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Abstract. This paper presents a novel design of a four-legged “spider” robot capable of moving in a wide range
of two-dimensional tunnels. The robot moves in a quasistatic manner, by stably bracing itself against the tunnel
walls while moving its free parts to the next position. The design has been strongly influenced by the recent
immobilization theory of Rimon and Burdick (1998a, 1998b). The theory dictates the minimum number of limbs
such a mechanism can have, as well as the curvature of the mechanism footpads. The class of tunnel geometries
dictates other key parameters of the robot, such as limb dimensions and number of degrees of freedom of each
limb. We review the relevant components of the immobilization theory and describe its implications for the robot
design. Then we describe our choice of other key design parameters of the robot. The spider-like robot will move
under a worst-case assumption of slippery tunnel walls, and we also describe a locomotion strategy for the robot
under this assumption. Finally, we describe an immobilization-based control algorithm for executing the motion
strategy. The robot has been built, and experiments verifying its robustness with respect to leg-placement errors are
described.
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1. Introduction

In conventional motion planning a wheeled mobile
robot navigates toward a goal configuration while
avoiding collision with obstacles. However, many mo-
tion planning problems are more suited for legged
robots that interact with the environment in order to
achieve stable locomotion. For example, surveillance
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of collapsed structures for survivors, inspection and
testing of complex pipe systems, and maintenance of
hazardous structures such as nuclear reactors, all re-
quire motion in congested, unstructured, and complex
environments. Furthermore, in such environments the
robot cannot always rely on friction, as surfaces may be
wet, oily, or icy. Our goal is to develop a general purpose
multi-limbed mechanism that uses quasistatic motion
to navigate in such environments. Inquasistatic motion,
inertial effects due to moving parts of the robot are kept
small relative to the forces and torques of interaction
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between the robot and the environment. Motion is gen-
erated by reaction forces between the robot and the
environment, and the planning of a path to the goal is
subject to the constraint of maintaining stable equilib-
rium with the environment during the motion.

Spider-like and snake-like mechanisms are examples
of robots that can move quasistatically in congested
environments, and we now mention several works in
these two areas. In previous work on spider-like mecha-
nisms, researchers have taken one of the following two
approaches. The first approach is exemplified by the
pipe-crawling robots of Neubauer (1993, 1994), and
Pfeiffer et al. (1996, 2000). In this approach a large
number of simple limbs is used to stabilize the mech-
anism during locomotion. Additional degrees of free-
dom are sometime added to the central base to obtain
the maneuverability necessary for moving in tunnel-
like environments. The second approach is exempli-
fied by the ladder-climbing robot of Dubowsky et al.
(1992, 1999) and by the nuclear-reactor servicing robot
of Stone et al. (1995). This approach seeks to design
robots with a small number of limbs each having a rela-
tively high degree of maneuverability. The central base
in this approach is typically a simple rigid body. Each
of the two approaches offers particular advantages, and
researchers in this field seek to understand the conse-
quences, in terms of system performance, of trading
between the two approaches in any particular design.

In this paper we take the second design approach.
Our main objective is to determine the smallest num-
ber of limbs a spider-like robot can have, and to design
a viable mechanism having this number of limbs. The
design should not only include details of mechanical
structure, but also a motion paradigm for the spider and
a control algorithm for executing the motion paradigm.

Figure 1. (a) A conceptual design, and (b) top view of a spider robot moving in a two-dimensional tunnel environment.

Before discussing snake-like mechanisms, we note that
legged locomotion over a terrain is related to locomo-
tion in congested environments. Examples of works in
this area are by McGeer (1989), Hirose and Kunieda
(1991), Boissonnat et al. (1992), Marhefka and Orin
(1997), and Van-den-Doel and Pai (1997). However,
we focus on locomotion in congested tunnel-like envi-
ronments rather than legged locomotion over a terrain.

Snake-like mechanisms also interact with the
environment during locomotion. They are related to
spider-like mechanisms, since both mechanisms brace
themselves against the environment while moving free
parts toward a new position. Chrikjian and Burdick
(1993) and Shan and Koren (1993) developed snake-
like mechanisms that move by locking some of their
links to the ground while allowing other links to move.
These researchers, as well as Hirose and Morishima
(1990), also investigated the use of motion patterns
borrowed from biological snakes. However, all existing
snake-like mechanisms interact with the environment
via frictional contacts with the ground. In contrast, we
focus on locomotion where a spider-like robot stably
braces itself against a tunnel-like environment while
moving its free parts. Moreover, the robot is required
to operate under the assumption of slippery contacts
(discussed below). Our problem is thus more akin to
the way biological snakes move over smooth terrains
(Gray, 1953). In such environments a snake propels
itself by bracing against protrusions in the ground while
moving free parts of its body in the forward direction.

Our goal is thus to design an autonomous spider-
like robot capable of moving in a wide range of
two-dimensional tunnels (Fig. 1). The mechanism is
required to have the smallest number of limbs which
still guarantee stable locomotion under the following
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assumptions. First, we assume that each limb contacts
the environment only through its distal link, called the
footpad. The footpads have no suction cups and can
only push against the environment. Second, we study
locomotion intwo-dimensional horizontal tunnels with
piecewise linear walls. However, real tunnel walls may
be wet, oily, or icy. Hence we assumeslippery tunnel
walls, so that locomotion must proceed without using
friction. This restriction excludes tunnels of a particular
simple geometry (such as two parallel lines), but most
unstructured congested environments do have a com-
plex geometry with many possible footholds within
reach of the robot. Furthermore, since friction always
acts toenhancethe stability of a mechanism contact-
ing the environment, a frictionless locomotion plan can
also be executed in a frictional environment. Our last
assumption is that the spider movesquasistatically,
by stably bracing itself against the tunnel walls while
changing its internal configuration to allow motion of
its free parts to the next position. This approach en-
ables the robot to reliably operate even when unpre-
dicted external forces are applied, such as drag forces
from surrounding air or liquids, unexpected collisions,
or uneven loads.

The paper is organized as follows. We first review the
relevant components of the immobilization theory of
Rimon and Burdick (1998a, 1998b). Then we describe
how the theory dictates the smallest number of limbs a
spider-like mechanism can have, as well as the curva-
ture of the footpads required for stability. The class of
tunnel geometries dictates other key parameters of the
robot, such as limb dimensions and number of degrees
of freedom of each limb. We describe these design con-
siderations, accounting for issues such as the number of
degrees of freedom, dimensions, and mechanical struc-

Figure 2. The first-order approximation to the free motions ofB at q0. α̇(0) and β̇(0) are 1st order roll-slide motions.α(t) locally lies in
freespace,β(t) locally penetrates the c-obstacle.

ture of various parts of the spider robot. Next we de-
scribe a locomotion strategy for the spider under the
assumption of slippery tunnel walls. Then we describe
a control algorithm for executing the motion strategy
by exploiting the immobilization forces applied by the
tunnel walls on the spider. The spider has been built,
and we describe preliminary locomotion experiments
that verify the mechanism’s robustness with respect to
footpad placement errors. The paper concludes with a
discussion of future extension to locomotion in non-
horizontal and frictional tunnel environments.

2. C-Space Approach to Rigid Body Mobility

In this section we describe the essential compo-
nents of the immobilization theory developed by Ri-
mon and Burdick (1998a, 1998b), then draw con-
clusions pertaining to the mechanical structure of
the spider robot. This theory is concerned with the
mobility of a rigid object B held by k station-
ary and frictionless finger bodiesA1, . . . ,Ak in an
equilibrium grasp. The same analysis holds for a
k-limbed mechanism bracing against an environment
in a static equilibrium posture. If we momentarily
“freeze” the joints of the mechanism, the mechanism
plays the role of the objectB, while the tunnel walls
play the role of the stationary bodiesA1, . . . ,Ak. The
mobility analysis ofB focuses on its configuration
space (c-space). For planar bodies this configuration
space is parametrized byq= (dx, dy, θ)∈R3. The fin-
gers or tunnel walls are represented in the configura-
tion space ofB as c-space obstacles (c-obstacles). As
shown in Fig. 2, the c-obstacle due to a stationary body
Ai is the set of all configurations whereB intersects the
stationaryAi . Thus, ifq0 is B’s contact configuration
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with Ai ,q0 lies on the c-obstacle boundary, denoted
Si . WhenB is contacted byk bodies,q0 lies on the
intersection ofSi for i = 1, . . . , k. We denote tangent
vectors in c-space bẏq, and use the notationTqR3 and
TqSi for the tangent space ofR3 andSi atq.

2.1. 1st and 2nd Order Free Motions

The mobility ofB relative to the bodiesA1, . . . ,Ak is
characterized by the following notion of free motions.
By definition, thefree motionsof B are those local
motions ofB along which it either breaks away from or
maintains surface contact with the bodiesA1, . . . ,Ak.
In c-space, the free motions ofB at q0 are the c-space
paths that emanate fromq0 and locally lie in thefree
c-space, which is the complement of the c-obstacle
interiors. The first-order geometry of the free paths and
the c-obstacle boundaries determines what we term the
first-order mobilityof B atq0. Formalizing this notion,
let ni (q0) be the outward pointing unit normal toSi at
q0 (Fig. 2(b)). Then the 1storder free motionsof B at
q0 is the set (halfspace ofTq0R3) of tangent vectorṡq
satisfying:

M1
i (q0)

1= {q̇ ∈ Tq0R3 : ni (q0) · q̇ ≥ 0}.

Tangent vectorṡq∈ Tq0R3 satisfying ni (q0) · q̇= 0 are
called 1storder roll-slide motions, while the other tan-
gent vectors inM1

i (q0) are called 1storder escape mo-
tions. Fork fingers or tunnel walls, the set of 1st order
free motions is:M1

1,...,k(q0)
1=⋂k

i = 1 M1
i (q0).

In other words, along 1st order escape motionsB
increases its distance fromAi to first-order, which im-
plies that it locally breaks away fromAi . Along 1st
order roll-slide motionsB maintains surface contact
with Ai to first-order, andit is not possibleto deter-
mine from first-order considerations ifB locally breaks
away or penetratesAi . For example, the c-space curves
α(t) andβ(t) in Fig. 2 have the same tangent vector
at q0, and thus are equivalent to first-order. Yetα(t)
locally lies in the free c-space, whileβ(t) locally pen-
etrates the c-obstacle. As we shall see,all the free
motions ofB at a frictionless equilibrium grasp or
posture are necessarily roll-slide to first-order.Thus,
in order to fully characterize the mobility ofB at an
equilibrium grasp or posture, the second-order prop-
erties of its local motions must be considered. This
insight, and the ensuing 2nd order index, are a major
new tool which is employed in the design of the spider
robot.

The second-order geometry of the free-motion
curves and the c-obstacle boundaries is determined
by their curvature and curvature form, respectively.
The curvature form, describing the curvature ofSi

at q0∈Si , is given by the quadratic formκi (q0, q̇)
1=

q̇T Dni (q0)q̇, whereq̇∈ Tq0Si andDni is the derivative
of the unit normalni . Ref. Rimon and Burdick (1998a)
contains a formula forκi (q0, q̇) in terms of the surface
normals and curvatures of the contacting bodies. The
free-motion curves are determined to second-order by
their velocity and accelerationat q0, as follows. The
2ndorder free motionsof B atq0 is the subset of(q̇, q̈)
satisfying:

M2
i (q0)

1= {(q̇, q̈) : ni (q0) · q̇= 0 and

q̇T [Dni (q0)]q̇ + ni (q0) · q̈≥ 0}.

Analogous to the first-order case, pairs(q̇, q̈) that sat-
isfy ni (q0) · q̇= 0 andq̇T [Dni (q0)]q̇ + ni (q0) · q̈= 0
are called 2ndorder roll-slide motions, while the other
pairs in M2

i (q0) are called 2ndorder escape motions.
Note that the definition of 2nd order free motions fo-
cuses on those curves which are 1st order roll-slide
motions. It is important to stress again that 1st order
roll-slide motions are the only motions available forB
when it is held in an equilibrium grasp or posture. Thus,
if all the 1st order roll-slide motions ofB are 2nd order
penetration motions,B is completely immobilized at
the equilibrium.

2.2. 1st and 2nd Order Mobility Indices

We say thatB is completely immobileif its configura-
tion q0 is completely isolated from the free c-space by
the c-obstacles associated with the bodiesA1, . . . ,Ak.
Physically, this means that all the local c-space mo-
tions ofB which start atq0 cause the object to pene-
trate the bodiesA1, . . . ,Ak. We now describe mobility
indices which are useful for quantifying the amount of
free-motions available toB at an equilibrium. Themo-
bility indices are coordinate invariant integer-valued
functions that measure the instantaneous mobility ofB
when it is held in a frictionless equilibrium grasp or
posture byk bodiesA1, . . . ,Ak. At an equilibrium the
net wrench (force and torque) generated by the con-
tact forces is zero. It can be verified that the wrench
generated by a contact force which acts along thei th
contact normal is a positive multiple1 of the c-obstacle
normal ni (q0). An equilibrium grasp or postureis
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therefore characterized by the condition that zero lies
in the convex hull of n1(q0), . . . ,nk(q0). That is, there
exist scalarsλ1, . . . , λk such that

λ1n1(q0)+ · · · + λknk(q0)= E0, (1)

whereλi ≥ 0 and
∑k

i = 1 λi = 1.
At a k-contact equilibrium grasp or posture,

the intersection of the 1st order free motion
halfspaces associated with the individual contacts,
M1

1,...,k(q0)=
⋂k

i = 1 M1
i (q0), forms a subspace. This

subspace is the set of instantaneous motions which are
simultaneously 1st order free with respect to each of
the bodiesA1, . . . ,Ak. The 1storder mobility indexof
an equilibrium grasp or posture is defined as the dimen-
sion of the subspaceM1

1,...,k(q0). The index is denoted
m1

q0
, and for non-redundant graspsm1

q0
= max{0, 4−k}

wherek is the number of contacts. Immobilization of
B by first-order effects is achieved when the 1st order
mobility index vanishes. Thus at leastk= 4 contacts
are required for first-order immobilization. It follows
that a legged mechanism moving in a frictionless two-
dimensional environment requires at leastfivelimbs, as
one limb must always be free to move to a new position.

However, it is possible to further reduce the number
of limbs by considering second-order (or curvature) ef-
fects at the contacts. The 2nd order mobility index for
a k-contact equilibrium grasp or posture is based on
the c-space curvature form ofSi , κi (q0, q̇). Consider
the coefficientsλi in the equilibrium condition (1). It
is shown in Rimon and Burdick (1998b) that the
weighted sum of the c-obstacle curvatures, called the
relative c-space curvature, has a coordinate invariant
structure which is related to the second-order mobility
ofB at the equilibrium. These notions are made precise
in the following definition.

Definition 1. Let λ1, . . . , λk be the coefficients in the
k-contact equilibrium equation (1). Let thec-space
relative curvature form of the equilibrium be the
quadratic form:

κrel(q0, q̇) =
k∑

i = 1

λi κi (q0, q̇)

such thaṫq∈M1
1,...,k(q0).

Then the2nd order mobility index of the equilibrium,
denotedm2

q0
, is thenumber of non-negative eigen-

valuesof the matrix of the c-space relative curvature
κrel(q0, q̇).

By definition,m1
q0

is an upper bound on the possible
values ofm2

q0
i.e., 0≤m2

q0
≤ m1

q0
. Hencesecond-order

(or curvature) effects always act to reduce the mobility
ofB. We say thatB is immobile to second-orderwhen
m2

q0
= 0. For k≥ 4 contactsm1

q0
= 0, andB is com-

pletely immobile to first-order. However, if we wish to
reduce the number of contacts, we must use second-
order effects. In other words, by suitable choice of cur-
vature at the contacts, it is possible to immobilizeB
using onlyk= 2, 3 contacts. In these casesB is not im-
mobile to first-order (m1

q0
> 0), but may be immobile

to second-order (m2
q0
= 0).

2.3. Graphical Depiction of the Free Motions

We wish to determine suitable footpads curvature that
would guarantee second-order immobilization of the
mechanism using onlythreecontacts with the environ-
ment. To do this, we first present a graphical technique
for rendering the 1st and 2nd order free motions. The
1st order roll-slide motions correspond to tangent vec-
tors inTq0Si . For planar bodies, these motions admit the
parametrization depicted in Fig. 3(a). Letl i denote the
line of the contact normal betweenAi andB. Letρi be
the distance alongl i from theith contact point, such that
ρi is positive onB’s side of the contact and negative on
Ai ’s side. Then the tangent vectors inTq0Si correspond
to instantaneous rotations ofB about points on the line
l i at a distanceρi , asρi sweepsl i from−∞ to∞. Note
thatρi is allowed to attain values inR∪ {∞}, with the
interpretation that rotation about an axis “at infinity”
gives pure translation in a direction perpendicular tol i .
Thus, for planar bodies we can parametrize the tangent
planeTq0Si by the parametersρi andω, whereω is the
angular velocity about an axis located at a distanceρi

on l i .
Next we describe a graphical partition of the linel i

into 2nd order free and 2nd order penetration motions
(Fig. 3(b)). LetrAi and rBi be the radii of curvature
of Ai andB at the contact point. It is shown in Ref.
(Rimon and Burdick, 1998a) that the curvature form
κi (q, q̇) can be written foṙq= (0, ω) as:

κi (q, (0, ω))= 1

rAi + rBi

(ρi − rBi )(ρi + rAi )ω
2, (2)

whereq̇= (0, ω) represents instantaneous rotation of
B about a point at a distanceρi along l i . Since the
tangent spaceTqSi corresponds to these instantaneous
rotations, the sign ofκi (q, q̇) for all q̇∈ TqSi can be
determined by evaluating (2) for−∞ ≤ ρi ≤ ∞. For
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Figure 3. Graphical depiction of (a) the 1st order roll-slide motions, and (b) the 2nd order motions ofB with respect toAi .

example, ifB andAi are convex at the contact point,
thenrBi > 0 andrAi > 0. In this case the curvatureκi

is negative forρi in the interval−rAi <ρi < rBi , and
positive in the intervalsρi < − rAi andρi > rBi . If one
of the bodies,B say, is concave at the contact point,
thenrBi < 0 and the curvature is negative in the interval
−|rBi | ≤ ρi ≤ −rAi .

2.4. Implications for the Spider’s Design

We now discuss some implications of the immobiliza-
tion theory to the spider’s structure. The 1st and 2nd
order mobility indices allow immobilization which is
based on surface curvature in addition to the more con-
ventional reliance on contact normals. Based on con-
ventional first-order considerations, it was previously
thought thatfour frictionless contacts are required to
immobilize generic 2D objects (Markenscoff et al.,

Figure 4. (a) The spider is not immobile sincer <ρi . (b) The spider is immobile since the footpads satisfyr >ρi for i = 1, 2, 3.

1990; Reuleaux, 1963). However, Czyzowicz et al.
(1991) and Rimon and Burdick (1995) have recently
shown that generic 2D objects can be immobilized
by only three frictionless fingers with convex shape,
provided that the fingers are sufficiently flat at the
contacts. Equivalently,any multi-limbed mechanism
can immobilize itself in a frictionless two-dimensional
environment using only three limbs with sufficiently flat
convex footpads.The spider must therefore have at least
four limbs—three limbs for immobilization and at least
one additional limb for establishing a new foothold dur-
ing locomotion. In our prototype, we have chosen to use
the minimum number of four limbs for the spider.

Let us consider the proper choice of footpad curva-
ture. In a 3-legged equilibrium, the contact-force lines
must intersect at a common pointp (Fig. 4). The set
of 1st order roll-slide motions available to the mecha-
nism is a one-dimensional subspace (sincem1

q0
= 1),
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consisting of instantaneous rotations of the mecha-
nism about p. (That is, instantaneous rotations of
the mechanism as a single rigid body.) For complete
immobility we must havem2

q0
= 0. This condition can

be interpreted as the requirement that the footpads be
sufficiently flat at the contacts, as to prevent instanta-
neous rotations of the mechanism aboutp. A sufficient
condition form2

q0
= 0 is thatthe radius of curvature of

the ith footpad be larger than the distance between
the ith contact point and the concurrency point p,
for i = 1, 2, 3. In this case the c-space curvature of
each contact satisfiesκi < 0 for instantaneous rotations
about p (Eq. (2)), andκrel=

∑3
i = 1 λi κi < 0. Conse-

quentlym2
q0
= 0 and the mechanism is completely im-

mobilized by the tunnel walls. The footpads in Fig. 4
have a radius of curvaturer , and the distance between
the ith contact andp is ρi . Whenr <ρi the spider is
not immobile, since in this case rotation of the mecha-
nism aboutp is 2nd order free for each of the contacts
(Fig. 4(a)). When the footpads’ radius-of-curvature is
larger than the tunnel’s width, the sufficient condition
holds true and the mechanism is completely immobi-
lized (Fig. 4(b)).

In general, for any given tunnel geometry there
exists an upper bound on the footpads’ curvature
which guarantees immobilization of the mechanism in
every 3-legged posture in the tunnel (Rimon et al.,
1999). This bound depends on the maximal distance
of the point p from the contacts in the given tunnel,
and it increases as the tunnel-segments become parallel
to the tunnel’s central axis. In our design, we have se-
lected the footpads’ radius-of-curvature to be 1.5 times
the tunnel’s average width. This choice guarantees
immobilization of all 3-legged postures whose inter-
section pointp lies at a distance of tunnel-width away
from the tunnel’s central axis.

Finally, we note that the lower bound of three limbs
is a tight lower bound, for the following reasons. If
one wishes to use only two limbs, one must either
use friction or exploit concavities in the environment.
However, our focus is on locomotion which makes
no use of frictional effects. As for exploiting con-
cavities, we assume piecewise-linear tunnel walls, and
these walls form concavities only at particular corners.
Rather than seek these relatively rare localities, we as-
sume that the limbs contact the environment anywhere
along the linear (hence convex) tunnel walls. However,
there are well known examples in the grasping literature
(Rimon and Burdick, 1995) of objects which cannot be
immobilized with only two frictionless convex fingers.

In our case, this means thatthree limbs must be used
in order to guarantee immobilization of the spider in
arbitrary tunnel environments.

3. Spider Robot Design Considerations

Thus far we have established that the spider will have
four limbs, with the footpads’ curvature sufficiently
flat as to guarantee immobilization. In this section we
describe the considerations that have led us to choose
other key design parameters of the spider. First we con-
sider kinematic parameters—the number of degrees of
freedom and the dimensions of the spider. Then we
consider the mechanical structure of the spider’s limbs
and footpads.

3.1. The Number of Degrees of Freedom

As discussed below, the spider alternates between two
modes of locomotion. In the first mode, calledlimb
lifting, the spider braces itself against the environment
with three limbs and lifts its fourth limb to a new po-
sition. In the second mode, calledlimb repositioning,
the spider contacts the environment with all four limbs
while repositioning its contacts with the environment
as to allow lifting of a new limb. See Section 4 for more
details.

We now discuss our choice of the number of degrees
of freedom for each limb of the spider. First consider the
limb-repositioning mode of locomotion. We wish to al-
low arbitrary placement of the central body in the plane
(position and orientation) during this mode of locomo-
tion. The closed-loop mechanism formed by the spider
bracing against the environment should have at least
three degrees of freedom. Moreover, we wish to attain
this degree of mobility when the four footpads of the
spider are stationary with respect to the environment.
(For clarity, we note that each limb has a single footpad
which forms the distal link of the limb.) In general, the
number of degrees of freedom of a planar mechanism
consisting of #link links and #joint joints is:

# d.o.f.= 3(#link− 1environment)− 2#joint, (3)

where the number of links includes a stationary link
representing the environment. Letnlimb be the number
of links in each limb. Since each limb is a serial chain,
there arenlimb joints in each limb, and consequently
#joint= 4nlimb. The spider has four limbs, and the
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distal link of each limb (the footpad) remains station-
ary. Hence #link= 4nlimb+1central−body+1environment−
4footpads. Substituting these values in (3) gives:

# d.o.f. = 3(4nlimb + 1central-body− 4footpads)− 8nlimb

= 4nlimb − 9.

The requirement # d.o.f.= 4nlimb − 9≥ 3 implies
that nlimb≥ 3. Thus three links and three joints for
each limb would suffice during limb repositioning.
Consider now the limb-lifting mode of locomotion.
We may assume that the central-body makes only local
motions during this mode of locomotion. The free limb
therefore has an essentially fixed base while it attempts
to reach a new foothold position. In principal the limb’s
three degrees of freedom should suffice to arbitrarily
place its footpad in the plane (position and orienta-
tion). However, when operating in a congested envi-
ronment, additional degrees of freedom are required
in order to accommodate obstacles. But motion plan-
ning and control become substantially more complex
as the number of degrees of freedom increases. (Es-
pecially since the total number of degrees-of-freedom
increases by increments of four.) Thus, in order to
increase maneuverability while retaining a manageable
mechanism complexity, we addoneadditional link and
joint to each limb, resulting infour links andfour joints
for each limb.

3.2. The Spider’s Dimensions

We now describe our choice of two key dimensions
of the spider robot. The central body of the spider is
made of a thick square plate, and the first parameter is
the width, denotedb, of the central body. The second
parameter is the total length, denotedl , of each limb.
(The dimension of the individual links is determined
below.) The ratiol/b is related to the desired maneu-
verability of the spider as follows. LetDmin andDmax

be the minimal and maximal widths of the tunnel. Then
b must be smaller thanDmin to allow motion of the cen-
tral body through the tunnel, while the quantityb+ 2l
must be larger thanDmax to allow the spider to reach
both sides of the tunnel. Assuming thatDmin= b and
Dmax= b+ 2l , we define themaneuverability indexas
the ratio:

M = Dmax

Dmin
= 1+ 2

l

b
. (4)

A large maneuverability index is more desirable,
since it reflects an increased ability of the spider to
move in a given tunnel environment. In our design,
we have assumed tunnels with a maneuverability in-
dex ofM = 10, which gives the ratiol /b ∼= 5. However,
while a largeM increases the spider’s maneuverabil-
ity, it causes an undesirable overlap between the limbs’
reachable areas. This concern is addressed by the spi-
der’s mechanical structure discussed below.

Next we focus on the spider’sradius of reachabil-
ity, defined asR= l + b/2. This radius represents the
distance from the center of the central body to the end
of a completely stretched limb. The choice ofR influ-
ences the ability of the robot to reach desired footholds
along the tunnel walls. To understand this influence,
consider a particular triplet of tunnel segments, denoted
Ii1, Ii2, Ii3. (The tunnel, recall, has piecewise linear
walls.) At a 3-legged equilibrium posture the contact-
force lines intersect at a common pointp. The col-
lection of pointsp corresponding to all possible equi-
librium footholds onIi1, Ii2, Ii3 is a polygonal region
denotedPi1,i2,i3 (Fig. 5(a)). For frictionless contacts
Pi1,i2,i3 is simply the intersection of the strips perpen-
dicular to the segmentsIi1, Ii2, Ii3. The collection of all
polygonsPi1,i2,i3, wherei1, i2, i3 range over the tunnel
segments, describes all possible 3-legged equilibrium
postures in a given tunnel.2

Next we impose a reachability constraint on the
polygonsPi1,i2,i3. Figure 6 shows a randomly selected
piecewise-linear tunnel whose average width is one
unit. For each tripletIi1, Ii2, Ii3 of tunnel segments, we
first determine the corresponding equilibria polygon
Pi1,i2,i3. Then we discretizePi1,i2,i3, and for each point
p∈ Pi1,i2,i3 perform the following two steps. First we
determine the location of the footholds corresponding
to p on the tunnel segmentsIi1, Ii2, Ii3. Then we plot
the region formed by intersecting three discs of radius
R (the robot’s radius), centered at the three footholds
(Fig. 5). The resultingreachability regionrepresents
all central-body locations from which triplets of equi-
librium footholds on the segmentsIi1, Ii2, Ii3 can be
reached. Figure 6 shows the resulting reachability re-
gions for several robot diameters. To allow a continuous
motion of the central body,R should be chosen such
that the reachability regions form a contiguous area
along the tunnel. As the figure shows, a robot diameter
of 2R= 1.15 units already provides ample overlap of
the reachability regions. In our experiment the tunnel’s
average width is 1.1 meters, and we selected the spider’s
diameter as 2R= 1.3 meters. Combining the equations
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Figure 5. (a) The equilibrium region formed by intersecting three vertical strips. (b) The reachability region corresponding to a particular
triplet of footholds.

Figure 6. Reachability regions corresponding to a unit-width tun-
nel. (a) 2R= 0.85 units, (b) 2R= 1.05 units, (c) 2R= 1.15 units.

Figure 7. (a) Schematic description of the upper and lower limbs. (b) An upper limb in its retracted configuration.

2R= 2l + b= 1.3 with l /b= 5, the limbs’ length is
l = 60 cm and the central-body’s size isb= 12 cm.

3.3. Limbs Mechanical Design

First we describe how the limbs are attached to the
central body. To minimize inter-link interference, we
designed two types of limbs—an upper and a lower
limb. In an upper limb all driving mechanisms are po-
sitioned upward, above the plane of the central body.
In a lower limb all driving mechanisms are positioned
downward, underneath the central body. To minimize
inter-link interference, the spider has two upper limbs
and two lower limbs. As Fig. 7(a) shows, the upper
limbs never interfere with the lower limbs (except for
a possible interference of the passive supports, dis-
cussed below). Furthermore, to minimize interference



288 Rimon, Shoval and Shapiro

between the two upper (lower) limbs, these limbs are
attached at diagonally opposite corners of the central
body. The resulting design allows simultaneous motion
of the four limbs with minimal inter-link interference.

Next we describe the spider’s weight supports.
Recall that the spider moves in a horizontal two-
dimensional tunnel by pushing against the tunnel walls.
However, gravitational forces in the direction normal
to the horizontal plane may generate a torque that can
tip the robot out of the horizontal plane. The spider’s
weight must therefore be supported in a way which
would prevent its tilting during locomotion. Figure
7(a) shows the two types of supporting mechanisms
attached to the robot. The first mechanism is a balanc-
ing roller-ball attached underneath the central body and
the third link of the lower limbs. The second mecha-
nism is a linearly actuated roller-pad support, attached
underneath the third link of the upper limbs. The latter
support is actuated as to allow its lifting when an upper
limb passes over a lower limb. The resulting arrange-
ment of five supports provides ample balancing of the
spider against any gravitational tilting.

To achieve maximum motion flexibility of each limb,
we selected the links’ length in adecreasingorder.
The link closest to the central body is 24 cm long,
and the next ones have lengths of 18 cm, 14 cm, and
4 cm. These lengths allow each limb to completely
retract into its first link, allowing the robot to maneuver
itself in congested environments and through narrow
passageways. Figure 7(b) shows an upper limb in its
retracted configuration. Note that the balancing roller-
pad is lifted into a special cavity, so that it would not
interfere with the motion of the links. Finally, each
link is designed to have an adjustable length, allowing

Figure 8. Two footpad designs. (a) A geometric curvature design. (b) A frictionless contact design.

a screw-adjustable variation of 33% in the length of
each link.

3.4. Footpad Mechanical Design

The distal links of the limbs, or footpads, are the only
parts of the robot that contact the environment. As
discussed above, the footpads curvature must be suf-
ficiently flat to guarantee immobilization of the spi-
der during 3-legged bracing. Since the tunnel walls
are assumed piecewise linear, perfectly flat footpads
would give the best immobilization. However, we wish
to avoid the overhead incurred by controlling the place-
ment of such footpads. We therefore designed two types
of footpads which are easier to control. The first foot-
pad design, shown in Fig. 8(a), is a single body curved
with a large radius-of-curvature that guarantees immo-
bilization. The curved footpads can easily establish a
point-contact with the environment, and by controlling
the location of these contacts with the environment we
can establish immobile equilibrium postures.

The second footpad design simulates a flat footpad
(which gives maximal immobilization), while avoid-
ing the overhead involved in placing a flat footpad on
a flat surface. This footpad also reduces the contact
friction to almost zero, allowing validation of the spi-
der’s locomotion in a truly slippery environment. As
Fig. 8(b) shows, the footpad mechanism consists of a
rotating triangular flange with two roller-bearings at
each edge, and an electromagnetic clutch that controls
the flange’s rotation axis. When the footpad reaches
a contact surface, the clutch is released and one of the
flange’s edges passively adjusts itself to the contact sur-
face. When contact is established, the clutch is activated
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and the footpad becomes a rigid body with two roller-
bearings in contact with the environment. The bearings
allow only perpendicular forces to be transferred at the
contacts, thereby emulating a truly slippery environ-
ment. It is worth mentioning that Nagakubo and Hirose
(1994) employed similar footpads in their design of a
quadruped wall-climbing robot.

4. The Spider Robot Motion

We now describe a motion paradigm that allows
quasistatic locomotion of the spider in a slippery tun-
nel environment. The motion consists of two phases
which repeat until the spider reaches its goal. In the
first phase, calledlimb lifting, the spider braces against
the environment with three limbs while the fourth limb
moves toward a new foothold position. During this mo-
tion the central base and the three limbs contacting the
environment move in a way which keeps the contacting
footpads stationary with respect to the environment. At
the end of a limb-lifting phase all four limbs contact the
environment. However, before the spider can lift a new
limb, it must ensure that the remaining three limbs form
an equilibrium posture. For clarity, let the limbs be de-
notedL1, L2, L3, L4. Suppose that the spider initially
lifts the limb L1, while the limbsL2, L3, L4 maintain
a 3-legged equilibrium posture (Fig. 9(a)). To be able
to lift a new limb, sayL4, the spider must first ensure
that the force-lines of the limbsL1, L2, L3 intersect
at a common point. However, the limbsL2 andL3 are
common to both limb-triplets, and the force-lines ofL2

andL3 intersect at a unique point. Hence we must first
move the location of the contact points of the limbsL2

andL3 with the tunnel walls before the limbL4 can be
lifted.

In the second phase, calledlimb repositioning, the
spider slides two limbs along the tunnel walls, while

Figure 9. The two motion phases of the spider. (a) Limb lifting ofL1. (b) Limb repositioning in preparation for the lifting ofL4.

the other two limbs maintain a fixed contact with the
environment. For example, in Fig. 9(b) the spider slides
the limbsL2 andL3 along the tunnel walls, while the
limbs L1 andL4 maintain a fixed contact with the en-
vironment. During this sliding, the intersection point
of the force-lines of the limbsL2 and L3 moves for-
ward, until it reaches the stationary force-line ofL1.
Now the limbs L1, L2, L3 form a 3-legged equilib-
rium posture, and the spider can lift the limbL4. Note
that in both modes of locomotion the spider is contin-
uously immobile with respect to the tunnel walls. Dur-
ing limb lifting the spider is immobilized by surface
curvature effects (m1

q0
> 0 andm2

q0
= 0). During limb

repositioning the spider is immobilized by first-order
effects (m1

q0
= 0). Immobilization implies that the natu-

rally occurring compliance at the contacts stabilizes the
mechanism against any external disturbances (Rimon
and Burdic, 1998b). Hence, if the inertial forces due to
moving parts of the spider are kept small, the reaction
forces at the contacts would automatically compen-
sate for the inertial forces, resulting in alocally stable
locomotionof the mechanism.

The planning of the spider’s motion using the two
modes of locomotion involves other issues not consid-
ered here. First, we must select a sequence of foothold
positions which leads the spider to its goal, such that
each new foothold is reachable from the spider’s cur-
rent position. Second, we must generate a collision-
free trajectory which moves the spider between suc-
cessive footholds according to the above two modes of
locomotion. A motion planner that performs all these
tasks will be described in a future paper. We also note
a related work by Madhani and Dubowsky on plan-
ning the motion of spider-like mechanisms (Madhani
and Dubowsky, 1997). However, they use friction ef-
fects while we consider motion that does not rely on
friction.
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5. An Immobilization-Based Control
for the Spider

In this section we describe a control methodology for
executing the motion phases described above. First we
give an overview of the method, then discuss its tech-
nical details.

5.1. Overview of the Control Approach

The spider has four limbs each having four actuated
degrees of freedom. The central base of the spider pos-
sesses additional three degrees of freedom. The spider
thus has a total ofnineteendegrees of freedom, of which
only sixteenare actuated. However, the spider isnot
an underactuated system. Consider for simplicity the
limb-lifting mode of locomotion. During this motion
phase the spider braces itself with three limbs while
the fourth limb moves to a new position. The contact-
ing limbs introduce three scalar constraints which ef-
fectively force the spider to move in a 16-dimensional
manifold, denotedN , which lies in the 19-dimensional
configuration space of the spider. The control problem
is how to transfer the torques generated by the spider’s
sixteen actuators to the 16-dimensional manifoldN .
In particular, we wish to induce forces and torques on
the spider’s central base in order to bring it to a desired
position and orientation.

Our control approach relies on the immobilization
of the spider by the tunnel walls. As long as the foot-
pads maintain an immobilizing posture with respect to
the environment, the reaction forces generated by the
natural compliance present at the contacts will tend
to stabilize the mechanism as a single rigid body. See
Refs. Howard and Kumar (1996) and Lin et al. (1997)
for a Hertz model analysis of this process. Our con-
trol approach thus consists of the following active and
passive components. The active component is imple-
mented by servoing the spider’s joint actuators in a way
which keeps the contacting footpads fixed relative to
each other. From the perspective of the tunnel walls,
the mechanism consequently behaves as a single rigid
body immobilized by the tunnel walls. Note, however,
that we are still free to guide the spider’s free limb and
central base along any desired trajectory, as long as
the contacting footpads remain fixed relative to each
other. The passive component of the control relies on
the reaction forces generated by the tunnel walls. These
forces act through the footpads and tend to keep the
spider as a single rigid body at the same position and

orientation. In other words, the tunnel walls will au-
tomatically cancel all sufficiently small inertial forces
generated by the moving parts of the spider. When the
free limb reaches its destination, the associated inertial
forces vanish, and the spider’s contacting footpads will
settle at their precise original location.

We note that Pfeiffer et al. (2000) have suggested
an alternative control approach for spider-like robots
which also relies on compliance at the contacts.
However, their objective is to control the forces at the
contacts rather than the configuration of the spider.
Controlling the contact forces seems harder than
merely maintaining the contacts at a desired position,
since the contact forces depend on the material prop-
erties of the footpads and the environment, and these
properties may vary widely in any practical scenario.

5.2. Details of the Control Law

First let us introduce some notation. Letqi ∈ R4 denote
the ith limb joint vector, and letq̄= (q1,q2,q3,q4)

∈R16 denote the entire spider joint vector. Letτi ∈R16

denote theith limb torque vector, and letτ ∈R16 denote
the entire spider joint torques. The configuration of the
spider’s central base (position and orientation) is de-
noted by the vectorqb ∈R3, and the entire configuration
of the spider is denoted by the vectorq= (qb, q̄)∈R19.
The contact point between theith limb and the environ-
ment, described in a fixed reference frame, is denoted
xi ∈R2. The pointxi depends on the configuration of
the central base and theith limb, and we write this de-
pendency asxi (qb,qi ). The contact force applied by the
environment to theith footpad is denoted byFi ∈R2.
Note that whenFi = 0 theith limb is not contacting the
environment. Each contact forceFi induces a wrench
(i.e. force and torque) on the central base, and torques
on the joints of theith limb. The vectorwi ∈R19 de-
notes these wrench and torques, with the understanding
thatwi has zeroes at the components corresponding to
the other limbs. The net wrench and torques due to all
contact forces is the sum

∑4
i = 1wi .

In general, each vectorwi is given by the formula
wi = Dxi (qb,qi )

T Fi , whereDxi (qb,qi ) is the 2× 19
Jacobian matrix ofxi (qb,qi ). (Here again,wi has
zeroes in the components corresponding to the other
limbs.) In our case, we assume that the contact forces
are generated by compliance effects at the contacts.
These compliance effects are governed by anelastic
potential energy function(Rimon and Burdick, 1998),
whose value depends on the amount of penetration of
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the ith footpad into the tunnel walls. Intuitively, any
configurationq= (qb, q̄) of the spider determines a
particular penetration of theith limb into the tunnel
wall, and this penetration determines a particular value
for the elastic potential energy at theith contact. We de-
note by5i (q) the elastic potential at theith contact, and
note that5i is non-negative and vanishes when theith
footpad is disjoint from the tunnel walls. The torques-
and-wrench vectorwi due to the elastic potential energy
5i is given bywi = Dxi (qb,qi )

T Fi = −∇5i (q).
We can now write the dynamical equation of the

spider3:

M(q)q̈ + B(q, q̇)=
( E0
τ

)
−

4∑
i = 1

∇5i (q), (5)

whereM(q) is the 19×19 inertia matrix of the spider,
and B(q, q̇) is the term corresponding to centrifugal
and Coriolis forces acting along the spider’s nineteen
degrees of freedom. The vectorE0 appearing in (5) is
a vector of three zeroes, corresponding to the unactu-
ated degrees of freedom of the spider’s central base.
As discussed above, our control approach consists of
servoing the spider’s joints in a way which keeps the
contacting footpad fixed relative to each other. At each
control step, a high-level motion planner provides the
controller with a desired collision-free configuration
for the spider, denotedq∗ = (q∗b, q̄∗). The motion plan-
ner additionally ensures that atq̄= q̄∗ the three con-
tacting footpads are at their original bracing position
with respect to each other. We use the following sim-
ple PD law to servo the spider’s joints about the desired
joint valuesq̄∗:

τ(t)=−K p(q̄(t)− q̄∗)− Kd ˙̄q(t), (6)

Figure 10. Snapshots showing top and side views of the spider bracing against tunnel walls.

where the proportional and damping matricesK p and
Kd are 16× 16 positive definite matrices. A choice
of diagonal matricesK p andKd gives adecentralized
control of the spider, where every joint controller need
only know its own state.

A proof of stability of the control law (6) is sketched
in the appendix. We have implemented a dynamic sim-
ulation of the closed-loop spider system, using the
Hertz contact model for the compliance at the contacts.
The simulations show excellent convergence properties
of the control method in both modes of locomotion of
the spider. For example, using material properties of
Aluminum at the contacts, the spider converges to a
desired limb position within 5 cm range in less than
0.05 seconds. Using material properties of Rubber at
the contacts, the spider converges to a desired limb po-
sition within 5 cm range in a slower time of less than 0.5
seconds. The simulation results as well as full locomo-
tion experiments will be discussed in a future paper that
will focus on the immobilization-based controller. The
future paper will also provide a procedure for select-
ing the matricesK p andKd in (6) according to desired
performance criteria.

6. Experiments with the Spider Robot

The spider robot has been built and snapshots of the
spider bracing against tunnel walls are shown in Fig. 10.
The actuators and sensors used by the mechanism are
the standard ones. Specifically, the spider is actuated
by small Maxon DC servo-motors each having an op-
tical encoder, and the position and orientation of the
central-base is measured by a CCD camera mounted
above the experiment. In this section we describe ex-
periments that verify the robustness of the mechanism’s
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equilibrium postures with respect to small footpad
placement errors.

First, consider 3-legged equilibrium postures. These
postures are particularly sensitive to footpad place-
ment errors, since arbitrarily small placement errors
would yield force-lines that do not intersect at a com-
mon point as required for equilibrium. We now de-
scribe two approaches that compensate for such errors.
The first approach replaces the footpads that maintain
a single contact point with the environment with foot-
pads that maintain multiple contacts with the environ-
ment. For example, the roller-bearing footpad depicted
in Fig. 8(b) maintains two frictionless contacts with
the tunnel walls. Using this footpad design, the two
contacts of each footpad determine a strip of contact
normals. It can be verified that as long as the strips of
the individual footpads have a common intersection,
the associated posture is an immobilizing equilibrium
posture. Hence if we plan a nominal equilibrium pos-
ture for the center lines of the three strips, each footpad
may deviate by half-width of a strip without harming
the equilibrium or its stability.

The second approach exploits friction, which is
present even in a small amount at the contacts. Friction
effects induce a neighborhood of footpad placements
about the nominal frictionless placement which hold
the mechanism in a stable 3-legged equilibrium.4 To
see this fact, consider the frictionless 3-legged equilib-
rium posture shown in Fig. 11. The force-lines intersect
at p, theith contact force magnitude isFi , and the dis-
tance between theith contact point andp isρi . Suppose
that one of the footpads, with indexi0, is placed at a
distanceδ from its nominal position along the tunnel
wall. Then the torque aboutp induced by a placement

Figure 11. A 3-legged immobile posture with an errorδ in the
placement of the second footpad (only the contact points are shown).

error δ is: η= δFi0. If we assume frictional contacts,
these contacts generate tangential forces that compen-
sate for the torqueη. Let fi denote the magnitude of
the tangential frictional force at theith contact. Then
the frictional torque aboutp is ρi fi , and for equilib-
rium of torques aboutp we must haveη= ∑3

i = 1 ρi fi .
Letting µ be the coefficient of friction,fi ≤µFi ac-
cording to the Coulomb friction law. Substituting the
inequality fi ≤µFi in the equilibrium condition gives:
δ≤ (µ∑3

i = 1 ρi Fi )/Fi0. Any footpad placement error
δ satisfying this inequality would be compensated by
friction effects and still generate a stable equilibrium
posture. The inequality also implies that a small amount
of friction suffices to compensate for reasonable foot-
pad placement errors. Since the contact forces have
approximately the same magnitude, we obtain the ap-
proximate equilibrium conditionδ≤µ∑3

i = 1 ρi . Inter-
preting this inequality as a condition on the coefficient
of frictionµ, we obtainµ≥ δ/∑3

i = 1 ρi . However,δ is
in the range of a few millimeters while

∑3
i = 1 ρi is in the

range of tens of centimeters. Substitutingδ= 10 mm
and

∑3
i = 1 ρi = 100 cm gives that a small coefficient

of friction µ= 0.01 already suffices to compensate for
reasonable footpad placement errors.

We have experimentally tested the friction-based
error compensation approach on the 3-legged equilib-
rium posture depicted in Fig. 11. In our experiment
the footpads are made of Aluminum while the tun-
nel walls are made of thick Perspex plates. The co-
efficient of friction between the footpads and tunnel
walls was originallyµ= 0.3, and this coefficient was
reduced toµ= 0.1 by lubricating the tunnel walls with
Teflon spray. We initially established a 3-legged im-
mobile frictionless equilibrium posture, whose con-
tact force magnitudes areF1= 272 gr, F2= 214 gr,
and F3= 86 gr. The distances of the contact points
from p areρ1= 132.6 cm,ρ2= 50.3 cm, andρ3= 53.4
cm. Substituting this data usingi0= 2 to designate
a placement error in the second footpad, we obtain
the conservative boundδ≤ (µρ1F1)/F2= (0.1·132.6·
272)/214= 16.8 cm. In our experiment, we varied the
placement error of the second footpad by increments of
5 mm, and obtained stable equilibrium postures up to a
distance of 55 mm from the nominal footpad position.
(Larger placement errors were hard to verify due to
kinematic reachability constraints of the mechanism.)
Since practical footpad placement errors are expected
to be in the range of a few millimeters, a small amount
of friction would suffice to maintain stability in the
presence of such errors.
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Figure 12. Central-base position error at the end of a straight-line motion due to footpad placement errors. (a) Position error during 3-legged
immobilization. (b) Position error during 4-legged immobilization.

Our next experiment measures the accuracy of the
spider’s motion during 3-legged immobilization. The
3-legged posture has the geometry depicted in Fig. 11.
In this experiment, too, we have lubricated the tunnel
walls to achieve aµ= 0.1 coefficient of friction. The
spider in this experiment is bracing against the tun-
nel walls while its central-base moves 70 mm along
the tunnel’s central axis. The motion is executed using
the immobilization-based controller described above,
with one intermediate point specified at a distance
of 35 mm along the tunnel’s central axis. The accuracy
of the motion is measured by the Euclidean distance
of the central-base position at the end of motion from
its desired final position. The graph in Fig. 12(a) de-
picts the central-base position error as a function of
a footpad placement error. Using placement error in-
crements of 5 mm, it can be seen that the central-base
motion accuracy remains within a few millimeters for
footpad placement errors of up toδ= 10 mm. Beyond
this value, inertial forces generated during the spider’s
motion dominate the small frictional forces at the con-
tacts. These inertial forces cause local slips at the con-
tacts, with a resulting large error in the central-base
final position.

Our final experiment measures the central-base
motion accuracy during 4-legged immobilization. In
contrast with 3-legged immobilization, 4-legged equi-
librium postures areinherently robustwith respect to
footpad placement errors. Once a nominal 4-legged

equilibrium posture is established, all nearby foot-
pad placements are automatically equilibrium postures,
even in a frictionless environment. Moreover, almost all
4-legged equilibrium postures are immobile. Hence, we
expect a significantly better motion accuracy during 4-
legged immobilization. The graph shown in Fig. 12(b)
indicates the central-base position error at the end of a
motion toward a target located at a distance of 55 mm
along the tunnel’s central axis. As above, the motion
is generated by the immobilization-based controller
with one intermediate point specified at a distance of
27.5 mm along the tunnel’s central axis. Using place-
ment error increments of 5 mm, it can be seen that now
the motion accuracy decreases more slowly, with an of
a few millimeters for footpad placement errors of up to
δ= 70 mm.

The experiments in both types of immobiliza-
tion show robustness with respect to footpad place-
ment errors in the range of a few millimeters for
3-legged immobilization and a few centimeters for
4-legged immobilization. However, robustness during
3-legged immobilization is achieved by either using a
multiple-contact frictionless footpad, or by exploiting
friction effects at the contacts. Both of these approaches
deviate from our formal assumptions of single-contact
frictionless footpads. Indeed, we discuss in the con-
cluding section our current research which is concerned
with the inclusion of friction effects into the loco-
motion.
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7. Concluding Discussion

We described the design of a spider-like robot capable
of quasistatic locomotion in two-dimensional tunnel
environments. We have made a worst-case assumption
of slippery tunnel walls. Under this assumption, the
immobilization theory dictated that the smallest num-
ber of limbs such a mechanism can have isfour. The
theory also dictated the footpads’ curvature required
for stable locomotion of the robot. Other key param-
eters, such as the dimension and number of degrees
of freedom of each limb, were dictated by the class
of tunnel geometries. We also described a two-phased
locomotion strategy for the spider robot under the as-
sumption of slippery tunnel walls. In the first phase
the spider lifts a limb to a new position while brac-
ing with three limbs against the tunnel walls. In the
second phase the spider contacts the environment with
all four limbs while adjusting its contacts along the tun-
nel walls in preparation for the lifting of a new limb.
Finally, we described a decentralized control method
for executing the two motion phases, whereby immo-
bilization effects are used to induce forces and torques
on the spider’s central base. The spider has been built,
and experiments verifying its robustness with respect
to footpad placement errors were described.

Future extensions of this work will focus on the
inclusion of friction and gravityinto the locomotion.
The inclusion of friction will allow the spider to move
in tunnels of a particular simple geometry such as two
parallel lines, as is often the case in man-made en-
vironments. However, the inclusion of friction raises
several technical challenges. The first challenge is to
efficiently estimate the amount of friction in a partic-
ular foothold area. This problem is especially acute
in unstructured tunnel environments, where surface
material properties and environmental conditions may
vary widely during locomotion. A second challenge is
how to guarantee adequate disturbance rejection with
frictional contacts, given the bounded-torque capabil-
ity of the spider’s actuators. A third challenge is the
need to develop a method for controlling the spider’s
contact forces with the environment, as to prevent slip
at the contacts (Pfeiffer et al., 2000). Note that in our
immobilization-based approach the controller has the
simpler task of merely maintaining the footpads at a
desired position.

In order to include gravity in the experiments, we
plan to tilt the horizontal tunnel-plane by 45◦, so that
gravity would act in the plane of the two-dimensional

tunnel. As long as the spider braces itself against the
tunnel walls during locomotion, the inclusion of gravity
should require only minor modifications to the spider’s
horizontal motion-and-control algorithms. Such a qua-
sistatic bracing motion can provide the spider with sig-
nificant payload and disturbance-rejection capabilities.
However, it is also possible to seek a design which em-
ploys the smallest number of limbs required for stable
locomotion in a gravitational field. It seems that gravity
can be regarded as a “virtual leg” which presses on the
mechanism’s center of gravity along a fixed direction.
Although such a leg is less versatile than a mechani-
cal leg, by suitably adjusting the mechanism’s center
of mass, a legged robot should be able to stably move
in two-dimensional gravitational environments using
only threelegs (Dubowsky et al., 1999). Such a stable
motion seems feasible even over slippery terrains, pro-
vided that the terrain contains many footholds of vary-
ing orientations, as is often the case in unstructured
terrains. The validation of this hypothesis is a major
challenge which we plan to explore in future work.

Appendix

A. Sketch of Proof of Stability

In this appendix we sketch the stability proof for the
closed-loop spider system under the control law (6).
For simplicity, we assume that atq=q∗ the spider con-
tacts the tunnel walls, but does not actually penetrate
these walls. It follows that the total elastic energy as-
sociated with the contacts,5(q)= ∑4

i = 15(qi ,qb),
vanishes atq=q∗. Consider now the following
Lyapunov function candidate for the closed-loop
system:

V(q)= 1

2
q̇T M(q)q̇ +5(q)+8(q̄) where

8(q̄)= 1

2
(q̄ − q̄∗)T K p(q̄ − q̄∗).

The first term inV is the kinetic energy of the spider;
the second term is the elastic energy associated with the
contacts; and the third term is the potential energy asso-
ciated with the proportional term in the control law. We
note that more sophisticated expressions for8(q) can
be used without affecting the stability result, including
expressions that account for obstacle avoidance.

The pointq=q∗ with zero velocity is alocal min-
imumof V as required for a Lyapunov function, for



Design of a Quadruped Robot 295

the following reasons. First, the three terms inV
are non-negative and vanish at(q, q̇)= (q∗, 0). More-
over, for any deviation from(q, q̇)= (q∗, 0) one of
these terms becomes strictly positive. Intuitively,5 be-
comes strictly positive for any motion of the spider as
a single rigid body, since the spider is immobilized
by the tunnel walls atq=q∗. Similarly, any change
of joint values with respect tōq= q̄∗ will cause the
quadratic term8(q̄) to become strictly positive. We
can now interpret the closed-loop system as being gov-
erned by a combined potential energy of the form
U (q)=5(q) + 8(q), and invoke a standard result
concerning the stability of mechanical systems gov-
erned by a potential energy function (Koditschek, 1989;
Thompson and Tait, 1886). According to this result,the
local minima of U, with zero velocity, of a damped me-
chanical system are local attractors of its flow.Since
damping is introduced into the closed-loop system by
the matrixKd in (6), the closed-loop spider system is
locally asymptotically stable around the desired con-
figurationq∗ with zero velocity.

Notes

1. The scalar multiplying ni (q0) is positive since the contact forces
can only push onB.

2. In general, the collection of 3-contact planar equilibrium grasps
or postures is a two-dimensional set (Stappen et al., 1999).

3. The gradient of5i is differentiable, hence existence and unique-
ness of solutions to (5) is assured.

4. Frictional equilibrium postures are force-closure stable, which is
a weaker form of stability than frictionless immobilization.
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