis and centrifugal forces.3.2 The Control LawsWe now present two control laws for k-limbed spiderrobots. In order to bring all parts of a spider robot to adesired con�guration, we induce forces and torque onthe spider's unactuated central-base as follows. Con-sider for example the four-legged spider robot depicted

in Figure 1(a). The spider immobilizes itself againstthe tunnel walls using three limbs, and it has to bringits fourth limb to a new position speci�ed by a higher-level motion planner. During this motion, all partsof the spider are free to move, provided that the threefootpads contacting the environment remain stationarywith respect to each other. This condition ensures thatfrom the perspective of the tunnel walls, the spiderremains immobilized as a single rigid body through-out its motion. In order to realize this behavior, themotion planner speci�es an immobile target con�gura-tion, and the controller speci�es a closed-loop behav-ior under which the mechanism approximates a rigid-body in terms of its interaction with the environment.Let p� = (p�0; �p�) denote the spider's desired con�g-uration. Then the �rst control law is the PD rule:� (t) = �P (�p(t) � �p�)�D _�p(t); (4)where P and D are nk�nk positive-de�nite matricesof proportional gains and damping coe�cients. Notethat in the case where P and D are diagonal matri-ces, (4) becomes a decentralized control law, whereeach joint needs only measure its own angular state.This approach allows straightforward implementationof (4) using standard controller boards. The PD rule(4) can also be written as � (t) = �r�(�p) � D _�p(t),where �(�p) = 12(�p � �p�)TP (�p� �p�) is a quadratic po-tential function with a minimum at �p�. The secondcontrol law generalizes the quadratic potential to anypotential function �(�p):� (t) = �r�(�p(t)) �D _�p(t); (5)where �(�p) is a smooth function with a non-degeneratelocal minimum at �p�. The control law (5) can be usedto specify a desired controller behavior in terms of vir-tual springs. That is, we can attach three-degrees-of-freedom springs between each footpad and the central-base. These springs vary only as a function of the jointvalues �p, and they induce a potential function �(�p) onthe spider's joints. For example, in the case of a four-legged spider bracing with three limbs, we can set thecontacting footpads' springs at their contact positionswith respect to the central-base, and set the fourthlimb's spring at its desired position with respect to thecentral-base. Moreover, additional repulsive springsbetween the limbs can prevent inter-limb collision.3.3 Proof of StabilitySubstituting the control laws in the dynamical equa-tion (3) gives the closed-loop system:M (p)�p+B(p; _p) = �� 0r�(�p)��r�(p) �Q _p; (6)



where Q = diag(D0; D) is a positive de�nite dampingmatrix. (Note: r�(�p) is a vector in IRnk while r�(p)is a vector in IRnk+3.) Our �rst task is to identify thestatic equilibrium point of (6). Substituting _p = 0 in(6) gives the equilibrium condition:@@p0�(p0; �p) = 0 and @@�p�(p0; �p) = �r�(�p): (7)By construction, the motion planner speci�es an im-mobilizing equilibrium posture for the spider. Thisposture determines the desired spider con�gurationp� that appears in the control laws. The equilibriumpoint of the closed-loop system is achieved by pressingthe footpads against the tunnel walls at the speci�edcontacts, until the equilibrium condition (7) is satis-�ed. The �rst part of (7) requires that the net wrenchon the central-base due to the tunnel's reaction forcesbe zero. The second part of (7) requires that the jointactuators balance the torques induced by the tunnel'sreaction forces. The following lemma establishes thatsuch a balance is achieved during penetration of thefootpads along the contact normals.Lemma 2 Let p� be a spider con�guration at whichm limbs (3�m� k) press against the environment inan equilibrium posture. Let ��1;:::; ��m be the footpadpenetrations corresponding to p�. Then there exist in-termediate penetration values, 0<�̂i<��i (i= 1;:::;m),at which the closed-loop system (6) is in equilibrium.Let p̂ denote the spider's con�guration at which theclosed-loop system (6) is at an equilibrium. The fol-lowing theorem establishes the local asymptotic sta-bility of p̂ under the PD control law. This stabilityresult is a key contribution of this paper.Theorem 3 Let a k-limbed spider mechanism braceagainst the environment in an immobilizing equilib-rium con�guration p̂ 2 IRnk+3. Then under the PDcontrol law (4), there exist lower bounds on the pro-portional gains matrix P , such that for all gains abovethese bounds the zero-velocity state (p̂; 0) of the closed-loop system (6) is locally asymptotically stable.We need the following fact concerning the stabilityof damped mechanical systems. A Lagrangian me-chanical system, ddt @@ _pT (p; _p) � @@pT (p; _p) = w, is adamped mechanical system governed by a potentialenergy function when w(t) is of the form w(t) =�rU (p) + fd(p; _p), where U (p) is a potential energyfunction and fd(p; _p) is a dissipative vector �eld. Thestability result, attributed to Kelvin [6], is: the localminima of U , with zero velocity, of a damped mechan-ical system are local attractors of its ow.Proof: The closed-loop spider system (6) is sub-jected to a composite potential energy U (p) = �(�p) +

�(p), where �(�p) is the potential energy associatedwith the PD law, and �(p) is the elastic energy as-sociated with the deformation at the contacts. Theclosed-loop system (6) is also subjected to a dissipa-tive vector �eld fd(p; _p) = �Q _p. By Kelvin's result,local asymptotic stability is assured if we can demon-strate that the equilibrium con�guration p̂ is a localminimum of the potential energy function U (p).Since p̂ satis�es the equilibrium condition (7),rU (p̂) = 0. Hence, in order to show that p̂ is a lo-cal minimum of U (p), it su�ces to show that the(nk+3)�(nk+3) second-derivative matrix D2U (p̂)=D2�(p̂) + D2�(p̂) is positive de�nite. First con-sider the matrix D2�(p̂). We may assume that thenk�nk proportional gains matrix P is block diagonal,P = diag(P1; :::; Pk), where each Pi is n�n. HenceD2�(p̂) = diag(0; P1; :::; Pk). Next consider the ma-trix D2�(p̂). Let us assume a linear compliance rela-tionship, so that �(p) = Pki=1 12k�2i (p), where k > 0is a uniform material sti�ness coe�cient. Let us as-sume for simplicity that Pi = �iIn�n for i = 1; :::; k,where �i is a positive parameter. In order to es-tablish lower bounds on the �i's which guaranteethat D2U (p̂) is positive de�nite, we write this ma-trix as the sum D2U (p̂) = A + B(�1; :::; �k), whereA = diag(03�3;K(P )11 ; :::;K(P )kk ), andB=2666664K00 K01 K02 �� K0kKT01 K(N)11 +�1I 0 �� 0KT02 0 K(N)22 +�2I �� 0�� �� �� �� ��KT0k 0 0 �� K(N)kk +�kI 3777775:In this decomposition, Kii = K(P )ii + K(N)ii , whereK(P )ii = k( @@pi �i)( @@pi �i)T and K(N)ii = k�i @2@2pi �i. Notethat the 3�3 submatrix K00 represents the sti�nessof the mechanism as a single rigid body at the equi-librium posture. The matrix A consists of outer-products of the form uuT, and is therefore positivesemi-de�nite. Thus, D2U (p̂) > 0 if B(�1; :::; �k) > 0.Let v = (v0; v1; :::; vk) be a vector in IRnk+3, such thatv0 2 IR3 and vi 2 IRn for i = 1; :::; k; let �0 > 0 de-note the minimal eigenvalue of K00; and for a givenmatrix E, let kEk denote the matrix norm inducedby the Euclidean norm1. Then it can be shown thatif the controller's sti�ness parameters are above thefollowing lower bound [11]:�i > kK(N)ii k+ k�0kK0ik2 for i = 1; :::; k; (8)the quadratic form vTB(�1; :::; �k)v is positive for allv 2 IRnk+3. Note that vTBv = vT0 K00v0 when vi = 01The matrix norm is: kEk = maxfkEukg over all kuk � 1.
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θFigure 3: (a) The four-legged spider used in the simu-lations. The start and target postures during (b) limblifting, and (c) limb repositioning.for i = 1; :::; k. Hence the positive de�niteness of K00is necessary for the positive de�niteness of B. Sincethe mechanism is immobilized as a single rigid body,Theorem 1 implies that K00 is positive de�nite. Thusany value of the �i's above the lower bounds (8) guar-antees that the matrixD2U (p̂) is positive de�nite, andconsequently that p̂ is a local minimum of U . �Finally, the potential-function based control law (5)assumes a potential function �(�p) with a local mini-mum at the con�guration �p�. The stability proof ofthis control law is identical to the stability proof ofthe PD control law, with the second-derivative matrixof � replacing the matrix P .4 Simulations and ExperimentsIn this section we present dynamic simulations and ex-periments of a four-legged spider robot performing twobasic motions using the PD control law. The �rst mo-tion is limb lifting (Figure 3(b)). During this motionthe spider braces against the environment with threelimbs while moving its fourth limb to a new footholdposition. The second motion is limb repositioning (Fig.3(c)). During this motion the spider slides two limbsalong the tunnel walls, while the other two limbsmain-tain a �xed contact with the environment.The simulations use the data listed in Ref. [11],which corresponds to our experimental prototype.Each of the spider's four limbs has four revolute joints,so that the spider has a total of nineteen degrees offreedom. The footpads have a su�ciently large radius-of-curvature as to guarantee second-order immobiliza-tion during limb lifting. In the simulation of compliantcontacts, we assume that the footpads are wrappedby a soft material such as rubber. Finally, we assumethat the ith reaction force is linearly proportional tothe penetration �i.The results of running the closed-loop spider systemduring limb-lifting appear in Figure 4. The spider'stask is to retain its contacting footpads stationary,while moving its central-base two centimeters ahead
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Figure 5:A spider prototype bracing against tunnel walls
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(b)Figure 6: Measurements of the spider's central-baseposition during (a) limb lifting, and (b) limb reposi-tioning experiments.where the spider slides two footpads 10 cm along thetunnel walls. Figure 6(b) shows the spider's start andtarget con�gurations, as well as measurements of thecentral-base location during this motion. This motiontook 10 seconds. Both experiments corroborate thestable behavior of the immobilization-based PD con-trol law as predicted in the analysis and simulations.However, the spider prototype is still being developed,and additional experimental results will appear in afuture paper.5 Concluding DiscussionWe described an immobilization based control methodfor spider-like robots that move quasistatically in fric-tionless tunnel environments. In order to induce forcesand torques on the spider's unactuated central base,we used an immobilization theory that determines theconditions under which a mechanism is immobile as asingle body against the environment. When compli-ance at the contacts is taken into account, immobilityyields passive stabilization of the mechanism as a sin-gle body. Using this result, we presented two controllaws for general k-limbed spider robots. The �rst lawis a simple PD rule. The second law generalizes thePD rule to potential functions that can be speci�edvia virtual springs. We showed that both laws arelocally stable, provided that the controller's propor-tional gains are higher than a lower bound speci�edin terms of the robot and environment parameters.Dynamic simulations of the PD law show excellentconvergence of the closed-loop spider system duringthree and four-legged immobilization. However, con-
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