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Abstract

In conventional motion planning a wheeled mobile robot navigates toward a goal con-

figuration while avoiding collision with obstacles. However, many motion-planning

problems are more suited for legged robots that interact with the environment in

order to achieve stable locomotion. For example, surveillance of collapsed structures

for survivors, inspection and testing of complex pipe systems, and maintenance of

hazardous structures such as nuclear reactors, all require motion in congested, un-

structured, and complex environments. In this work a second generation of planar

spider-like robot for quasi-static motion in tunnel environments has been developed.

A control method for this class of robots is introduced. The control method is based

on new results in the fields of grasp theory, and control of asymmetric 2nd-order lin-

ear systems. The control method ensures that when a spider-like mechanism bracing

against the environment at equilibrium posture the naturally occurring compliance

at the contacts stabilizes the mechanism as a single rigid body. Next an algorithm,

named PCG, for selecting sequence of foothold positions along the tunnel has been

developed. Finally, experimental results of the spider robot motion in tunnel envi-

ronment verify the theories developed in this work.

1
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Chapter 1

Introduction

In conventional motion planning a wheeled mobile robot navigates toward a goal

configuration while avoiding collision with obstacles. However, many motion planning

problems are more suited for legged robots that interact with the environment in order

to achieve stable locomotion. For example, surveillance of collapsed structures for

survivors [73], inspection and testing of complex pipe systems [55], and maintenance

of hazardous structures such as nuclear reactors [62], all require motion in congested,

unstructured, and complex environments. Our goal is to develop general purpose

multi-limb mechanisms that uses quasi-static motion to navigate in such complex

environments. In quasi-static motion, inertial effects due to moving parts of the robot

are kept small relative to the forces and torques of interaction between the robot and

the environment, and during this motion the robot maintains stable equilibrium with

the environment.

A spider-like robot consists of k articulated limbs attached to a central body, such

that each limb ends with a footpad (Figure 1.1). We assume that the robot moves

quasistatically by exerting forces on the tunnel walls, while the robot is supported

7



CHAPTER 1. INTRODUCTION 8

against gravity by frictionless contacts mounted under the mechanism. In general,

a spider-like robot must have at least three limbs in order to move quasistatically in

planar tunnel environments. At every instant the spider braces against the tunnel

walls in static equilibrium using two or three limbs. During a 2-limb posture the

spider moves its free limb to the next foothold position. During a 3-limb posture the

spider changes its internal geometry in preparation for the next limb lifting.

Spider-like and snake-like mechanisms are examples of robots that can move qua-

sistatically in congested environments. Examples of spider-like robots are the pipe-

crawling robots of Neubauer [51] and Pfeiffer et al. [60]. Other examples are the

ladder-climbing robot of Dubowsky et al. [14, 40] and the nuclear-reactor servicing

robot of Stone et al. [73]. Snake-like mechanisms are related to spider-like mecha-

nisms, since both mechanisms brace against the environment while moving free parts

toward a new position. Chrikjian and Burdick [9], Hirose and Morishima [23], and

Shan and Koren [63] developed snake-like mechanisms that move by locking some of

their links to the ground while allowing other links to move. Legged locomotion over

a terrain is related to locomotion in congested environments. Examples of works in

this area are by Boissonnat et al. [5], Hirose and Kunieda [22], Marhefka and Orin

[41], McGeer [43], and Van-den-Doel and Pai [77]. However, we focus on locomotion

in congested tunnel-like environments rather than legged locomotion over a terrain.

We make the following assumptions. First, we assume piecewise linear tunnel

walls with known geometry. The tunnel can be discontinuous and can include holes

or intersections. Second, each limb contacts the environment only through its footpad,

which can only push against the environment. Third, each footpad contacts the tunnel

walls through a frictional point contact, with a known lower bound on the coefficient

of friction.
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Figure 1.1: Two generations of a planar spider-robots. (a) 4-limb spider-robot
capable of moving in frictionless tunnel environments, and (b) 3-limb spider robot

capable of moving in frictional tunnel environments.`ll zexdpna repl lbeqnd ilbx-4 yiakr heaex (a) .yiakrd heaex ly zexe ipy.jekig mr zexdpna repl lbeqnd ilbx-3 yiakr heaex (b)-e ,jekig
This work is a continuation of previous work on planar spider-robots moving in

frictionless tunnel environments. In the previous work a first generation of the spider-

robot has been developed (Figure 1.1 (a)) [64, 59, 58]. A potential function based

and a PD control laws have been developed for this case [64, 65, 69]. A navigation

algorithm for the motion of spider-robot in frictionless tunnel has been developed as

well [19]. However, this navigation algorithm does not consider all possible foothold

positions on the tunnel walls, rather it selects only one possible foothold position for

every triplet of tunnel segments.

The design of the second generation spider shown in figure 1.1 (b) is strongly

based on our experience with the first generation. We made two major changes in

this version of the robot. First we use larger motors then in he first generation

since we wish to use this robot for motion in gravitational force field (though it is

not in the scope of this work). Therefore the motors should be powerful enough to

support the entire robot’s weight. The second change is by attaching the optical
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encoders that measure each joint angle directly to the joint axle rather on the back

of the motor. This way the controller has an accurate (8000 counts per revolution)

measure of the joints angles and it can compensate for backlash in the gears. Since the

mechanism apply forces on the tunnel walls the backlash is compensated (but dead

zone still exist). Having unknown backlash is a major problem because it produces

large amount of uncertainty in the footpads positions. Attaching the sensors directly

on the joint axle overcome this problem.

Our goal is thus to develop a control and navigation algorithms for the motion of

planar spider robot in tunnel environments. This work is divided to three independent

work units. In the first part presented in chapter 2 we consider an object grasped by k

compliant fingers. We analytically compute the conditions for it’s stability and the set

of external wrenches (i.e. forces and torques) that can be applied on object without

destructing it’s stability. This chapter on grasping is important and applicable for

the control of spider-robot in a tunnel. When the spider-robot does not change it’s

internal configuration then from the tunnel point of view it can be seen as the tunnel

walls grasp the mechanism. The second part presented in chapter 3 deals with optimal

selection of sequence of foothold positions for the spider throughout the tunnel. The

third part presented in chapter 4 introduces a decentralized PD control algorithm for

the robot and provide conditions for it’s stability based on the results from chapter 2

and based on new results on the stability of asymmetric second order linear systems.

Experimental results of chapter 5 present full motion of the spider in the tunnel. In

these experiments the foothold positions were selected by the algorithm of chapter 3

and the spider controller uses the control algorithm introduced in chapter 4.
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1.1 Summary of Contributions

Here we summarize the contributions and the significance of the results presented in

each chapter.

Contributions of chapter 2: In this chapter we introduce a class of grasps named

linearly controlled force closure grasps, where a rigid object grasped by compliant fin-

gers. The fingers obey linear force-displacement law, and contact the object through

frictional contacts. The chapter makes four contributions. First, it provides neces-

sary and sufficient conditions for force closure with compliant contacts. In particular,

the geometrical condition for active force closure is necessary but not sufficient for

force closure with compliant contacts. Second, the chapter characterizes the set of

external wrenches that can be resisted by a given grasp. This set, called the force

closure set, depends on the grasp geometry, the amount of friction at the contacts, the

kinematics and dynamics of the grasping mechanism, as well as the preloading forces.

Third, the chapter describes how to explicitly compute the force closure set for grasp

arrangements where a compliant mechanism holds a rigid object. The chapter also

presents global stability analysis, and computes the basin of attraction of the equi-

librium point. Fourth, the chapter allows to compute the force closure set even for

curved fingers where a rolling motion between the object and the fingers can occur.

Finally, The force closure set has been verified in experiments. Part of this work was

published in [67, 70].

Contributions of chapter 3: This chapter presents an algorithm, called PCG,

(short for Partitioned Cubes Gaiting) for planning the foothold positions of spider-like

robots in planar tunnels bounded by piecewise linear walls. we focus on 3-limb robots,

but the algorithm generalizes to robots with a higher number of limbs. The input to
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the PCG algorithm is a geometrical description of the tunnel, a lower bound on the

amount of friction at the contacts, as well as start and target foothold positions. Using

this knowledge, we established that the feasible 3-limb postures consist of a union of

convex sets in contact c-space. Using efficient convex programming techniques, the

algorithm approximates the possible foothold positions as a collection of cubes in

contact c-space. Each cube represents a contact independent set of feasible 3-limb

postures. A graph structure induced by the cubes has the property that its edges

represent feasible motion between neighboring sets of 3-limb postures. This motion

is realized by lifting one limb while the other two limbs brace the robot against the

tunnel walls. A shortest-path search along the graph yields a 3-2-3 gait pattern that

moves the robot from start to target using a minimum number of foothold exchanges.

In practical environments the algorithm runs in O(np6 log(np)) time, where n is the

number of tunnel walls and p is related to the cube approximation of contact c-space.

Simulation results demonstrate the PCG algorithm in a tunnel environment, and

experimental results present the spider-robot walking in a tunnel while selecting it’s

foothold positions according to the PCG algorithm. This work has been partially

published in [66].

Contributions of chapter 4: In this chapter we consider a k-limbed spider mech-

anism, such that each limb has n actuated degrees of freedom. The limbs are inter-

connected by a central base that has three unactuated degrees of freedom. A spider

robot thus has kn+3 degrees of freedom, of which only kn degrees of freedom are

actuated. If we regard the spider’s configuration space as IRkn+3, the control problem

is how to induce forces and torques on the spider in order to bring it to a desired

configuration in IRkn+3. We present a control approach which is guaranteed to work
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no matter what is the mass distribution of the spider or the geometry of the envi-

ronment. Our approach exploits the natural compliance in the contacts to stabilize

the mechanism using two three or even more footholds. Since we have frictional

contacts we first derive the contact stiffness matrix. The contact stiffness matrix is

not symmetric and we present the condition for it’s symmetric part to be positive

definite, which is a key property that we need in order to prove the stability of the

mechanism. Next we present the spider-robot dynamic equations. We introduce a

simple decentralized PD controller for the actuated joints of the robot. Then we find

the equilibrium point of the closed-loop system. Following we analyze the stability

of the system using linearization about the equilibrium. The linearized dynamics of

the system is asymmetric. Therefore we develop new criteria for for the stability of

second order asymmetric linear systems. These criteria are based on the fact that we

consider system which it’s symmetric part is stable, then a small enough asymmetric

part should not destruct the stability of the system. In this chapter we introduce a

computed lower bound on the stiffens of the PD controller the symmetric system is

stable. Additionally an analytic criterion for the maximum allowed magnitude of the

asymmetry of the system has been developed.

Contributions of chapter 5: This chapter presents experiments conducted with

our 3-limbed spider robot. In these experiments the foothold positions were selected

using the PCG algorithm and the entire mechanism was controlled with the control

algorithm developed. The significance of these experiments is to show an application

of the theories presents in this work. Moreover, it shows that it is possible to use

these navigation and control theories in order to preform motion of real walking spider

robot in tunnel environment.



Chapter 2

Force Closure Set

2.1 Introduction

The notion of force closure was originally formulated for multi-fingered robot hands

[32, 61]. This notion should be called active force closure, since it requires that the

fingers be able to actively balance any disturbing wrench (i.e. force and torque) acting

on the grasped object. Active force closure requires sophisticated contact-force sen-

sors and agile contact-force controllers whose action must be precisely coordinated.

However, in applications such as fixturing the grasping elements are simple devices

that are preloaded against an object with initial grasping forces [46]. Physical pro-

cesses at the contacts, such as friction and compliance, provide passive stabilization

of the object against external disturbances. Another important application concerns

multi-fingered mechanisms that establish an initial grasp of an object. Using decou-

pled position-based controllers for the individual fingers, the effective compliance of

the grasping mechanism together with friction at the contacts provide stabilization

of the grasped object (Figure 2.1(a)). A related application is a multi-limbed robot

14
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robot
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Figure 2.1: (a)A multi-fingered hand grasping an object. (b) A multi-limbed robot
bracing against tunnel walls.bpk fg`p miitb daexn heaex (b) .hwiiae` zfge` zerav` zaexn i (a) :2.1 xei`.dxdpn zept

bracing against a tunnel-like environment in static equilibrium (Figure 2.1(b)). Here

the tunnel walls play the role of the grasped object, and the robot stabilizes itself

by pushing against the walls using decentralized position-based controllers. In all of

these examples stabilization is achieved without active control or coordination of the

contact forces.

Consider a grasp arrangement where each finger or contacting body obeys its

own force-displacement law. In particular, some fingers may apply a fixed force

on the object. The grasp is force closure if for suitably selected initial grasping

forces, the fingers or bodies contacting the object balance any external wrench in a

neighborhood about the origin. The literature on active force closure is only partially

relevant for studying force closure with compliant contacts. Examples of works on

friction-based active force closure are [42, 53, 76]. Specifically, Jen Shoham and

Longman [30] developed a force control law for the fingers to stabilize force-closure

grasps. Examples of works that additionally consider the structure of the grasping
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mechanism are [3, 20, 27, 39, 47].

This chapter makes four contributions. First, it provides necessary and sufficient

conditions for force closure with compliant contacts. In particular, the geometrical

condition for active force closure is necessary but not sufficient for force closure with

compliant contacts. Second, the chapter characterizes the set of external wrenches

that can be resisted by a given grasp. This set, called the force closure set, depends

on the grasp geometry, the amount of friction at the contacts, the kinematics and

dynamics of the grasping mechanism, as well as the preload forces. Third, the chapter

describes how to explicitly compute the force closure set for grasp arrangements where

a compliant mechanism holds a rigid object. Such grasp arrangements arise in multi-

fingered hands and multi-limbed robots that interact with rigid objects using simple

position-based controllers [13]. The chapter also present global stability analysis, and

show analytical criterion for the global stability of the equilibrium point. Fourth,

the chapter allow to compute the force closure set even for curved fingers where a

rolling motion between the object and the fingers can occur. Finally, we compare the

the passive closure set for 2-finger linearly compliant planar grasps with experiments.

The experiments verify the force closure set and closely match the computed set.

2.2 Geometric Definition of Force Closure Grasps

In this section we review the notion of active force closure. Then we describe necessary

and sufficient conditions for the existence of force closure with compliant contacts.
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2.2.1 Frictional Grasps Terminology

We study 2D or 3D grasps, where a rigid object B is held in frictional point contact

by k rigid bodies A1,...,Ak. The bodies A1,...,Ak represent fixturing elements or the

fingertips of a multi-fingered hand. Although we use the language of grasping, these

bodies can also represent the footpads of a multi-limbed robot. The contact point

between Ai and B is denoted ri when expressed in B’s body frame, and xi when

expressed in a fixed world frame (Figure 2.2). The two representations of the ith

contact point are related by the rigid-body transformation: xi = Rri + d, where d

and R are the position and orientation of B with respect to a fixed world frame.

The orientation matrix R is parametrized by the exponential map, R(θ) = exp(θ),

where θ ∈ IR in 2D and θ ∈ IR3 in 3D. The object configuration is parametrized by

q = (d, θ)∈ IRm, where m = 3 in 2D and m = 6 in 3D. The wrench generated by a

force Fi acting on B at xi is given by the familiar formula:

wi =






Fi

ρi × Fi




 where ρi = R(θ)ri.

The collection of wrenches that act on B at a particular configuration q is called the

wrench space at q. This space can be identified with IRm.

We assume the standard Coulomb friction model: |F t
i | ≤ µ|F n

i |, where F t
i and

F n
i are the tangent and inward normal components of Fi, and µ is the coefficient of

Coulomb friction1. The force Fi can only push on the object, and this constraint is

described by the inequality F n
i ≥ 0. The friction cone at the ith contact, denoted

FCi, is the collection of all frictional forces that can be applied to B at xi, and it is

given by

1In 3D, under a soft-contact model there is also frictional torque about the contact normal.
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FCi =

{
Fi : F n

i ≥ 0 and −µF n
i ≤ F t

i ≤ µF n
i

}
.

The set of wrenches generated by all forces in FCi forms a cone of feasible wrenches.

The ith feasible wrench cone, denoted W i, is given by

W i = {wi : wi =






Fi

ρi × Fi




 , ∀Fi ∈ FCi}.

When B is held by k fingers, we say that B is in equilibrium if in the absence of any

external wrench there exist feasible wrenches wi ∈ W i for i = 1, . . . , k such that
∑k

i=1 wi = ~0.

2.2.2 Review of Active Force Closure

Active force closure is the standard notion of force closure [53, 76]. The collection

of wrenches that can be generated by k frictional contacts is given by the set sum:

W1 + · · · + Wk = {w1 + · · · + wk : wi ∈ W i for i = 1, ..., k}. This notation is used
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in the following standard definition.

Definition 1 Let an object B be held in equilibrium grasp by k frictional point con-

tacts. Let W i be the feasible wrench cone of the ith contact. Then the grasp is active

force closure if the sum of the wrench cones W1 + · · ·+Wk spans the entire wrench

space IRm, where m=3 in 2D and m=6 in 3D.

The active aspect of the grasp lies in the assumption that the grasping bodies can

generate any contact force within the respective friction cones. The following theorem

gives a simple rule for determining force closure [53, 80]. By definition, a grasp is

non-marginal when the contact forces are non-zero and lie in the interior of their

respective friction cones.

Theorem 1 (Active Force closure) Let a 2D or 3D object B be grasped by k fric-

tional contacts, such that the contacts do not lie along the same spatial line when the

grasp is 3D. Then the grasp is active force closure iff it is possible to establish a

non-marginal equilibrium grasp of B.

2.2.3 Force Closure with Compliant Contacts

Force closure is based on the assumption that the contact forces can be freely modified

within the respective friction cones. However, when the contact points are compliant

each contact force obeys some force-displacement relationship subject to friction con-

straints at the contacts. To formalize this notion, we define three types of contacts

that encapsulate three common types of force-displacement laws and other modelling

idealizations.

Definition 1 •A rigid-body contact is a stationary rigid-body that passively inter-

acts with B through a frictional contact. •A fixed-force contact is a frictional point
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contact that applies a specific force at the contact point. •A compliant contact is

a frictional contact that applies force according to a force-displacement relationship

of the contact point.

Let us give examples of these types of contacts. Rigid-body contacts are commonly

used in fixturing applications to restrict the motions of a workpiece. Fixed-force

contacts are generated by mechanisms such as pressure-controlled hydraulic fixels and

force-controlled robot grippers. Compliant contacts are generated by finger and limb

mechanisms whose joints are controlled by position-servoed controllers [13, 61], or by

spring loaded fixtures. A more complex type of contact occurs when several contacts

are coupled together by the grasping mechanism. Such coupled contacts often occur

in power or enveloping grasps [80]. In order to avoid such coupled contacts, we assume

that each contact is generated by its own independent mechanism.

We now give necessary and sufficient conditions for force closure of grasps having

frictional compliant or fixed-force contacts, as well as frictionless rigid-body contacts.

The conditions are based on the following notion of potential energy function. The

wrench generated by a compliant contact can be written as wi = −∇Ui(q), where

Ui(q) is the elastic potential energy function induced on B by the ith compliant con-

tact2. Similarly, the wrench generated by a fixed-force contact is induced by a po-

tential function which is linear in xi, where xi = R(θ)ri + d. The wrench generated

by a frictionless passive rigid-body contact also has the form wi = −∇Ui(q), where

the elastic energy function is given by the Hertz formula from elasticity theory [31].

(This theory treats the contacting bodies as quasi-rigid.) The total potential energy

of B is the sum U(q) =
∑k

i=1 Ui(q).

2Ui(q) is identically zero when the ith contact is broken.
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Proposition 2.2.1 Let a 2D or 3D object B be held in equilibrium grasp by k in-

dependent compliant frictional contacts, fixed-force frictional contacts, or frictionless

rigid-body contacts. Let q0 be B’s equilibrium configuration, and let U(q) be the po-

tential energy induced on B by the contacts. Then the following two conditions are

sufficient for force closure:

1. The initial equilibrium grasp is non-marginal. (In

3D the contacts must not lie along a common line.)

2. The equilibrium q0 is a non-degenerate local min-

imum of the potential energy function U(q).

Moreover, in all generic grasps conditions (1) and (2) are also necessary for passive

force closure.

A proof of the proposition is sketched in appendix A.1. The first condition of the

proposition states that the grasp must satisfy the condition for active force closure.

I.e., the grasp must be active force closure if the contacts are made fully active.

The second condition is the standard stability condition for compliant grasps [27,

39]. The stability condition ensures that when an external wrench acts on B, the

object would automatically settle at a new equilibrium in the vicinity of q0 where

the contact forces balance the external wrench. Note that two issues play a role in

this convergence. First, the equilibrium induced by the external wrench must be

locally stable. Second, the original unperturbed equilibrium must lie in the basin of

attraction of the new equilibrium. Finally, the proposition generalizes to any type of

contact whose dynamics varies smoothly with the external wrench acting on B.
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2.3 The Force Closure Set of Compliant Grasps

Given a force closure grasp, the force closure set is the collection of external wrenches

which are automatically balanced by the contacts. In this section we characterize the

force closure set of force closure grasps with compliant contacts.

2.3.1 Characterization of The Force Closure Set

Let us depict a fundamental difficulty in computing the force closure set. The

Coulomb friction model allows generation of tangential forces at the contacts up

to a limit determined by µ times the normal component of the contact forces. In

compliant grasps the normal component of the contact forces is determined by the

initial preload of the grasp, and can change only in response to an external wrench

wext acting on B. In other words, the normal loadings at the contacts cannot “sponta-

neously” change as they do in fully active contacts. Thus we write the normal loading

at the ith contact as F n
i (wext). The friction cone at the ith contact is determined by

the inequality |F t
i | ≤ µF n

i (wext), and this friction cone determines a wext-dependant

feasible wrench cone denoted W i(wext). An external wrench can be possibly balanced

by the contacts only when the recursive relation wext ∈ W1(wext) + · · · + Wk(wext)

holds true. The solution of this recursive relation is a key step in computing the

closure stability set.

The compliant grasps are defined as grasps where a rigid object B is held by

compliant finger mechanisms. This class of grasps also includes multi-limbed robots

bracing against a rigid environment. The rigidity of B is an excellent approximation—

although all objects exhibit some natural compliance at the contacts, this compliance
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is negligible relative to the compliance induced by the joints of the grasping mecha-

nism. For example, consider our experimental multi-limbed robot depicted in Figure

2.1(b) [71]. Each limb of this robot has four joints actuated by Maxon motors that

generate a stiffness of 2 N/mm at the footpads. In contrast, the stiffness of objects

made of Aluminum is 4.5 · 103 N/mm.

We make the following simplifying assumptions. First, each finger mechanism is

assumed to interact with B through a pointed finger-tip. This assumption implies

that when a finger-tip locally rolls on the surface of B, the location of the contact

point remains fixed in B’s body frame. Second, we assume that each finger mechanism

is fully actuated, so that it can generate any force in IRn, where n=2 in 2D and n=3

in 3D. Our third assumption is that each finger generates a force-displacement law of

the form:

Fi = F 0
i + f i(xi), (2.1)

where F 0
i and x0

i are the contact forces and contact points at the initial equilibrium

grasp, and f i is a smooth function such that f i(xi) = 0 when xi = x0
i .

Our first step in the characterization of the force closure set is to express the

contact forces as a function of the object configuration q = (d, θ). The ith contact

point is given by xi = R(θ)ri + d, where ri is the description of xi in B’s body

coordinates. Let r0
i denote the coordinates of ri at the initial grasp. Let FQ denote

the collection of B’s configurations where the contact forces lie in their respective

friction cones. (The set FQ is considered below.) Then the pointed-finger assumption

together with the rigidity of B guarantee that the points ri remain fixed in B’s body

frame, for all configurations q ∈ FQ. Thus we may write xi = R(θ)r0
i + d for

i = 1, ..., k. Substituting for the xi’s in (2.1) gives the desired expression for the
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contact forces:

Fi(d, θ) = F 0
i + f i(xi(d, θ)) i = 1, ..., k. (2.2)

The approach presented here for computing the contact forces was originally proposed

by Bicchi [2]. However, Bicchi assumes only a small change of ∆q in the object’s con-

figuration, with a linear force-displacement law. Our formulation generalizes Bicchi’s

approach to any object configuration and any force-displacement law.

Next we write an expression for the set of feasible configurations FQ. This set

is given by the intersection FQ = ∩k
i=1FQi, where FQi denotes the collection of

B’s configurations where the ith contact force Fi(q) lies in the friction cone FCi.

Let ni denote the inward normal to the boundary of B at ri, written in B’s body

coordinates. And let Ni be the inward unit normal to the boundary of B at xi,

expressed in world coordinates. Then Ni = R(θ)ni, and the normal component of

the ith contact force is: F n
i = Fi ·Ni = Fi · (R(θ)ni). The tangential component of Fi

is: F t
i = ‖[I − NiN

T
i ]Fi‖ = ‖[I − nin

T
i ]R(θ)T Fi‖. Substituting for F n

i and F t
i in the

inequalities that define FCi gives:

FQi = {q = (d, θ) : Fi · (R(θ)ni) ≥ 0 and

‖[I − nin
T
i ]R(θ)T Fi‖ ≤ µFi · (R(θ)ni)

}
,

where µ is the coefficient of friction. Substituting for the forces Fi according to (2.2)

gives:

FQi = {q = (d, θ) : Fi(d, θ) · (R(θ)ni) ≥ 0 and

‖[I−nin
T
i ]R(θ)T Fi(d, θ)‖≤µFi(d, θ)·(R(θ)ni)

}
.

The desired set FQ is the intersection of the sets FQi for i = 1, ..., k. Our third step

is to identify the configurations that guarantee stable convergence of B to the equilib-

rium induced by an external wrench. This condition is captured by the requirement
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that the second-derivative matrix of the grasp potential energy function, D2U(q),

be positive definite. The set of configurations that satisfy this stability condition,

denoted P , is given by

P =
{
q = (d, θ) : λmin(D2U(q)) > 0

}
, (2.3)

where λmin denotes the minimal eigenvalue of a matrix. Condition (2.3) guarantees

local stability of the equilibrium induced by wext at q. However, it does not guarantee

that B’s original equilibrium at q0 lies in the basin of attraction of the new equilibrium

at q. The condition for global convergence from q0 to q is presented in the next section.

Finally, the net wrench generated on B by the contact forces is w =
∑k

i=1(Fi,ρi×

Fi). Since Fi and ρi are functions of q, w can be interpreted as a mapping from

configuration space to wrench space. The force closure set, denoted W , is the image

in wrench-space of the configurations q in FQ ∩ P under the mapping w(q):

W=







w=
k∑

i=1






Fi(q)

ρi(q)×Fi(q)




 : q ∈ FQ ∩ P







.

Any wrench wext in W would be automatically balanced by the contacts of the grasp.

Theorem 2 For any wext ∈ W there exist a locally stable equilibrium point q∗

Proof: The equilibrium equation is

wext =
k∑

i=1






Fi(q
∗)

ρi(q
∗)×Fi(q

∗)






and since wext is function of q∗ thus there exist a configuration q∗ that is an equi-

librium point. Moreover, This equilibrium point q∗ is in FQ
⋂P . It means that the

forces can be applied by the frictional contacts, and the equilibrium is locally stable.

¤
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2.3.2 The Force Closure Set Under Linear Compliance Law

Next we compute the force closure set of compliant grasps whose contacts specifically

obey a linear compliance law of the form:

Fi = F 0
i − Ki(xi − x0

i ), (2.4)

where F 0
i and x0

i are the contact forces and contact points at the initial equilibrium

grasp, and Ki is an n × n positive semi-definite matrix (n = 2 in 2D and n = 3 in

3D). First we substitute the linear law (2.4) into (2.2):

Fi(d, θ) = F 0
i − Ki((R(θ)r0

i + d) − x0
i ) i = 1, ..., k.

Next we substitute for the contact forces Fi(d, θ) in the inequalities that define the

sets FQi. This substitution yields a closed-form expression for the set of feasible

configurations, FQ = ∩k
i=1FQi. Finally, the inequality that defines the locally stable

configurations requires a formula for D2U(q). This formula is provided in the following

lemma. Given a vector u ∈ IR3, [u×] denotes the 3× 3 skew-symmetric matrix

satisfying [u×]v = u × v for all v ∈ IR3.

Lemma 2.3.1 ([53, 68]) Let a rigid object B be grasped by k compliant contacts

each satisfying the linear compliance law (2.4). Then the formula for D2U(q) in the

3D case is:

D2U(q) =

∑k
i=1






Ki Ki[ρi×]

[ρi×]T Ki [ρi×]TKi [ρi×]+([Fi×][ρi×])s






(2.5)

where for a given matrix A, As = 1
2
(A+AT ). The formula for D2U(q) in the 2D case

is:
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D2U(q) =
k∑

i=1






Ki −KiJρi

−(Jρi)
TKi (Jρi)

T KiJρi+Fi ·ρi




 , (2.6)

where J =




0 1

−1 0



.

The full derivation of D2U(q) appears in Appendix A.1

2.4 Global Stability Analysis

In this section we will develop analytic criteria to check wether the origin is in the

basin of attraction of a given equilibrium point. This will ensure that an object

located initially in the origin of the world reference frame will converge to a given

equilibrium point while an external wrench applied on the object.

2.4.1 The Grasped Object Equilibria

First we would like to find all the possible equilibrium point for a given constant

external wrench wext. Note that wext = (wf , wt)
T , where wf and wt are the force and

the torque parts of wext respectively. In equilibrium
∑k

i=1 Fi + wf = 0, and if we

substitute Fi from (2.4) we get

k∑

i=1

{
F 0

i − Ki(ρi(θ) + d − x0
i )

}
+ wf = 0

Next we isolate the position vector d as function of ρ(θ) and denote P =
∑k

i=1 Ki.

Thus we have

d = P−1

k∑

i=1

{F 0
i − Ki(ρi(θ) − x0

i )} + wf . (2.7)
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The second equilibrium equation is that the sum of the external torque and the

torques that all the forces apply on the object is equal to zero. Explicitly that means

that
∑k

i=1{ρi × Fi} + wt = 0, and substitution of Fi yields

k∑

i=1

{
ρi ×

[
F 0

i − Ki(ρi(θ) + d − x0
i )

]}
+ wt = 0.

Note that this is a scalar equation. The term ρi × Fi can be written as ρT
i JFi.

Substitution of the linear compliance law for Fi and d from equation (2.7) yields to

k∑

i=1

{ρT
i J [F 0

i − Ki(ρi − x0
i + P−1

k∑

j=1

{F 0
j − Kj(ρj − x0

j)} + wf )]} + wt = 0.

To ease the writing we denote

Aij = JKiP
−1Kj,

Bi = JKi,

and

Ci = J(F 0
i + Ki(x

0
i − P−1

k∑

j=1

{F 0
j + Kjx

0
j}),

Where i = 1..k and j = 1..k. Furthermore, Aij, Bi and Ci are all constants that do

not depend on the object configuration and not on the external wrench. We rearrange

the above equation and have

k∑

i=1

[
k∑

j=1

(
ρi(θ)

T Aijρj(θ)
)
− ρi(θ)

T Biρi(θ) + ρi(θ)
T Ci − ρi(θ)

T JPwf

]
+ wt = 0. (2.8)

Based on this result the following lemma characterize the possible number of equilib-

rium points a grasped object can have.

Lemma 2.4.1 (Maximum Number of Equilibrium Points) Let a rigid object

B be grasped by k compliant contacts each satisfying the linear compliance law (2.4).

Then for a given external wrench and preloading forces,B has 0, 2 or 4 equilibrium

points.
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Proof: The only unknown variable in the scalar equation (2.8) is θ. The solution

of this equation give us the θ values of the equilibrium points. These values can be

substitute into (2.7) to calculate the complete configuration of the equilibrium points.

ρi(θ) in equation (2.8) is






cos(θ) −sin(θ)

sin(θ) cos(θ)




 r0

i , where r0
i is a constant vector of the

ith initial contact point. So equation (2.8) contains terms of sin2(θ),cos2(θ) and

sin(θ) · cos(θ). There are no higher orders of the power of sin(θ) and cos(θ). Next we

use the famous substitution of z = tan(1
2
θ), then sin(θ) = 2z

1+z2 and cos(θ) = 1−z2

1+z2 . If

we substitute these terms into (2.8) and solve for z, we get a quartic equation (i.e.

fourth order polynomial equation) in z [16]. A fourth order polynomial has 0,2 or 4

real roots. Two times the arc tan of these roots are the θ values of the equilibrium

points and together with d(θ) from (2.7) they are the critical points of U(q). ¤

2.4.2 Stability Characterization

we examine the shape of U(q). The following lemma states the specific shape of the

level sets of U(q) in every θ layer.

Lemma 2.4.2 (Shape of θ Layers of Level Sets of U(q)) The shape of the set

{q = (d, θ) : U(d, θ = Const.) = Const.} is ellipse, point or ∅.

Proof: Let us write U(q) explicitly as

U(q) =
k∑

i=1

[
1

2
(ρi + d − x0

i )
T Ki(ρi + d − x0

i ) − (ρi + d − x0
i )

T F 0
i ] − qT wext. (2.9)

It is possible to rewrite U(q) in the following form

U(q) =
1

2
dT Pd + V T

θ d + Cθ,
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where P =
∑k

i=1 Ki, V T
θ =

∑k
i=1(ρ

T
i Ki−x0T

i Ki−F 0T

i )−wT
f , and Cθ =

∑k
i=1(ρ

T
i Kiρi−

ρT
i Kix

0
i + 1

2
x0T

i Kix
0
i −ρT

i F 0
i +x0T

i F 0
i )−wt ·θ. The completion of U(q) to full quadratic

form yields

U(q) =
1

2
(d + P−1Vθ)

T P (d + P−1Vθ) −
1

2
V T

θ P−1Vθ + Cθ, (2.10)

and for U(q) = CU = Const we get

1

2
(d + P−1Vθ)

T P (d + P−1Vθ) = CU − Cθ +
1

2
V T

θ P−1Vθ. (2.11)

For a given θ = Const layer the right hand side of equation (2.11) is a constant scalar

number and the left hand side is a quadratic form with the matrix P positive definite.

That is equation (2.11) is simply an ellipse equation that can be degenerated to a

point or to an empty set. ¤

Following are definition lemma and theorem that help us finding the topology of

the sub level sets of U(q).

Definition 2 (Compact Function) Let a function f(x) : R
n 7→ R be a continuous

differentiable function, and let XC =
{
x : f(x) ≤ C

}
be a sub level set of f(x), where

C ∈ R. Then f(x) is a compact function if there exist a constant C0 such that for

any C < C0 XC = ∅, and for any C > C0 XC is compact.

Lemma 2.4.3 (Compact Function U(q)) The function U(q) as in (2.9) is a com-

pact function. Meaning that for every C ∈ R the sub level set of U(q) QC =
{
q :

U(q) ≤ C
}

is a compact set or ∅ .

Proof: To show that QC is compact we have to show that QC is closed and bounded.

U(q) is bounded from below because of the following reasons. The first term of (2.10)

is positive semi definite since it is a quadratic form with the matrix P positive definite.
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The second and third terms in (2.10) depends only on θ which is a bounded cyclic

coordinate. These terms are continuous functions of θ ∈ [0, 2π] and therefore accept

a minimal and maximal values −M1 ≤ −1
2
V T

θ P−1Vθ + Cθ ≤ M3, where M1 and M3

are positive real constant numbers. Thus all the components of U(q) sums up to a

function that is bounded from below. For C smaller from this lower bound QC = ∅,

otherwise QC 6= ∅ and for that case we need to prove that QC is compact. Next we

Show that QC is bounded. The first term in (2.10) is a quadratic form that takes the

form uT Pu with P ∈ R
2×2 positive definite matrix. For such quadratic form we can

have

λmin(P )‖u‖2 ≤ uT Pu ≤ λmax(P )‖u‖2,

where u is an arbitrary vector and λmin(P ),λmax(P ) are the minimal and maximal

eigenvalues of P . The reason for this is as follows. We can define an orthonormal

matrix Λ, where the columns of Λ are the normalized eigenvectors of P . The matrix

ΛT PΛ is the diagonal matrix diag(λ1(P ), λ1(P )), and vT ΛT PΛv = λ1(P )v2
1+λ2(P )v2

2.

Following λmin(P )‖v‖2 ≤ vT ΛT PΛv ≤ λmax(P )‖v‖2. Define u = Λv and we get

λmin(P )‖v‖2 ≤ uT Pu ≤ λmax(P )‖v‖2. But ‖u‖2 = uT u = vT ΛT Λv and since Λ is

orthogonal ΛT Λ = I and ‖u‖2 = vT v = ‖v‖2. Substituting back this result yield

λmin(P )‖u‖2 ≤ uT Pu ≤ λmax(P )‖u‖2. Using this result we can substitute these

bounds to (2.10) and get

U(q) ≥ 1

2
λmin(P )‖(d + P−1Vθ)‖2 − M1.

The triangle inequality state that ‖w1‖ − ‖w2‖ ≤ ‖w1 + w2‖ ≤ ‖w1‖ + ‖w2‖. Using

the triangle inequality we get

U(q) ≥ 1

2
λmin(P )(‖d‖ − ‖P−1Vθ‖)2 − M1.
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Since ‖P−1Vθ‖ is a continuous function over the interval θ ∈ [0, 2π] it accept a min-

imum and maximum values M2 ≤ ‖P−1Vθ‖ ≤ M4. Substituting this result to the

previous equation yields

U(q) ≥ 1

2
λmin(P )(‖d‖ − M2)

2 − M1. (2.12)

Consider the sub level set where U(q) ≤ C then

1

2
λmin(P )(‖d‖ − M2)

2 − M1 ≤ U(q) ≤ C

So we get (‖d‖ − M2)
2 ≤ 2(C+M1)

λmin(P )
since λmin(P ) is positive. It follows that

‖d‖ ≤
√

2(C + M1)

λmin(P )
+ M2 ≡ R,

where R is the radius of the circle containing all the (x, y) points for which U(q) ≤ C.

We conclude that

QC ⊂ {(x, y, θ) : θ ∈ [0, 2π], (x, y) ∈ B(0, R)},

where B(0, R) is the closed 2D ball with radius R and center in (0, 0). This mean

that QC is bounded within a close cylinder. Finally, there exist a theorem that states

that for a continuous function f : R
n 7−→ R the source set of a closed set is close.

From (2.12) it is clear that U(q) is bounded from below by 1
2
λmin(P )M2

2 − M1 and

C bounds it from above. Since the image of U(q) is a close set the source set of q is

close. We proved that QC is a bounded close set and therefore compact. ¤

Theorem 3 (Existence of connected sub level set of compact function) Let

a function f(x) : R
n 7→ R be a compact function, and let XC =

{
x : f(x) ≤ C

}
be

a sub level set of f(x), Then there exist C = C∗ such that for any C ≥ C∗ XC is a

connected compact set.
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Proof: By definition (2) for any C > C∗ > C0 XC is compact. Denote all the

connected subsets of XC Xi for i = 1, 2, ..., N . Xi is a connected compact set. By

it’s own definition Xi is connected. Xi is bounded as being a subset of a bounded

set. Xi is a closed set because of the following reasons. There is no continuous path

that belong to XC and connect any xi ∈ Xi to any xj ∈ Xj otherwise Xi and Xj

would be unite to one subset of XC . Thus Xj cannot close an open set Xi and since

XC =
⋃N

i=1 Xi Xi must be a closed set. Denote xm
i ∈ Xi as

xm
i = arg min

x∈Xi

f(x).

Define a segment Γij(t) : [0, 1] 7→ R
n such that Γij(0) = xm

i and Γij(1) = xm
j . In

other words Γij is a continuous path connecting xm
i to xm

j and as such is a compact

set of points. In a compact set continuous function accept a minimum and maximum

values. Therefore the maximal value of f(x) along the path Γij(t) is

Cij = max
t∈[0,1]

f
(
Γij(t)

)
.

If C ≥ Cij then the entire path Γij is within XC and there is a connection between

Xi and Xj. Finally, if

C∗ = max
i,j

Cij

then for C ≥ C∗ there is a path connecting any Xi to any Xj and XC is a connected

compact set. ¤

According to lemma (2.4.3) and to theorem (3) there exists C∗ for which the set

QC = {q : U(q) ≤ C∗} is a connected compact set.

Lemma 2.4.4 (Existence of cylinder within a sub level set of U(q)) Let U(q)

be as in (2.9), and let QL = {q : U(q) ≤ CL} such that QL is a connected compact set
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that contains all the critical points of U(q). Then for large enough CL, R′(CL) > 0,

and there exist d ∈ R
2 such that {q = (d, θ) : θ ∈ [0, 2π] and ‖d‖2 ≤ R′} ⊂ QL.

Proof: We follow the first steps of lemma 2.4.3 to get

U(q) ≤ 1

2
λmax(P )(‖d + P−1Vθ‖)2 + M3.

All the (d, θ) points for which 1
2
λmax(P )(‖d + P−1Vθ‖)2 + M3 ≤ CL are within QL.

From the triangle inequality ‖w1‖ − ‖w2‖ ≤ ‖w1 + w2‖ ≤ ‖w1‖ + ‖w2‖ we have

1

2
λmax(P )(‖d‖ + ‖P−1Vθ‖)2 + M3 ≤ CL.

Substituting the bound for ‖P−1Vθ‖ ≤ M4 yields

1

2
λmax(P )(‖d‖ + M4)

2 + M3 ≤ CL.

Isolating ‖d‖ yields

‖d‖ ≤
√

2(CL − M3)

λmax(P )
− M4 ≡ R′

For CL large enough R′(CL) > 0 and the cylinder of radius R′ is within the CL sub

level set of U(q). Additionally, if q1, ..., q4 are the critical points of U(q) then set

CL > max{U(q1), ..., U(q4)} to contain q1, ..., q4 within QL. ¤

Proposition 2.4.5 (Equilibria classification) Let U(q) be as in (2.9), and let

QL = {q : U(q) ≤ CL} as in lemma 2.4.4. Then U(q) has 2 or 4 critical points

that can be classified as follows:

In case U(q) has 2 equilibria:

• U(q) has 1 minimum and 1 saddle.

In case U(q) has 4 equilibria:
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• U(q) has 1 minimum and 3 unstable points.

• U(q) has 2 minima and 2 saddle points.

Proof: To prove this proposition we need to use the Morse theory. We assume U(q)

is Morse function meaning all it’s critical points are not degenerate D2U(q) 6= 0 in

all the critical points. Thus all critical points of U(q) are discrete and separated from

each other. Morse theory can be applied on a compact differentiable manifold. This

is the reason we proved QL is a compact connected set (lemma 2.4.3 and theorem 3).

Now we review the relevant parts of Morse theory. Morse theorem (part A) [44,

page 4]: as C varies within the open interval between two adjacent critical values the

topological type of QC remain constant.

The definition of Morse data for a function U(q) at a critical point qi in QL is a

pair of topological spaces (A,B) where B ⊂ A with the property that as C crosses

the critical value U(qi), the changes in QC topology can be described as gluing in A

along B.

Morse theorem (part B) [44, page 4]: Let U(q) be a morse function on a smooth

manifold QL morse data measuring the topological change in QC as C crosses the

critical value U(qi) of the critical point qi is given by the ”handle” (Dλ×Dn−λ, (∂Dλ)×

Dn−λ), where λ is the number of negative eigenvalues of the Hessian matrix of U(qi),

and n is the dimension of QL.

Here Di denotes the closed i-dimensional disk and ∂i denotes its boundary i − 1

sphere. (Note that 0-disk is a point and its boundary is empty.

The Morse data of U(q) is as follows:
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Critical point Morse data (A,B) and its graphical description

minimum (D0 × D3, ∂D0 × D3) = ,

saddle with 1 negative eigenvalue (D1 × D2, ∂D1 × D2) = ,

saddle with 2 negative eigenvalue (D2 × D1, ∂D2 × D1) = ,

maximum (D3 × D0, ∂D3 × D0) = ,

QL is a connected compact set without any pinching since it contains a cylinder.

We wish to find a combination of critical points that forms a set with same topological

characteristics as those of QL. Note that our space is (x, y, θ), where x ∈ R and y ∈ R

are linear coordinations, while θ is a cyclic coordination. One can imagine this space

as a surface of a cylinder with one extra linear coordinate.

QL must contain a minimum point of U(q) since a continuous function accepts

a minimum and maximum values in a compact set. Moreover, the minimum point

is inside QL while the maximum is on its boundary. Note that U(q) = CL on the

boundary of QL. Thus if the minimum point is on the boundary it means that

U(q) = const. and this is impossible.

Generally, if we have only one minimum point of U(q) then except of a very thin

set flows, all the other flows will converge to the minimum of u(q). Note that every

small perturbation will cause the system to leave this set and to converge to the

minimum.

In case U(q) has 2 critical points there exist only one minimum since If we have 2

minima points we end with 2 disconnected 3D balls and this is not equivalent to the

topology of QL.
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In case U(q) has 4 critical points, QL can not contain 3 minima points. The reason

for this is that the topology of 3 minima points is 3 disconnected balls, but we have a

connected set, Thus we need a ”handle” with 3 gluing surfaces which we do not have.

We conclude that U(q) can have 1 or 2 minima points. In case U(q) have 4

critical points with two minima points we still need to characterize the other two

critical points.According to the mountain pass theorem [48, 54] and the saddle point

theorem between two minima points there exist a saddle point. So now we have two

minima points and a saddle. Since θ is acyclic coordinate and since QL contain a

cylinder in the full range of θ, there exist another saddle between the two minima in

the other way around θ. ¤

In case there are two minima points in QL and two saddle points. Denote

the two minima points as q∗1, q∗2 and the two saddle points as qs
1, qs

2. We can order

the points in a way that θs
1 < θ∗1 < θs

2 < θ∗2. The following proposition states which

points are within the basin of attraction of q∗1.

Proposition 2.4.6 (Basin of attraction) Let U(q) be as in (2.9), and let QL =

{q : U(q) ≤ CL} as in lemma 2.4.4. For the case U(q) has 2 minima points and 2

saddle points. A point q0 is within the basin of attraction of q∗1 if:

• U(q0) < min[U(qs
1), U(qs

2)]

• θs
1 < θ0 < θs

2

Proof: The first item states that the system initial energy must be lower then the

lowest saddle. The sub level set is a positive invariant set and the flow can not move

the state between disjoint subsets of the sub level set. This assures that the system

will stay within the basin of attraction of q∗1 and will not have enough ”energy” to
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pass to the basin of attraction of q∗2. The second item states that the plane θ = θsaddle

separates between the two basins of attraction of the two minima points. To prove

that we suppose θ = θsaddle is not a separating plane and will see that this lead to a

contradiction to lemma 2.4.2. The saddle point qs is both on the θ = θsaddle plane

and on U(q) = U(qs) manifold. Thus according to lemma 2.4.2 the intersection of

the manifold and the plane is the isolated point qs or an ellipse that contains qs on

its boundary. But if the θ = θsaddle is not the separating plane it necessarily intersect

both the two basins of attraction. Following it is impossible that the intersection

between the plane θ = θsaddle and the manifold U(q) = U(qs) to be a unique ellipse

rather it must be two tangent sets, and the tangent point suppose to be qs. We

get a contradiction to lemma 2.4.2 and we conclude that the plane θ = θsaddle is a

separating plane and it’s intersection point with the manifold U(q) = U(qs) is the

unique point qs. ¤

2.4.3 Convergence Point Algorithm

Concluding the analysis of the equilibria points we have the following algorithm that

uniquely define to which point the system converges from a given initial configuration

point q0 = (d0, θ0).

Basin of Attraction Algorithm:

Input: Initial configuration q0, and external wrench wext applied on B.

Output: Stable equilibrium point which B converges to q∗(wext, q0).

Algorithm:

1. Solve (2.8) to find the θ values of the equilibrium points.

2. Normalize all the θi such that 0 ≤ θi < 2π.
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3. Substitute all the θi into (2.7) to find the entire qi configurations of the equilib-

rium points.

4. Compute D2U(qi) for all the qi.

5. If D2U(qi) > 0 for only one i = i∗ then assign q∗ = qi∗ and exit.

6. Identify θ∗1 and θ∗2 with the corresponding q∗1 and q∗2 for which D2U(q∗i ) > 0.

7. Identify θs
1 and θs

2 with the corresponding qs
1 and qs

2 for which D2U(qs
i ) < 0.

8. If U(q0) ≥ min[U(qs
1), U(qs

2)] then exit ”the algorithm can not define uniquely

to which equilibrium point the system converges”.

9. Order the critical points such that θs
1 < θs

2 and θ∗1 < θ∗2.

10. If θs
1 < θ0 < θs

2 then if θs
1 < θ∗i < θs

2 assign q∗ = q∗i and exit. Else

(a) If θs
1 + 2π > θ0 > θs

2 then if θs
1 + 2π > θ∗i > θs

2 assign q∗ = q∗i and exit.

(b) If θs
1 > θ0 > θs

2 − 2π then if θs
1 > θ∗i > θs

2 − 2π assign q∗ = q∗i and exit.

The importance of the above algorithm is that it allow us to uniquely calculate

the point q∗ for a given external wrench wext. Note that this algorithm is simply a

description of an analytical function. Finally, we can write the force closure stability

set as

Wglobal =
{
wext : 0 ≤ F t

i (q
∗(wext)) < µF n

i (q∗(wext)) for i = 1...k
}

2.5 Force Closure Set for Curved Fingers

In this section we relax the sharp pointed finger assumption and allow the fingers to

be curved in the vicinity of the contact point. This also allow rolling motion between
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Figure 2.3: Schematic view of rolling motion between the ith finger and the object..hwiiae`l i rav` oia leblbd zrepz ly ihnikq miyxz
the object and each finger.

2.5.1 Problem Statement and Mathematical Representation

As in the previous section we use a linear control law such that the finger apply a

force

Fi = F 0
i − Ki(xi − x0

i ) (2.13)

However, now this force is applied in a point called control point which is located on

the tip of the finger where the designed contact point is located. The control point

is stationary relative to the finger. Additionally the object frame origin is located at

the control point (figure 2.3).

Since the fingers can roll on the object boundary we have additional k degrees of

freedom. For the stability matter we need to express Fi(xi) as function of these 3+ k

degrees of freedom.
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Denote the ith finger orientation αi. We parameterize the object and the finger

boundary curves with the length parameters sBi and sAi respectively. In this parame-

terization gi(s
B
i ) is a vector from the object origin to the boundary of B near the ith

contact point. Note that the parameters are in opposite directions to be consistent

with the rolling direction. For example in figure (2.3) sAi and sBi parameterize the

boundaries of the object and the fingers in contra-clock-wise direction. hi(s
A
i ) is a

vector from the ith finger control point xi to the contact point with B xc
i . The ith

contact point location relative to a stationary frame is given by

xc
i = R(θ)gi(s

B
i ) + d,

and the control point, xi, location in this frame is

xi = xc
i − R(φi)hi(s

A
i ). (2.14)

Substitution of xc
i into (2.14) yields

xi = R(θ)gi(s
B
i ) + d − R(φi)hi(s

A
i ). (2.15)

Rolling contact constraints: In order to have a contact between the ith finger and

the object we demand

vn
i ≡ 0, ∀i

where vn
i is the difference between B’s and the ith finger velocities in the normal

direction.

Since there exist a point contact between the finger and the object we have the

following two constraints. In the first constraint we assume to have a no slippage

contact. This will later on be justified by demanding Fi ∈ FQi. Thus, denote

si ≡ sBi = −sAi . (2.16)
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The second constraint states that at the contact point, the tangent vector to the

boundary of the finger is identical to the tangent vector to the boundary of the

object. This means that

R(θ)g′
i(s

B
i ) = R(φi)h

′
i(−sAi ), (2.17)

where (·)′i = ∂
∂si

(·). Since the parameterizations gi(s
B
i ) and h′

i(s
A
i ) are uniform pa-

rameterizations therefore ‖g′
i(s

B
i )‖ = ‖h′

i(s
A
i )‖ = 1. It is possible to solve (2.17)

for

cos(φi) = h′T
i R(θ)g′

i

sin(φi) = h′T
i JR(θ)g′

i,

where J =




0 1

−1 0



 and h′
i = hi(−si). One can check that indeed cos2(φi) +

sin2(φi) = 1. Now we can express R(φi) as function of θ and si as

R(φi) =






h′T
i R(θ)g′

i −h′T
i JR(θ)g′

i

h′T
i JR(θ)g′

i h′T
i R(θ)g′

i




 .

For simplicity we define a new variable

ρi(θ, si) = R(θ)gi − R(φi)hi,

which is the vector connecting the object origin to the finger’s initial contact point

(where the compliant law force act). This let us write

xi(q, si) = ρi(θ, si) + d.

The roll potential energy: The total roll potential energy U(q, s1, ..., sk) is

U(q, s1, ..., sk) =
1

2

k∑

i=1

[
(xi − x0

i )
T Ki(xi − x0

i ) − xT
i F 0

i

]
− qT wext. (2.18)
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Lemma 2.5.1 (Derivatives of U(q)) Let U(q) as in (2.18)Then it’s first derivative

is given by

DU(q, s1, ..., sk) = −
k∑

i=1

DxT
i (q, s1, ..., sk)Fi(q, s1, ..., sk),

and it’s second derivative is

D2U(q, s1, ..., sk) =
k∑

i=1















Ki −KiJρi · · · Kiρ
′
i · · ·

ρT
i JKi (Jρi)

T Ki(Jρi) + ρT
i Fi · · · ρT

i JKiρ
′
i + (Jρ′

i)
T Fi · · ·

...
...

. . .
...

...

ρ′T
i Ki ρ′T

i KiJρi + (Jρ′
i)

T Fi · · · ρ′T
i Kiρ

′
i − ρ′′T

i Fi · · ·
...

... · · · ...
...















.

Proof: A straight forward derivation of U(q, s1, ..., sk) yields

DU(q, s1, ..., sk) = −
k∑

i=1

DxT
i (q, s1, ..., sk)Fi(q, s1, ..., sk).

The second derivative of U(q, s1, ..., sk) is

D2U(q, s1, ..., sk) =
k∑

i=1

DxT
i (q, s1, ..., sk)KiDxT

i (q, s1, ..., sk)−D2xT
i (q, s1, ..., sk)Fi(q, s1, ..., sk).

Next we compute the first and second derivatives of xi(q, si) = ρi(θ, si) + d. The first

derivative is

Dxi(q, si) =
[
I2×2 ; − Jρi ; ρ′

i

]
.

For computing D2xi(q, si) we compute the derivative of DxT
i (q, si)Fi while holding

Fi constant. Thus we have

DxT
i (q, si)Fi =









Fi

−(Jρi)
T Fi

ρ′T
i Fi









.
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Computing D[DxT
i (q, si)Fi] when Fi is constant yields

D2xT
i (q, si)Fi =









02×2 02×1 02×1

01×2 −ρT
i Fi −(Jρ′

i)
T Fi

01×2 −(Jρ′
i)

T Fi ρ′′T
i Fi









.

The first term in D2Ui(q, si) is

DxT
i (q, si)KiDxT

i (q, si) =









Ki −KiJρi Kiρ
′
i

ρT
i JKi (Jρi)

T Ki(Jρi) ρT
i JKiρ

′
i

ρ′T
i Ki ρ′T

i KiJρi ρ′T
i Kiρ

′
i









.

Combining the two terms to construct D2Ui(q, si) yields

D2Ui(q, si) =









Ki −KiJρi Kiρ
′
i

ρT
i JKi (Jρi)

T Ki(Jρi) + ρT
i Fi ρT

i JKiρ
′
i + (Jρ′

i)
T Fi

ρ′T
i Ki ρ′T

i KiJρi + (Jρ′
i)

T Fi ρ′T
i Kiρ

′
i − ρ′′T

i Fi









.

Summing D2Ui(q, si) over the k fingers gives

D2U(q, s1, ..., sk) =
k∑

i=1















Ki −KiJρi · · · Kiρ
′
i · · ·

ρT
i JKi (Jρi)

T Ki(Jρi) + ρT
i Fi · · · ρT

i JKiρ
′
i + (Jρ′

i)
T Fi · · ·

...
...

. . .
...

...

ρ′T
i Ki ρ′T

i KiJρi + (Jρ′
i)

T Fi · · · ρ′T
i Kiρ

′
i − ρ′′T

i Fi · · ·
...

... · · · ...
...















.

¤

2.5.2 Initial Equilibrium Point with Rolling

We show that an equilibrium point of grasping system with pointed sharp finger is

still an equilibrium point even if we replace the sharp fingers with curved ones. This

is not trivial since we add k DOF to the dynamic system.
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Lemma 2.5.2 (Equilibrium point) If q∗ is an equilibrium point of the grasping

system with pointed sharp fingers, Then (q∗, 0, ..., 0) is an equilibrium point for the

grasping system with curved fingers (i.e. when the rolling parameters si vanish).

Proof: In equilibrium point

DU(q, s1, ..., sk) = −
k∑

i=1












Fi

−(Jρi)
T Fi

ρ′T
1 Fi

...ρ′T
k Fi












= 0.

Thus we need to evaluate ρi and ρ′
i for si = 0. Note that hi(si = 0) = 0. Therefor

when evaluating ρi(θi, si) = R(θ)gi(si) − R(φi)h(si) for si = 0 we get ρi(θi, 0) =

R(θ)gi(si). Similarly ρ′
i = −R′(φi)hi becomes ρ′

i(θ, 0) = 0. For that reason all the k

last rows of DU(q, s1, ..., sk) vanish. The first two rows becomes

DU(q) = −
k∑

i=1






Fi

R(θ)gi(0) × Fi




 .

which is exactly the conditions for q to be an equilibrium point when the fingers are

sharp and therefor vanish when q = q∗ and si = 0 for i = 1, ...k. ¤

Note that there are only two forces applied on each finger. The first force is the

compliance law force which act in the initial contact point. The second force is the

contact force applied in the contact point. In order the finger to be in equilibrium

these forces have to act along the same line of action in the same magnitude in

different directions. The condition for the forces to act along the same line can be

phrased as ρ′
i · Fi = 0. (The physical meaning of ρ′ is presented in the next sub
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section.) Thus the conditions for an equilibrium point are

∑k
i=1 Fi = wext

∑k
i=1 R(θ)gi(si) × Fi = τext

ρ′
i · Fi = 0 for i = 1, ..., k.

The solution of these k + 3 equations is a set of equilibria points (x, y, θ, s1, ..., sk).

2.5.3 Rolling Stability of Equilibrium Point

Here we examine the stability property of the (q∗, 0, ..., 0) equilibrium point.

Theorem 4 (Equilibrium stability) If q∗ is a stable equilibrium point of the grasp-

ing system with pointed sharp fingers then (q∗, 0, ..., 0) is locally stable equilibrium

point of the grasping system with curved fingers.

Proof: In order to prove the proposition we need to show that Fi ∈ FQi for i = 1, ..., k

and that D2U(q, s1, ..., sk) is positive definite in the (q∗, 0, ..., 0) point. The proposition

states that q∗ is a stable equilibrium point of the grasping system with pointed sharp

fingers. Thus, Fi ∈ FQi for i = 1, ..., k. Evaluating D2U(q, s1, ..., sk) at (q∗, 0, ..., 0)

yields

D2U(q∗, 0, ..., 0) =
k∑

i=1















Ki −KiJρi · · · 0 · · ·

ρT
i JKi (Jρi)

T Ki(Jρi) + ρT
i Fi · · · 0 · · ·

...
...

. . .
...

...

0 0 · · · −ρ′′T
i Fi · · ·

...
... · · · ...

...















.

The upper left 3×3 sub matrix of D2U(q∗, 0, ..., 0) is simply the DU(q∗) matrix of the

grasping system with pointed sharp fingers. Since we know that q∗ is a stable equi-

librium point of this system then DU(q∗) is positive definite. Therefor the condition
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for the matrix D2U(q∗, 0, ..., 0) to be positive definite is that the term −ρ′′T
i F 0

i > 0

for i = 1, ..., k.

Next we investigate the term −ρ′′T
i Fi. The derivatives of ρi with respect to si are

ρ′
i = R(θ)g′

i − R(φi)h
′
i − R′(φi)hi = −R′(φi)hi

ρ′′
i = −R′′(φi)hi − R′(φi)h

′
i.

In order to have better understanding of the physical meaning of ρ′′
i we need to find

the meaning of R′(φi). Specifically,

R′(φi) =






h′′T
i R(θ)g′

i −h′′T
i JR(θ)g′

i

h′′T
i JR(θ)g′

i h′′T
i R(θ)g′

i




 +






h′T
i R(θ)g′′

i −h′T
i JR(θ)g′′

i

h′T
i JR(θ)g′′

i h′T
i R(θ)g′′

i




 . (2.19)

For general curve we have h′′·h′ = 0 g′′·g′ = 0 since we use a uniform parameterization.

If we assume that the fingers and the object have locally arc shape bounding curve

and if we assume the following radii of curvature,

finger radius of curvature at the ith contact point = 1
αi

object radius of curvature at the ith contact point = 1
βi

then

h′′
i (si) = −αiJh′

i(si)

g′′
i (si) = βiJg′

i(si)

Substituting h′′
i (si) and g′′

i (si) back to (2.19) yields

R′(φi) =






−αi(Jh′
i)

T R(θ)g′
i αi(Jh′

i)
T JR(θ)g′

i

−αi(Jh′
i)

T JR(θ)g′
i −αi(Jh′

i)
T R(θ)g′

i




+






βih
′T
i R(θ)Jg′

i −βih
′T
i JR(θ)Jg′

i

βih
′T
i JR(θ)Jg′

i βih
′T
i R(θ)Jg′

i




 .

Simplifying R′(φi) with the following identities, JR(θ) = R(θ)J , JR(θ)J = −R and

JT = −J , results with

R′(φi) =






αisin(φi) αicos(φi)

−αicos(φi) αisin(φi)




 +






βisin(φi) βicos(φi)

−βicos(φi) βisin(φi)




 .
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Which is αiJR(φi) + βiJR(φi). Therfore we have

R′(φi) = (αi + βi)JR(φi). (2.20)

Recall that ρ′′
i = −R′′(φi)hi − R′(φi)h

′
i and for si = 0, hi vanish so we have ρ′′

i =

−R′(φi)h
′
i. Additionally, from (2.20) we have R′(φi) = (αi + βi)JR(φi). Substituting

these terms to −ρ′′T
i F 0

i yields −ρ′′T
i Fi = (αi + βi)(JR(φi)h

′
i)

T F 0
i . Thus the stability

condition becomes

(αi + βi)(JR(φi)h
′
i)

T F 0
i > 0 for i = 1, ..., k

The JR(φi)h
′
i vector is a unit vector pointing into B. Thus, (JR(φi)h

′
i)

T F 0
i is the

compressing part of F 0
i since F 0

i must be a compressing force and not a tension force.

Therefore in general (JR(φi)h
′
i)

T F 0
i is positive. For a convex object (β > 0) and

convex fingers (αi > 0) The system will be locally stable if it was stable for sharp

fingers. Figure 2.4 show that the control force together with the contact force produce

restoring torque. Then the fingers converge to their original state where the initial

contact point contacting the object. In case the finger is concave (αi < 0) the object

must be convex (β > 0). In this case the size of the radius of curvature of B must

be smaller or equal to the size of the radius of curvature of A so (|αi| ≤ |β|) and

αi + βi ≥ 0. In case the object is be concave (β < 0) the finger must be convex

(αi > 0), and the size of the radius of curvature of B must be greater or equal to

the size of the radius of curvature of A so (|αi| ≥ |β|) and αi + βi ≥ 0. Next we

show that αi +βi = 0 is almost impossible. In this case the radius of curvature of the

finger equals the radius of curvature of the object but one is convex and the second is

concave. This case is not practical since it is almost impossible to manufacture two

objects with exactly the same radius of curvature. ¤



CHAPTER 2. FORCE CLOSURE SET 49

x
i

x
B

y
B

x
Ai

y
Ai

B

A
i

control force F
i

contact force

original

contact point

Figure 2.4: Schematic view of the forces applied on the ith finger during roll motion..leblib zrepz jldna i rav` lr milretd zegekd ly ihnikq miyxz
2.6 Simulations and Experimental Results

This section presents several experiments conducted in order to verify the computed

force closure stability set. All experiments involve stability of two fingers grasps. The

first experiment presents a set of external wrenches on the boundary of the force

closure stability set. The second experiment shows how the preloading forces affect

the size of the force closure stability set. First we present the experiments setup.

2.6.1 Experiments Setup

Figure 2.5 shows the apparatus used for the experiments. This apparatus includes

two compliant sphere shaped fingers made of aluminum. Each finger can move along

horizontal and vertical frictionless linear guides. For the passive compliant of the

fingers we use a linear compressible springs. We calculate the springs coefficients from

the calibration process shown in figure 2.6. The coefficient of the horizontal springs is
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Figure 2.5: The apparatus used for the two-fingered grasp experiments.zeirav`-e zefig`l ieqipd zkxrn
k1 = 0.1122[N/mm] , and the coefficient of the vertical spring is k2 = 0.1402[N/mm].

For measuring the contact forces we use a 6-DOF agile small-size force and torque

sensor. The force and torque sensor is used for measuring the preloading forces and for

determining the friction coefficient µ between the object and the fingers. The grasp

object is a 100mm × 100mm rectangle aluminum piece, coated with high friction

material providing µ = 0.5. We attach four rollers to the bottom of the object in

order to minimize friction between the object and the supporting table. The wrenches

are applied using 50[g] weights connected to the object by a string. In the following

sections we use [mm] as length units, [rad] for angle units, [N ] for force units, and

[N · mm] for torque units.

2.6.2 Verifying the Force Closure Stability Set Experiment

In this experiment we apply various external wrenches on the object to determine

which wrench causes the object to converge to a stable posture. We then compare
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these results to the computed force closure stability set. Figure 2.7 shows schemat-

ically the point and directions of the applied external forces. In this experiment we

use a preloading forces of F0 = 5.8[N ] for each finger. These forces are antipodal and

horizontal. For these conditions we calculate both the feasible configurations set and

the force closure stability set (figure 2.8). The upper and the lower surfaces of the

manifold in figure 2.8 (both in the configuration space and in the wrench space) are

associated with the D2U(q) > 0 constraint, while the surfaces of the manifold that

bounds the force closure stability set from the sides are associated with the friction

cones constraints.

In this experiment we apply forces in different angles. Since the force action

line does not pass through the object’s frame origin, this force also generates an

external torque. We gradually increase this external force until instability occurs.

The instability is observed as a slip of the contact points or as a relatively large

movement of the object. The results of this experiment are shown as dots in figure

2.9 and are compered to the analytic calculated maximum applicable external force
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Figure 2.9: For every angle of application the graph shows the maximum applied
external force in the force closure stability set. Solid line represent analytic results
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Figure 2.10 presents the wrenches applied in this experiment. For any given angle

of external force, the wrench applied on the object increases linearly. Furthermore, as

the angle of force increases, the torque component of the wrench becomes dominant.

As we use 50 grams weights for the external force we have discrete and finite number

of wrenches points. Figure 2.10 shows that all wrenches that cause the object to

converge to a stable posture are within or very close to the boundary of the force

closure stability set manifold. Increasing the external force beyond the boundary of

the force closure stability set causes instability, marked as × in figure 2.10.
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external torque is been applied to the grasped object.hwiiae`d lr xedh hpnen lrted vik d`xnd ieqipd zkxrn ly ihnikq miyxz.feg`d

2.6.3 The Effect of Preloading Forces on Stability

The objective of the second experiment is to observe the effect of different preloding

forces on the size of the force closure stability set. Especially we are interested

in the maximal external torque that can be applied on the object without losing

stability. When high preloading force is applied, instability occurs since D2U(q)

becomes singular or even negative definite. Instability due to singularity of D2U(q)

involves a rotation of the object since the pure translation part of D2U(q) is
∑

Ki

which is always positive definite. Thus we choose to examine the effect of preloding

forces on the maximal allowable torque. A schematic view of the apparatus used for

this set of experiments is shown in figure 2.11.

For these conditions we calculate the maximal allowable external torque and plot

it as a function of the preloading force (the solid curve in figure 2.12). We first set the
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Figure 2.12: The maximal allowable external torque vs. the preloading forces. In
solid line is the computed maximal torque, and the marked dots are the
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amount of preloading force and gradually increase the external torque until instability

occurs. We repeat this experiment for various preloading forces. The maximal torque

for which the system remained stable in each experiment is plotted as dots in figure

2.12.

The maximal torque curve in figure 2.12 can be divided into two curves. In the first

curve (for preloading force between 0.1 to 3.3) the preloading force is relatively small

and instability results in a slip at the contacts. In this part of the curve the maximal

external torque that can be applied monotonically increases as the preloading force

increases. In the second curve (for preloading force between 3.3 to 6.9) the preloading

force is relatively high and no slippage occurs at contacts. Instead, instability occurs

when the object severely rotates. The maximal external force that can be applied,
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decreased as the preloading force increases. Increasing the external torque above

a certain limit causes the matrix D2U(q) to become negative definite due to the

term ρ · F in D2U(q) which becomes more negative as contact force increases. This

phenomenon is often referred as ”the coin snapping problem”.

Figure 2.13 shows the manifold that bounds the force closure stability set for vari-

ous preloading forces. The volume of the force closure stability set is small for low and

high preloading forces, and larger for the middle range preloading forces. In addition,

the shape of the force closure stability set is affected by the constraints bounding the

set. As for low preloading forces friction is the only constraint bounding the force

closure stability set, while for large preloading forces the bounding constraints are

also due to the positive definiteness of D2U(q). For higher preloading forces the force

closure stability set does not contain the origin resulting in instability for any given

external wrench.

2.7 Conclusion

In active force closure the fingers resist external wrenches by actively applying the

required forces at the contacts. Active grasping requires sophisticated contact-force

sensors and contact-force controllers whose action must be precisely coordinated. In

passive force closure each contact satisfies some fixed force-displacement law. The

contacts apply preload grasping forces, and the balancing of external wrenches is

performed automatically by the contacts. Passive grasping can be implemented with

controllers that simply maintain fixed joint torques or fixed joint positions, without

any coordination of the individual contacts.

We formally defined force closure with compliant contacts and provided necessary
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and sufficient conditions for generic force closure grasps. In particular, the geometrical

condition for active force closure is necessary but not sufficient for force closure with

compliant contacts. To guarantee force closure, the grasped object must automati-

cally converge to a nearby equilibrium where the contact forces balance the external

wrench. Next we characterized the force closure set of compliant-rigid grasps. In

these grasps a rigid object B is held by compliant grasping mechanisms. We derived

analytic expressions for the force closure set of such grasps. we used linear force-

displacement laws for the following. A global stability criterion ensuring that the

original unperturbed equilibrium would converge to the new equilibrium induced by

the external wrench is presented. We characterize the force closure set for fingers

having any shape at the contacts

Finally, we compare the force closure set of 2-finger and planar grasps with an

experimental results that show a good matching between the computed set to the

experiments results.



Chapter 3

PCG: A Foothold Selection

Algorithm

3.1 Introduction

This chapter presents a polynomial time algorithm, called PCG (short for Partitioned

Cubes Gaiting), for planning the foothold positions of spider-like robots in planar

tunnel environments.

A spider-like robot consists of k articulated limbs attached to a central body, such

that each limb ends with a footpad (Figure 3.1). We assume that the robot moves

quasistatically by exerting forces on the tunnel walls1, while the robot is supported

against gravity by frictionless contacts mounted under the mechanism. In general,

a spider-like robot must have at least three limbs in order to move quasistatically in

planar tunnel environments. At every instant the spider braces against the tunnel

walls in static equilibrium using two or three limbs. During a 2-limb posture the

1In quasistatic motion inertial effects due to moving parts of the robot are kept small relative to
the forces and torques of interaction between the robot and the environment.

60
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spider moves its free limb to the next foothold position. During a 3-limb posture

the spider changes its internal geometry in preparation for the next limb lifting. The

PCG algorithm is presented in the context of such 3-limb robots. However, we also

discuss the generalization of the algorithm to robots having a higher number of limbs.

We make the following assumptions. First, we assume piecewise linear tunnel

walls with known geometry. The tunnel can be discontinuous and can include holes

or intersections. Second, each limb contacts the environment only through its footpad,

which can only push against the environment. Third, each footpad contacts the tunnel

walls through a frictional point contact, with a known lower bound on the coefficient

of friction. The foothold positions are represented as points in contact c-space, which

is defined as follows. Let L be the total length of the tunnel walls, and let si ∈ [0, L]

be the arc-length parametrization of the position of the ith contact along the tunnel

walls (Figure 3.2). Then for a k-limb mechanism contact c-space is the k-dimensional

space (s1, . . . , sk) ∈ [0, L]k. Fourth, we lump the kinematic structure of the robot

into a single parameter called the robot radius and denoted R. This parameter is

the length of a fully stretched limb, measured from the center of the robot’s central

base to the closet point on the limb’s footpad. The algorithm uses this parameter to

ensure that the selected foothold positions can be reached from the robot’s central

base.

The use of contact c-space is common in the grasp planning literature. For ex-

ample, Elci Longman and Shoham [15] uses contact c-space of circle and ellipse in

order to re-grasp the object and thus manipulate it. However, they do not optimize

the number of re-grasp manipulation needed. Nguyen [52] and Ponce et al. [56, 57]

introduced the notion of contact independent regions. Given a k-finger grasp of a
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planar object, a contact independent region is a k-dimensional cube2 in contact c-

space. This cube represents k segments along the object’s boundary, such that any

placement of the k contacts inside these segments generates an equilibrium grasp. We

use a similar notion in our representation of the feasible footholds as cubes in contact

c-space. Each cube represents three segments along the tunnel walls, such that any

placement of three footpads inside these segments results in a feasible 3-limb equi-

librium posture. Other relevant papers from the grasp planning literature are papers

that discuss finger gaiting. Brook Shoham and Dayan [8] presented a criterion for

enabling sequence of re-grasp manipulations, but they do not globally optimize the

number of re-grasp manipulation needed. Hong et al. [25] describe 3 and 4-finger

gaits for planar objects. However, they assume that once an object is grasped, the

fingers may not change their order along the object’s boundary. In contrast, we im-

pose no restriction on the order of the footpads along the tunnel walls. Goodwine

et al. [18, 79] investigate the stratification of the full configuration space associated

with finger gaiting. While this approach is justifiable for the design of feedback con-

trol laws, motion planning can be carried out in lower dimensional spaces such as

contact c-space. For example, our 3-limb spider robot has 12 actuated joints and

3 unactuated degrees of freedom of the central base, while contact c-space has only

three dimensions.

In the multi-legged locomotion literature, Boissonnat et al. [5, 6] discuss a motion

planning algorithm for multi-legged robots that move in a gravitational field over a flat

terrain. They assume that the legs are allowed to contact only a discrete collection

of point sites. Much like our approach, they lump the kinematic structure of the

robot into a reachability radius, and use this parameter to design a path that takes

2The cube is aligned with the coordinate axes and has three independent lengths.
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the robot from start to target through a sequence of stable stances. Our work differs

from the work of Boissonnat et al. in several fundamental ways. First, we consider

motions where the robot stably braces against tunnel walls rather than maintaining

stable stances against gravity. Second, we allow arbitrary footpad placement along

the tunnel walls rather than on discrete point sites. Third, Boissonnat et al. first plan

a path for the central body in the plane, then select footpad placements that realize

the path. In contrast, the PCG algorithm first plans a sequence of foothold positions

in contact c-space, then determines the mechanism’s joint values that would bring

the footpads to the desired foothold positions. Other papers that consider motion

planning for multi-legged robots are [22, 37, 40, 41, 77]. However, all of these papers

are concerned with locomotion over a terrain in a gravitational field, while we consider

motion in congested tunnel-like environments.

This chapter focuses on the portion of the PCG algorithm that plans a sequence

of foothold positions in contact c-space. The algorithm consists of the following three

stages. The first stage is based on a key result, that the set of feasible 3-limb postures

is a union of convex sets in contact c-space. Using convex optimization techniques, the

algorithm approximates each of the convex sets by p maximal cubes. In the second

stage the algorithm partitions the cubes into compatible sub-cubes, where two sub-

cubes are compatible if it is possible to move between any two postures in these

sub-cubes by a single limb lifting. However, compatibility encodes only a kinematic

transition between two sub-cubes. Each sub-cube is also assigned an orientation

vector which identifies what limbs can be stably lifted from the postures in the sub-

cube. The algorithm constructs a graph whose nodes are sub-cubes and whose edges

connect compatible sub-cubes with suitable orientation vectors. In the third stage

the algorithm searches along the graph for the shortest sequence of foothold positions
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Figure 3.1: Top view of a 3-limb spider robot moving in a planar tunnel
environment..zixeyin dxdpn jeza rpd ilbx-zlz yiakr heaex ly lr han

that moves the robot from start to target. This sequence yields a minimal 3-2-3 gait

pattern, where minimality is relative to the cube approximation of contact c-space.

The chapter is organized as follows. In Section 3.2 we characterize the feasible 3-

limb postures in contact c-space. The feasible postures must be reachable, form stable

equilibria, and satisfy a condition that allows their inclusion in a 3-2-3 gait pattern.

In Section 3.3 we establish that the feasible 3-limb postures are a union of convex

sets in contact c-space. It is also shown in this section that the approximation of a

convex set by p maximal cubes is a convex optimization problem. In Section 3.4 we

describe the PCG algorithm and analyze its computational complexity. In practical

tunnel environments the robot can reach from any given position only a small number

of walls. In such environments the algorithm runs in O(np6 log(np)) time, where n is

the number of tunnel walls and p is the number of cubes used in the approximation

of contact c-space. Next we investigate the effect of various p values on the path
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length and present an algorithm that determine if p should be increased. In Section

3.6 we run the PCG algorithm on a simulated tunnel environment. An experimental

results of the spider-robot walking in tunnel built in our laboratory is presented in

section 5 and show practical implementation of the PCG algorithm. Finally, in the

concluding section we discusses the generalization of the algorithm to robots with a

higher number of limbs.

3.2 The Feasible 3-Limb Postures

In this section we characterize the feasible 3-limb postures as inequality constraints in

contact c-space. The feasible 3-limb postures must form stable equilibria, be reach-

able, and satisfy the following gait feasibility condition. This condition requires that

the 3-limb posture will contain two distinct 2-limb postures—one for entering the

3-limb posture by establishing a new foothold, and one for leaving the 3-limb posture

by releasing some other foothold. Note that the initial and target 3-limb postures

are required to contain one rather than two 2-limb postures. We now consider the

individual constraints.

Equilibrium and stability of 2-limb postures. Gait feasibility requires that a

3-limb will contain two distinct 2-limb postures. Hence we first review the conditions

for equilibrium and stability of 2-limb postures. By definition, a mechanism bracing

against the environment is in static equilibrium if the net wrench (i.e. force and

torque) generated by the contact forces acting on the mechanism is zero. In particular,

a 2-limb mechanism forms an equilibrium posture if the line segment connecting the

two contacts lies inside the two friction cones [52]. As a stability criterion we use

the notion of force closure. By definition, an equilibrium posture is force closure
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if the mechanism can resist any perturbing wrench by suitable adjustment of its

contact forces with the environment [4]. In general, an equilibrium posture in a

planar environment is force closure if the contact forces of the unperturbed posture

lie in the interior of the respective friction cones [80].

We now write the above conditions as inequalities in contact c-space. First we in-

troduce some notation. The contact of each limb with the tunnel walls is parametrized

by a scalar sl ∈ [0, L], where l = 1, 2, 3. Let W1, . . . ,Wn denote the tunnel walls, and

let I1, . . . , In be the partition of [0, L] into intervals that parametrize the individual

walls (Figure 3.2). Thus, for instance, the cube Ii×Ij×Ik parametrizes the 3-limb

postures where limb 1 contacts the wall Wi, limb 2 contacts the wall Wj, and limb 3

contacts the wall Wk. The unit tangent and unit normal to the wall Wi are denoted

ti and ni, where ni is pointing away from the wall. Using this notation, the points

along Wi are given by x(s) = xi + sti, where xi is the initial vertex of Wi and s ∈ Ii.

Given a contact force fi, we write the force as fi = f t
i ti + fn

i ni, where f t
i and fn

i are
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the tangent and normal components of fi. The Coulomb friction cone at a contact

along the ith wall, denoted FCi, is the collection of forces satisfying the inequalities:

FCi = {fi : fn
i ≥ 0 and − µfn

i ≤ f t
i ≤ µfn

i }, where µ is the coefficient of friction.

Let two limbs with indices l and m contact the tunnel walls Wi and Wj. Then

for a 2-limb stable equilibrium, the vector x(sm)−x(sl) must lie in the interior of the

friction cone FCi, while x(sl)−x(sm) must lie in the interior of the friction cone FCj.

This condition defines a set in the (sl, sm) plane, denoted E lm
ij , which is given by

E lm
ij =

{
(sl, sm)∈Ii×Ij : |(x(sm)−x(sl))·ti| < µ(x(sm)−x(sl))·ni,

|(x(sl)−x(sm))·tj| < µ(x(sl)−x(sm))·nj

}
.

An example of 2-limb stable equilibrium sets appears Figure 3.7. It is important

to note that the inequalities describing E lm
ij are linear in sl and sm. Hence E lm

ij is a

convex polygon in the (sl, sm) plane. When E lm
ij is considered as a subset of the contact

c-space of a 3-limb mechanism, it becomes a three-dimensional set which is denoted

as follows. Let × serve as a place holder for the limb that does not participate

in the 2-limb posture. Then a 2-limb equilibrium set, E12
ij for instance, becomes a

three-dimensional set which is denoted P ij× and given by

P ij× =
{
(s1, s2, s3) ∈ Ii×Ij×[0, L] : |(x(s2) − x(s1))·ti| < µ(x(s2) − x(s1))·ni,

|(x(s1) − x(s2))·tj| < µ(x(s1) − x(s2))·nj

}
.

The set P ij× is a prism orthogonal to the (s1, s2) plane with a polygonal cross section

given by E12
ij . Similarly, the sets P i×j and P×ij are prisms orthogonal to the (s1, s3)

and (s2, s3) planes, with polygonal cross sections given by E13
ij and E23

ij .

Reachability constraint of 3-limb postures. A 3-limb posture is reachable when

its footholds lie within the robot’s radius R. For each triplet of walls Wi,Wj,Wk, the
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reachability constraint is given by

Rijk = {(s1, s2, s3) ∈ Ii×Ij×Ik : ∃c ∈ IR2 max{‖x(s1)−c‖, ‖x(s2)−c‖, ‖x(s3)−c‖} ≤ R},

(3.1)

The point c appearing in (3.1) can be interpreted as the center of a disc containing

the three foothold positions, such that the disc radius is bounded by R. As discussed

below, the elimination of the existential quantifier in (3.1) results in a set which is

bounded by quadratic surfaces in contact c-space.

Gait feasibility of 3-limb postures. A 3-limb posture is gait feasible if it contains

two distinct 2-limb equilibrium postures (Figure 3.3). Let us write this constraint in

the cell Ii×Ij×Ik in contact c-space. The cell Ii×Ij×Ik corresponds to contact with

the walls Wi,Wj,Wk, and gait feasibility is satisfied by intersection of pairs of 2-limb

prisms associated with the three walls. There are three such pairs—(P ij×,P i×k),

(P ij×,P×jk), and (P×jk,P i×k)—and the resulting set of feasible 3-limb postures in

the cell, denoted F ijk, is given by

F ijk =
(
P ij× ∩ P i×k ∩Rijk

)
∪

(
P ij× ∩ P×jk ∩Rijk

)
∪

(
P×jk ∩ P i×k ∩Rijk

)
. (3.2)
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Note that the same three walls appear in six cells in contact c-space, each correspond-

ing to a specific assignment of the limbs to the three walls. The entire collection of

feasible 3-limb postures is the union of all such sets over all ordered wall triplets.

We end this section with an assertion that it is always possible to affect a transition

between two 2-limb postures contained in a feasible 3-limb posture by suitable change

of the contact forces.

Lemma 3.2.1 Let a feasible 3-limb posture contain two 2-limb equilibrium postures.

Then there exists a continuous change of the contact forces that allows a transition

between the 2-limb postures, while the mechanism is kept in static equilibrium with

fixed contacts.

Proof: Since the mechanism has three limbs, any two 2-limb postures must share

a limb in common. Without loss of generality, let the 3-limb posture lie inside P ij×∩

P×jk in contact c-space, so that limb 2 is common to both 2-limb postures. Let f 1 and

f 2 be the contact forces at the 2-limb posture involving limbs 1 and 2, and let g2 and

g3 be the contact forces at the 2-limb posture involving limbs 2 and 3. Then it can be

verified that the convex combination (1−s)f 1 + (1−s)f 2 + sg2 + sg3 where s ∈ [0, 1]

generates a zero net wrench for all s. This convex combination specifies a continuous

transition between the two 2-limb postures, while the mechanism is kept in static

equilibrium. Specifically, the contact forces of limbs 1 and 3 vary only in magnitude,

while the contact force of limb 2 varies in magnitude and direction between f 2 and

g2. Finally, since f 2 and g2 lie inside the friction cone at the contact of limb 2 with

the environment, their convex combination also lies inside the friction cone, for all

s ∈ [0, 1]. ¤
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The lemma generalizes as follows. If a k-limb posture contains two equilibrium pos-

tures having a smaller number of limbs, it is always possible to affect a transition

between these two posture by suitable change of the contact forces, while the mech-

anism is kept in static equilibrium.

3.3 Convexity of the Feasible 3-Limb Postures

In this section we discuss two issues concerning convexity that will be used by the

PCG algorithm. First we establish that the feasible 3-limb postures are a union of

convex sets in contact c-space. Then we show that the approximation of a convex set

by p maximal cubes is a convex optimization problem.

3.3.1 Convexity of the Feasible Postures

The set F ijk of feasible 3-limb postures is specified in (3.2) as a union of three sets,

each corresponding to a different pair of 2-limb postures. The following lemma asserts

that each of these sets is convex in contact c-space.

Lemma 3.3.1 In each cell Ii×Ij×Ik of contact c-space, the set F ijk of feasible 3-limb

postures is a union of three convex sets.

Note that any of the convex sets comprising F ijk may be empty. For example, in

Figure 3.8 each set F ijk is either empty or consists of a single convex set.

Proof: The three sets that comprise F ijk have a similar form. Hence it suffices to

consider only one of these sets, say P ij× ∩ P×jk ∩ Rijk. The prisms P ij× and P×jk

are defined by intersection of linear inequalities. Each prism is therefore a convex

polytope in contact c-space. Next consider the reachability set Rijk. The existential
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quantifier in (3.1) acts on a set, denoted R̄ijk, which is defined in the five-dimensional

space (s1, s2, s3, c):

R̄ijk =
{
(s1, s2, s3, c) ∈ Ii×Ij×Ik×IR2 : max{‖x(s1)−c‖, ‖x(s2)−c‖, ‖x(s3)−c‖} ≤ R

}
.

The norm function ‖x − c‖ is convex in (x, c) space, and each x(si) is linear in si.

Since composition of a convex function with a linear map preserves convexity, the

functions ‖x(si) − c‖ are convex in (s1, s2, s3, c) space. In general, the pointwise

maximum of convex functions is a convex function [12, p. 47]. Hence R̄ijk is convex

in (s1, s2, s3, c) space. But Rijk is the coordinate projection of R̄ijk onto contact c-

space. Since projection preserves convexity, Rijk is convex in contact c-space. Finally,

the intersection of convex sets is convex, hence P ij× ∩ P×jk ∩Rijk is convex. ¤

The PCG algorithm described below approximates the feasible 3-limb postures by

cubes. The approximation requires an explicit formula for the reachable set which we

now describe. The following is an equivalent formulation for Rijk,

Rijk =
{
(s1, s2, s3) ∈ Ii×Ij×Ik : rmin(s1, s2, s3) ≤ R

}
,

where rmin(s1, s2, s3) is the radius of the minimal disc containing the foothold positions

x(s1), x(s2), and x(s3). Let ∆ be the triangle generated by these three points. Then

the formula for rmin(s1, s2, s3) is divided into two cases (Figure 3.4). When ∆ is an

acute triangle (i.e. with angles less than 90◦), rmin(s1, s2, s3) is the radius of the disc

passing through the three points, given by

rmin(s1, s2, s3) =
‖x(s1) − x(s2)‖ · ‖x(s2) − x(s3)‖ · ‖x(s3) − x(s1)‖
2‖x(s1) × x(s2) + x(s2) × x(s3) + x(s3) × x(s1)‖

,

where u×v is the scalar obtained by taking the determinant of the 2×2 matrix [u v].

When ∆ is an obtuse triangle, rmin(s1, s2, s3) is simply half the length of the longest
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Figure 3.4: The minimal disc containing the three foothold positions when ∆ is (a)
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edge of ∆,

rmin(s1, s2, s3) = 1

2
max

1≤p,q≤3
{‖x(sp) − x(sq)‖}.

The two-part formula for rmin(s1, s2, s3) reveals that the set Rijk is bounded by

quadratic surfaces in contact c-space. To summarize, the set F ijk is the union of

three convex sets, each bounded by planar surfaces associated with the 2-limb prisms,

and quadratic surfaces associated with the reachability constraint.

3.3.2 Convexity of the Cube Approximation Problem

We have already established in Lemma 3.3.1 that the set F ijk is a union of three

convex sets. Now we discuss the approximation of these convex sets by maximal

cubes. We discuss the problem in the context of three dimensional contact c-spaces,

but the result is completely general.

Consider the approximation of a three-dimensional convex set S by p cubes, where

the cubes have arbitrary center and dimensions. We assume as input a desired relative
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configuration for the cubes, where a relative configuration is a specification of an

adjacency relation between the cubes in terms of a set of separating planes, such that

no two cubes can possibly intersect. Each of the separating planes is defined in terms

of the relative position of two cubes, and does not restrict the absolute position of the

two cubes. The ith cube is parameterized by its center ci ∈ IR3, and its dimensions

along the coordinate axes, hi ∈ IR3. The optimization therefore takes place in the

6p-dimensional space whose coordinates are (c1, h1, . . . , cp, hp). Our objective is to

maximize the total volume of the cubes. However, the sum of the cubes’ volumes

is not a convex function of the optimization variables. Rather, we use a normalized

total volume function given by3

φ(c1, h1, . . . , cp, hp) =

p
∑

i=1

(hi1hi2hi3)
1

3 .

Next we list the constraints involved in the cube approximation problem. First we

have the requirements that the cubes’ dimensions be non-negative, and that their

centers would lie inside contact c-space. Second, the relative configuration of the cubes

is specified by a list of separating planes, each involving the center and dimensions

of two cubes separated by the plane. Last, we must ensure that the cubes lie inside

the convex set S. The following proposition asserts that the maximization of φ over

p cubes contained in S is a convex optimization problem.

Proposition 3.3.2 The maximization of φ =
∑p

i=1(hi1hi2hi3)
1

3 over p cubes con-

tained in a convex set S and satisfying a relative-configuration specification is a convex

optimization problem.

Proof: In general, the minimization of a scalar function φ(x) subject to scalar

constraints ψ1(x), . . . , ψr(x) ≤ 0 is convex if φ and ψ1, . . . , ψr are convex functions

3We are grateful to Prof. A. Nemirovsky who suggested this function.
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of the optimization variables. In our case, the maximization of the total volume

function φ is equivalent to the minimization of −φ, and convexity of −φ is equivalent

to concavity of φ. Hence we must first verify that the function φ =
∑p

i=1(hi1hi2hi3)
1

3

is concave. A sufficient condition is that the second derivative matrix of φ be negative

semi-definite. Since φ depends only on the variables h1, . . . , hp, its second derivative

matrix is block diagonal, with non-zero 3× 3 blocks corresponding to the second

derivative of the functions φi = (hi1hi2hi3)
1/3 where i = 1, . . . , p. The first derivative

of φi, written as a column vector, is:

Dφi = 1

(hi1hi2hi3)
2
3









hi2hi3

hi1hi3

hi1hi2









.

The second derivative of φi is:

D2φi = 1

(hi1hi2hi3)
2
3









0 hi3 hi2

hi3 0 hi1

hi2 hi1 0









− 1

(hi1hi2hi3)
5
3









hi2hi3

hi1hi3

hi1hi2









(

hi2hi3 hi1hi3 hi1hi2

)

= − 1

(hi1hi2hi3)
2
3









hi2hi3

hi1
0 0

0 hi1hi3

hi2
0

0 0 hi1hi2

hi3









.

The resulting matrix D2φi has only negative eigenvalues and is therefore negative

definite. The entire matrix D2φ is consequently negative semi-definite, and φ is a

concave function.

Next consider the constraints on the optimization variables. First, the constraint

that the cubes’ dimensions be non-negative is linear in the optimization variables, and

linear functions are convex. Second, a relative configuration of the cubes is specified
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by a list of constraints of the form: ci1 + 1

2
hi1 ≤ cj1− 1

2
hj1. (This particular constraint

separates the ith and jth cubes along a plane orthogonal to the s1-axis.) We see that

the separation constraints are also linear in the optimization variables. Last consider

the constraint that the cubes must lie inside the convex set S. The ith cube lies

inside S if its vertices lie in S. We may assume that S is specified by inequalities

ψ1(s1, s2, s3), . . . , ψr(s1, s2, s3) ≤ 0 such that ψ1, . . . , ψr are convex functions. In that

case a vertex vj lies in S if it satisfies the inequalities ψ1(vj), . . . , ψr(vj) ≤ 0. Each

vertex is given by an expression of the form vj = ci± 1

2
hi for a suitable selection of the

signs of hi ∈ IR3. The vertices are therefore linear functions of the optimization vari-

ables. Since composition of a convex function with a linear map preserves convexity,

the cube containment constraints are convex functions of the optimization variables.

¤

It is worth mentioning that convex optimization algorithms, for instance the el-

lipsoid algorithm used in our implementation, generate an ǫ-accurate solution in

O(m2l log(1/ǫ)) time, where m is the number of optimization variables and l the

number of steps required to evaluate the constraints. An example of the approxima-

tion of a convex set by five maximal cubes appears in Figure 3.9.

3.4 The PCG Algorithm

In this section we describe the PCG algorithm and analyze its computational com-

plexity. First we give an overview of the algorithm. The set of feasible 3-limb postures

in each cell of contact c-space is a union of three convex sets. However, in practical

tunnel environments each cell contains at most one convex set. We describe the al-

gorithm under the assumption of a single convex set per cell, and discuss the case of
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multiple convex sets in the appendix. The algorithm first approximates each of the

convex sets by p maximal cubes. The number of cubes and their relative configura-

tion are user-specified inputs whose practical selection is discussed below. In order

to describe the next stage of the algorithm we introduce the notion of cube orienta-

tion. A maximal cube parametrizes a set of feasible 3-limb postures, each containing

two distinct 2-limb postures. The two 2-limb postures necessarily share a limb in

common. However, this common limb cannot be lifted, since its lifting would destroy

both 2-limb postures. By construction, all the 3-limb postures parametrized by a

given maximal cube have the same common limb. In contact c-space, we associate

with each maximal cube an orientation vector, which is aligned with the si-axis of

the limb that cannot be lifted from the 3-limb postures parametrized by the cube.

The orientation vectors play an important role in the graph construction described

below.

In the second stage the algorithm partitions the maximal cubes as follows. The

algorithm constructs an arrangement of all the separating planes of the cubes, where

each separating plane contains one of the cubes’ faces. Using this arrangement, the
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algorithm partitions the cubes as illustrated in Figure 3.5. The figure shows three

cubes and their mutual partition along the separating planes into sub-cubes. Dur-

ing the partition process each sub-cube inherits the orientation vector of its parent

cube. The resulting sub-cubes are disjoint4, and they satisfy the following projection

property. Any two sub-cubes either have the same projection on one of the coordi-

nate planes, or their projection on all three coordinate planes are disjoint. If two

sub-cubes share a projection they are called compatible, and the si-axis aligned with

the direction of projection is called the direction of compatibility. The algorithm next

defines a graph called the sub-cube graph. The nodes of the graph are center points of

the sub-cubes. The edges of the graph connect compatible sub-cubes whose direction

of compatibility is orthogonal to the orientation vector of the two sub-cubes.

Let us pause to discuss the edges of the sub-cube graph. Every edge of the graph

represents lifting and re-placement of a particular limb. The lifting of a limb must

leave the robot with a stable 2-limb posture. The orientation vector of a sub-cube

describes which limb my not be lifted from the 3-limb postures parametrized by

the sub-cube. Hence all edges emanating from a node must be orthogonal to the

orientation vector of the sub-cube associated with the node. Moreover, all edges

of the sub-cube graph are straight lines parallel to the si-axes in contact c-space

(Figure 3.11). For example, when an edge is parallel to the s1-axis, motion along

this edge means that only limb 1 is moving, while the foothold positions of limbs

2 and 3 remain fixed. According to Lemma B.0.1 in the appendix, the motion of

a limb between any two sub-cubes connected by an edge can be executed such that

reachability is maintained throughout the limb’s motion. Finally, the start and target

3-limb postures, denoted S and T , are added as special nodes to the sub-cube graph.

4We say that two sets are disjoint when their interiors are disjoint.



CHAPTER 3. PCG: A FOOTHOLD SELECTION ALGORITHM 78

The construction of edges from S and T to the other nodes of the graph is described

below.

In the third stage the algorithm assigns unit weights to all edges, then searches

along the sub-cube graph for the shortest path from S to T . The shortest path on

the graph minimizes the number of limb lifting and re-placement steps along the

path from start to target. However, this minimality is only relative to the cube

approximation obtained in the first stage of the algorithm. A formal description of

the algorithm follows.

PCG Algorithm:

Input: Geometrical description of an n-wall tunnel. A value for the coefficient of

friction. Start and target 3-limb postures S and T . A value for the number of cubes

p and their relative configuration.

1. Cube approximation:

1.1 Determine which cells Ii×Ij×Ik contain a non-empty set F ijk of feasible 3-limb

postures.

1.2 Approximate each non-empty set F ijk by p maximal cubes. Assign an orientation

vector to each maximal cube.

2. Cube partition:

2.1 Construct an arrangement of the separating planes of all maximal cubes.

2.2 Subdivide each maximal cube into sub-cubes along the separating planes. Assign

to each sub-cube the orientation vector of its parent maximal cube.

2.3 Define a sub-cube graph with nodes at the center of the sub-cubes, and edges

between compatible sub-cubes whose direction of compatibility is orthogonal

to the orientation vector of both sub-cubes.
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2.4 Define S and T as special nodes and connect them to the graph as described

below.

3. Graph search:

3.1 Assign unit weight to all edges.

3.1 Search for the shortest path along the sub-cube graph from S to T .

Two technical details of the algorithm need explanation. The first is the construction

of edges from S and T to the other nodes of the graph. For simplicity, let the start

and target be feasible 3-limb postures with their own orientation vector. (In general,

S and T are required to contain only one stable 2-limb posture.) For the start and

target nodes, compatibility with a sub-cube means that the projection of the sub-cube

on one of the coordinate planes contains the corresponding projection of the node.

Having defined orientation and compatibility for S and T , the edges connecting these

nodes to the other nodes of the graph are constructed by the rule specified in step 2.3

of the algorithm. The second technical issue is the selection of a relative configuration

for the p cubes. In principal any relative configuration can be used by the algorithm.

In the next section we specify in each cell a relative configuration that separates the

p cubes perpendicular to the cell’s direction vector. This relative configuration tends

to preserve the connectivity of the set feasible 3-limb postures in the cell.

Next we discuss some notable features of the algorithm. First, the uniform weight

assignment reflects our desire to minimize the total number of limb lifting and re-

placement along the path. However, the edges can be assigned different weights,

for instance, ones that reflect a measure of distance traversed between successive

footholds. Second, the path generated by the algorithm is contact independent in two

ways. Each node of the graph parametrizes three contact independent wall segments,

and each edge of the graph can be realized by limb lifting and re-placement between
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any two postures in the sub-cubes joined by the edge. Third, the algorithm treats

the motion of a limb between walls and along a single wall in a uniform manner.

One implication of this uniformity is that small changes to the tunnel geometry, for

instance a change of a long straight wall into a piecewise linear wall, would not have

a significant influence on the path generated by the algorithm. Last, the size of the

sub-cube graph increases with p. However, if an edge exists in the graph for low

values of p, it would persist in the graph for larger values of p. Consequently, the

path from start to target only becomes shorter as p increases.

The remainder of this section is concerned with the computational complexity

of the algorithm. We assume in the analysis that the robot can reach from any

given position only a small number of walls which is bounded by a constant. This

assumption is called local reachability.

Theorem 5 Let S and T be start and target 3-limb postures in a tunnel environment

that satisfies the local reachability assumption. Then the PCG algorithm finds the

shortest path from S to T in the cube approximation of contact c-space in O(np6 log(np))

time using O(np6) space, where n is the number of tunnel walls and p is the number

of maximal cubes in each non-empty cell of contact c-space.

Proof: First consider step 1.1 of the algorithm, identifying which cells of con-

tact c-space contain feasible 3-limb postures. The feasible 3-limb postures must in

particular be reachable, and the algorithm first identifies which cells contain reach-

able 3-limb postures. The radius-R neighborhood about a wall is bounded by two

linear and two quadratic curves. The collection of these neighborhood forms a pla-

nar arrangement of O(n) curves. By the local reachability assumption, a radius-R

neighborhood intersects a constant number of other radius-R neighborhoods. Hence
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the arrangement of radius-R neighborhoods contains O(n) intersection points. A

line sweep algorithm can compute the intersection points in O(n log(n)) time. Each

intersection point is associated with a finite number of overlapping radius-R neighbor-

hoods, and any triplet of overlapping neighborhoods is a potentially non-empty cell

in contact c-space. Thus we obtain O(n) potentially non-empty cells in O(n log(n))

time. The actual verification that these cells are non-empty is carried out in the next

step of the algorithm.

Next consider step 1.2, where each non-empty set F ijk is approximated by p max-

imal cubes. Any convex optimization algorithm first computes an initial feasible

solution, or reports that no feasible solution exists. This first step determines which

of the O(n) cells generated by the line sweep algorithm contains a non-empty set

of feasible 3-limb postures. Standard convex optimization algorithms, for instance

the ellipsoid algorithm used in our implementation, generate an ǫ-accurate solution

in O(m2l log(1/ǫ)) time, where m is the number of optimization variables and l the

number of steps required to evaluate the constraints [50]. In our case m = 6p since

each cube has six parameters. The l constraints are the validity of the cubes’ relative

configuration, and the containment of the cubes’ vertices in F ijk. The relative con-

figuration consists of p − 1 separating planes, and the total number of cube vertices

is 8p. Thus m = O(p) and l = O(p). The approximation of each set F ijk by p maxi-

mal cubes takes O(p3 log(1/ǫ)) time. Since there are O(n) potentially non-empty sets

F ijk, step 1.2 generates O(np) maximal cubes in O(np3 log(1/ǫ)) time.

Next consider steps 2.1 and 2.2, where the maximal cubes are partitioned into sub-

cubes. Since there are O(np) maximal cubes, sorting the cubes’ separating planes and

generating their arrangement takes O(np log(np)) time. Each of the maximal cubes

parameterizes three segments along the tunnel walls. When two limbs contact two of
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the three segments, the local reachability assumption implies that the third limb can

reach a constant number of walls. Since only one limb has moved, the 3-limb posture

resulting from the re-placement of the third limb must reach a maximal cube whose

projection overlaps the projection of the previous maximal cube. Since the limb can

reach a constant number of cells each containing p maximal cubes, every maximal

cube has an overlapping projection with O(p) other maximal cubes. Consider now the

partitioning of a maximal cube along the separating planes. If we first partition the

maximal cube along the s1-axis, it is divided into O(p) slabs orthogonal to the s1-

axis. The slabs are divided along the s2-axis into O(p2) rectangular prisms. Finally,

the prisms are divided along the s3-axis into O(p3) sub-cubes. Since there are O(np)

maximal cubes, step 2.2 generates a total of O(np4) sub-cubes in O(np4) time.

Step 2.3 concerns the construction of edges between sub-cubes. In our implemen-

tation the edges are constructed during the cube partitioning process. For purposes

of analysis, let us assume that the construction of an edge takes O(1) time, so that the

time for step 2.3 is equal to the total number of edges in the sub-cube graph. Recall

that all edges are aligned with the si-axes, and that an edge connects compatible

sub-cubes with a matching projection on one of the coordinate planes. A maximal

cube has an overlapping projection with O(p) other maximal cubes. In each of these

overlaps two columns of the maximal cubes have a matching projection. Since each

column contains O(p) sub-cubes, each sub-cube can have a common projection with

O(p2) other sub-cubes. The edge degree of a sub-cube is therefore O(p2). Since there

are O(np4) sub-cubes, the total number of edges is O(np6). Note that the size of the

sub-cube graph, O(np6), is the space requirement of the algorithm.

Finally consider step 3. In general, a shortest path search on a graph with m

vertices and e edges takes O(e log(m)) time. Substituting m = O(np4) and e =
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O(np6), the search for the shortest path along the sub-cube graph takes O(np6 log(np))

time. Summarizing all the steps, we obtain a run time of O(n log(n) + np3 log(1/ǫ) +

np4 + np6 log(np)) = O(np6 log(np)). ¤

3.5 Selection Number of Maximal Cubes

In this section we oracle p, number of maximal cubes, to sufficiently approximate

the convex set of foothold positions. low values of p may result with connectivity

lose between convex sets or between maximal cubes within a convex set. To check

connectivity between two convex sets we need to check if there exist two compatible

3-limb postures in every pair of convex sets. Thus, in the first subsection we check

if there exist a common projection on the main planes for two convex sets. In the

second subsection we discuss how to select the relative configuration of maximal cubes

in order to reduce lose of connection between the p maximal cubes approximating

a convex set. The choice of the relative configuration of the maximal cubes has

implication on the ability to conduct steps between the maximal cubes within a

convex set. This section concludes with an algorithm that check whether p maximal

cubes sufficiently approximate a convex set.

3.5.1 Connectivity Between Convex Sets

A connection between two convex sets of feasible 3-limb postures exists if there exist a

common projection on the main planes in direction perpendicular to the two direction

vectors. The following theorem states that the problem of checking the connectivity

between two convex sets is a convex programming problem.
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Theorem 6 Let c = (c1, . . . , ck) ∈ C ⊂ R
k and d = (d1, . . . , dk) ∈ D ⊂ R

k be

convex sets. Then the existence problem of points c and d such that ci = di for

i ∈ I = {m1, . . . ,ml} is a convex programming problem.

Proof: We construct R
2k space, where C and D are in two orthogonal subspaces

of R
2k. Next we construct cylinders over C and D denoted Cc ⊂ R

2k Dc ⊂ R
2k

respectively. Consider the set Cc

⋂
Dc. This set is convex since it is intersection

of convex sets. Every point in Cc

⋂
Dc is of the form (c1, . . . , ck, d1, . . . , dk) and

represents two points in R
k that are in C and D respectively. Denote the subspace

P = {(s1, . . . , s2k) : si = si+k∀i ∈ I}. Every point in Linear subspace P represent two

points in R
k that share the same value along the ith coordinate. The set P

⋂
Cc

⋂
Dc

is convex since it is intersection of a hyperplane with convex set. Moreover every

point in P
⋂

Cc

⋂
Dc represent a point in C and point in D such that these points

share the same value along the ith coordinate. The problem now reduced to find if a

convex set is not empty, that can be done using the deep-cut ellipsoid algorithm [7]

¤

3.5.2 Selection of the Maximal Cubes Relative Configuration

We wish to select the relative configuration of the maximal cubes in such way that

it will be possible to carry out at least one step within every convex set. To enable

at least one step within a convex set two consecutive maximal cubes must have a

common projection on one of the major planes, and the projection direction must be

perpendicular to the direction vector of the convex set.

We chose the maximal cubes relative configuration to be linear. In this configu-

ration there is only one plane separating between each cube to the consecutive one.
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This is the simplest configuration yet it well approximates the convex set, since every

cube takes volume of a thick cube shaped layer from the convex set.

We assigned a direction vector to every convex set. It is possible to perform steps

only in directions perpendicular to the direction vector. Therefore a motion between

the maximal cubes can be carried out only if the configuration of the maximal cube is

perpendicular to the direction vector of the convex set. To conclude we choose linear

relative configuration of maximal cubes in direction perpendicular to the convex set

direction vector. Note however that we still have two directions that we can randomly

select one of them for the configuration of the maximal cubes.

3.5.3 An Algorithm to Oracle Number of Maximal Cubes

Next, we describe and algorithm which is simply a function that generate an error

message if the value of p is too small. The criterion to decide whether p is large

enough is based on preserving connectivity within convex set and between convex

sets. We do not want the approximation of the convex sets to brake any possible

connections. Note however that this lower bound is not necessarily tight.

Checking number of maximal cubes algorithm

Input: The maximal cubes approximating the convex sets.

For each convex set F ijk whose orientation vector is along sl do:

1. Check if every consecutive maximal cubes in F ijk have common projection

along axis perpendicular to sl. if not send message “p is too small”.

2. Find all Fmno such that

Case l = 1: m = i and (n = j or o = k)

Case l = 2: n = j and (m = i or o = k)
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Case l = 3: o = k and (m = i or n = j)

3. For every Fmno from step 2 do:

3.1 Check if there exist 3-limb postures in F ijk that is compatible to a 3-limb postures

in Fmno using convex programming technique. If there is not such compatible

pair continue to the next Fmno in step 3.

3.2 Check compatability of all possible pairs of maximal cubes such that one cube is

in F ijk and the second is in Fmno. If there is not a compatible pair send

message “p is too small”.

The effect of p value selection can be explained using Figure 3.6. In this 2D figure

when p is too small the connection between the maximal cubes is lost and path is

not available even though connection between the convex sets exists. When p is large

enough there exist connection between the maximal cubes and path is available. In

the figure it can be seen that there is no point of enlarging p beyond some limit since

it will not affect the length of the path (number of steps along the path) or the effect

will be minor.

3.6 Simulation Results

In this section we run several simulations. First we present full implementation of

the PCG algorithm for selection of foothold positions along simulated tunnel. Next

we investigate the effect of various p, number of maximal cubes, values on the path

length.
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3.6.1 Simulation of the PCG Algorithm

We run the PCG algorithm in the tunnel depicted in Figure 3.12. The tunnel consists

of six walls whose lengths are marked in the figure. All lengths are given in terms

of “length units”, but they are basically centimeters. The figure also shows a 3-limb

robot at its start and target positions. In this simulation we set the robot reachability

radius to be R = 60 length units. The coefficient of friction is µ = 0.5, a value that

corresponds to rubber coated footpads contacting walls made of metal or perspex.

Note that the simple tunnel already contains significant geometric features. The two

walls at the tunnel’s bottom form a closing cone. The tunnel next turns leftward and

becomes two parallel walls. Finally, the two walls at the tunnel’s top form an opening

cone. These geometric features are significant, since the robot must use friction effects

to traverse such features.

The walls are parametrized by path length in counterclockwise order (Figure 3.12).
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Thus s = 0 and s = 270 correspond to the bottom and top of the tunnel’s right

side, while s = 270 and s = 540 correspond to the top and bottom of the tunnel’s

left side. Using this parametrization, contact c-space consists of the cube [0, 540]3,

which is depicted in Figure 3.8. The center point of contact c-space at (270, 270, 270)

represents 3-limb postures where the three footpads touch the upper point of either

side of the tunnel. Topologically, we ought to put a cube-shaped puncture at the

center of contact c-space, since the top points on the left and right sides of the tunnel

are physically distinct. The eight outer vertices of contact c-space represent 3-limb

postures where the three footpads are located at the bottom part of the tunnel.

These vertices represent the 23 = 8 possible assignments of the three limbs to the

tunnel’s two sides. Note that the robot must contact both sides of the tunnel in order

to generate an equilibrium posture. Hence the vertices (0, 0, 0) and (540, 540, 540) will
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certainly lie outside the set of feasible 3-limb postures presented below. Topologically,

when we introduce a small cube puncture at the center point, contact c-space becomes

a set embedded in a three-dimensional torus. This fact has been noted in the context

of 3-finger grasps by Leveroni and Salisbury [38].

Let us now turn to the computation of the feasible 3-limb postures in contact

c-space. Figure 3.7 shows the collection of 2-limb equilibrium postures in the (si, sj)

plane. It can be seen that these postures form a convex polygon in each planar cell.

The edges of these polygons consist of frictional equilibrium constraints and the cell’s

boundaries. Note that the figure is symmetric with respect to the si = sj axis,

reflecting the possibility of switching the limbs between the two contacts. Figure

3.8 shows the collection of feasible 3-limb postures, consisting of intersection of pairs

of prisms whose polygonal cross section appears in Figure 3.7. In this particular

tunnel all prism intersections automatically satisfy the reachability constraint. (This

is an artifact of our tunnel environment, coefficient of friction, and robot radius.)

The collection of feasible 3-limb postures has a six-fold symmetry consisting of six

symmetric “arms”: every non-empty cell represents an assignment of the three limbs

to a triplet of walls, and there are six permutations of the three limbs on the triplet

of walls. The arms are roughly aligned with the diagonals of contact c-space, and this

can be explained as follows. The coordinate projection of each arm covers the entire

length of the tunnel. Each arm can therefore be visualized as “dragging” the 3-limb

mechanism as a single rigid body along the entire length of the tunnel. There are

nine non-empty cells in each arm, giving a total of 54 non-empty cells in the entire

contact c-space.

Next consider the approximation of the feasible 3-limb postures in each cell by p

maximal cubes. We use p = 5 maximal cubes per cell and compute the maximal cubes
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using the ellipsoid algorithm. This value of p preserves the connectivity of the set of

feasible 3-limb postures, while still being sufficiently low to allow reasonable execution

time. Figure 3.9 shows the cube approximation of the feasible 3-limb postures in the

cell I1×I6×I1, where the relative configuration is specified by four separating planes

orthogonal to the s3-axis. The result of running the ellipsoid algorithm on the non-

empty cells in one arm of contact c-space appear in Figure 3.10. Since there are

54 non-empty cells, the resulting cube approximation of contact c-space contains

5 · 54 = 270 maximal cubes. The algorithm next partitions each of the maximal

cubes along the separating planes of the other maximal cubes. The partitioning of

the maximal cubes generated 28, 299 sub-cubes in each of the six arms of contact

c-space (the resulting sub-cubes are not shown).

The algorithm next constructs the sub-cube graph, assigns unit edge weights,



CHAPTER 3. PCG: A FOOTHOLD SELECTION ALGORITHM 93

and searches the graph for the shortest path from the start to target postures.

The result of computing the shortest path using Dijkstra’s algorithm is shown in

Figure 3.11. Each segment in the figure is an edge of the sub-cube graph that

represents one limb lifting and re-placement. Figure 3.12 shows the same path in

physical space, where each foothold is marked by its index in the sequence of steps

taken by the robot. Let us denote the sequence of 3-limb postures by (i1, i2, i3),

where ij is the foothold position of limb j at the ith 3-limb posture. Then the

path computed by the algorithm consists of the 3-limb postures: S = (1, 2, 3) →

(4, 2, 3) → (4, 5, 3) → (4, 5, 6) → (7, 5, 6) → (7, 8, 6) → (7, 8, 9) → (7, 10, 9) →

(11, 10, 9) → (11, 10, 12) → (13, 10, 12) → (13, 14, 12) → (13, 14, 15) → (16, 14, 15) →

(16, 17, 15) → (16, 17, 18) → (19, 17, 18) → (19, 20, 18) → (19, 20, 21) → (22, 20, 21) →

(22, 20, 23) → (22, 24, 23) → (25, 24, 23) → (25, 24, 26) → (25, 27, 26) → (28, 27, 26) →

(28, 27, 29) → T = (30, 27, 29). This sequence describes a 3-2-3 gait pattern, where

successive 3-limb postures are interspersed by a 2-limb posture that allows motion of

a limb between the two 3-limb postures. Note that the path generated by the algo-

rithm is minimal in terms of the number of steps relative to the cube approximation

of the feasible 3-limb postures (Figure 3.10). Note, too, that the short edge along

the s3 axis in Figure 3.11 corresponds to the transition (7, 8, 6) → (7, 8, 9). This edge

takes the robot around the leftward turning corner between the walls W5 and W6.

The difficulty in accomplishing this maneuver can be appreciated by inspecting the

narrow overlap between the planar cells I5×I1 and I6×I1 in Figure 3.7.

3.6.2 The Effect of Number of Maximal Cubes on Path Length

We run several simulation to investigate the effect of the selection of p, number of

maximal cubes, on the path length in terms of total number of steps along the path.



CHAPTER 3. PCG: A FOOTHOLD SELECTION ALGORITHM 94

-20 20 40 60

-50

50

100

150

200

1

2

3

4

5

6

7

8

9
10

11

12

13

14

15

16

17

18

19

20

21
22

23

24

25

26

27
28

29

30

last step

first step

initial configuration

final configuration

limb 1

limb 2 limb 3

limb 1

limb 2

limb 3

s

s=0

s=270

s=270

s=370

s=470

s=540

170o

200o

150o

170o

100

100

70
100

100

70

s

s=100

s=200

W
1

W
6

W
2

W
3

W
4

W
5

Figure 3.12: The tunnel environment used in the simulations, and the sequence of
footholds generated by the PCG algorithm.mzixebl` i"r dxvei xy` dfig`d zeewp zxiqe ,zeivleniql dyniy xy` dxdpnd

PCG



CHAPTER 3. PCG: A FOOTHOLD SELECTION ALGORITHM 95

For these simulations we used robot reachability radius of R = 77.2 length units and

coefficient of friction µ = 0.5. We used the following two tunnels. The first tunnel is

two parallel walls of length of 200 length units and the width of the tunnel between

the wall is 115.8 length units. The second tunnel is in the shape of > |, where the

right wall is in length of 150 length units and the left wall consists on two 80 length

units segments with angle of 140o between the segments. The narrower part of this

tunnel is 101.9 length units width. The results of running the PCG algorithm for

p = 2, 3, 4, 5, 6 in these tunnels are shown in the following table.

p number of steps in number of steps in

| | tunnel > | tunnel

2 no path no path

3 10 9

4 10 9

5 10 8

6 10 7

From this table we can conclude that after path was found with some p enlarging p

may reduce the total number of steps but the amount of steps reduced will be small.

Therefor if path was found with a given p there is no point to increase p dramatically

since the effect of increasing p on the total number of steps along the path is minor.

3.7 Conclusion

We presented the PCG algorithm for selecting the foothold positions of a 3-limb

robot in a planar tunnel environment. The algorithm assumes knowledge of the

tunnel geometry and a lower bound on the amount of friction at the contacts. Using
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this knowledge, we established that the feasible 3-limb postures consist of a union

of convex sets in contact c-space. Using convex programming techniques, the PCG

algorithm approximates the collection of feasible 3-limb postures by O(np) maximal

cubes, where n is the number of walls and p the number of cubes in each non-

empty cell of contact c-space. The algorithm next partitions the cubes into sub-

cubes and defines a graph whose nodes are sub-cubes and whose edges represent

feasible motion of a limb between any 3-limb postures in the two sub-cubes. A

shortest path search on the resulting graph generates a 3-2-3 gait sequence that moves

the robot from start to target using a minimum number of foothold exchanges. In

practical tunnel environments the PCG algorithm runs in O(np6 log(np)) time, and

we demonstrated the execution of the algorithm in a tunnel. Experiments conducted

in our laboratory show practical implementation of the PCG algorithm for selecting

the foothold position of a real spider-robot in real tunnel environment.

The algorithm’s main strength is its emphasize on achieving contact independent

foothold placement sequences. Each sub-cube parametrizes three contact independent

wall segments, and each edge can be realized by limb lifting and re-placement between

any two postures in the two sub-cubes connected by the edge. Thus a controller for the

robot’s limbs need only ensure footpad placement within the segments parametrized

by the sub-cubes. The main weakness of the algorithm is the lack of a procedure

for selecting the parameter p. Instead we introduced an algorithm that determine

a lower bound on p, but this lower bound is not necessarily tight. This parameter

has to be sufficiently high to ensure that the resulting cube approximation induces

a sub-cube graph whose connectivity reflects the connectivity of the feasible 3-limb

postures in contact c-space. Yet it must not be too high as to require an unnecessary

long computation time.
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Finally consider the generalization of the PCG algorithm to robots with a higher

number of limbs. In this case some modifications should be done in the algorithm to be

suitable for k-limb mechanisms. It seems that the algorithm directly generalizes to k-

limb mechanisms that move with a k−(k−1)−k gait pattern. Contact c-space in this

case is k-dimensional, and one must first establish that the feasible k-limb postures in

this space are a union of convex sets. If this is the case, the algorithm can be applied

to such mechanisms without any change. However, the computational complexity

of the algorithm would become O(npk+3 log(np)) i.e., exponential in the number of

limbs. A second more challenging topic is how to plan the foothold positions of a

k-limb mechanism using a variable gait pattern. For instance, a 4-limb mechanism

can move a single limb at a time, or two limbs at a time, resulting in a variable gait

pattern. One possibility to generate variable gait pattern is by adding more edges to

the graph that connect different k − limb postures. However this will increase the

algorithm complexity considerably. We are currently investigating foothold placement

algorithms for such mechanisms, with the objective of generating a variable gait

pattern that would minimize the number of steps from start to target and will take

reasonable running time.



Chapter 4

Control of Spider-Like Robot

4.1 Introduction

The control problem associated with quasistatic locomotion of spider-like robots is as

follows. Consider a k-limbed spider mechanism, such that each limb has n actuated

degrees of freedom. The limbs are interconnected by a central base that has three

unactuated degrees of freedom. A spider robot thus has kn+3 degrees of freedom, of

which only kn degrees of freedom are actuated. If we regard the spider’s configuration

space as IRkn+3, the control problem is how to induce forces and torques on the

spider in order to bring it to a desired configuration in IRkn+3. Existing solutions

to the problem make specific assumptions either on the spider’s structure or the

environment’s geometry. Roassman and Pfeiffer [60] assume that the spider limbs

have a negligible mass relative to the central-base mass. This assumption induces

a decoupling of the limbs and central-base dynamics, which allows in turn a control

of the limbs’ contact forces and the central-base’s dynamics. It should be noted

that Pfeiffer’s objective is to control the limbs’ contact forces with the tunnel walls,

98
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while we seek to control the spider’s configuration within the tunnel. Another control

approach is proposed by Dubowsky et al. [14] in the context of ladder climbing.

Using Impedance Control [24], they attach virtual springs to the spider footpads and

central base such that the springs’ set-points reflect the desired spider configuration.

However, their approach seems to rely on the specific geometry of a ladder and lacks

a formal proof of convergence.

In contrast, we present a control approach which is guaranteed to work no matter

what is the mass distribution of the spider or the geometry of the environment. Our

approach exploits the natural compliance in the contacts to stabilize the mechanism

using two three or even more footholds. Since we have frictional contacts we first

derive the contact stiffness matrix. The stiffness matrix presented in section 4.2 is

based on model developed by Walton [78] that describe the contact force as function of

the normal and tangential displacements for loading paths where the ration between

the normal and tangential displacements is constant. In the preloading process we

choose a loading path that meets this Walton loading path condition. The contact

stiffness matrix is not symmetric and we show the condition for it’s symmetric part

to be positive definite, which is a key property that we need later on to prove the

stability of the mechanism. Next we present the spider-robot dynamic equations. We

introduce a simple decentralized PD controller for the actuated joints of the robot.

Then we find the equilibrium point of the closed-loop system. Following we analyze

the stability of the system using linearization about the equilibrium of the non-linear

closed-loop system. The linearized dynamic system is asymmetric.

In the literature [29, p. 86] such asymmetric systems are called circulatory systems.

Known results on the stability of circulatory systemsare based on the symmetrizability

of asymmetric matrix. Taussky [74] was the first to define symmetrizability of a
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matrix. She also showed [75] that any real square matrix can be written as the

product of two symmetric matrices. Huseyin [28, p. 174] applied Taussky’s results

to analyze the stability of circulatory systems. Additional results on the stability of

circulatory systems based on the symmetrizability of asymmetric matrix can be found

in [29, 1]. However finding the two symmetric matrices composing the asymmetric

matrix is a numerical process and thus general analytic results on the stability of

asymmetric systems are, to best of our knowledge, not exist. Therefore we develop

criteria for for the stability of asymmetric systems. These criteria are based on the

fact that we consider system which it’s symmetric part is stable, then a small enough

asymmetric part should not destroy the stability of the system. The proof of this

result is inspired by the proof of stability for symmetric systems presented in [49, p.

192].

Other relevant papers that discuss robot’s stiffness matrix are [10, 72], where they

show the effect of internal forces in closed kinematics chains on the overall stiffness

matrix. However, in these papers the overall stiffness matrix is symmetric.

In this work we introduce a computed lower bound on the stiffens of the PD con-

troller in order to stabilize the symmetric system. Additionally an analytic criterion

for the maximum allowed magnitude of the asymmetry of the system is developed.

4.2 Compliant Contact Model

We use a Compliant contact model for the forces occurs when two quasi-rigid bodies

are pressed one against the other. We consider the case of contact between two

spheres of radius R 1, shear modulus G, and Poisson’s ratio ν. Though in our case

1For spheres of different radii R is the equivalent radius defined as 1

R
= 1

R1

+ 1

R2

. Johnson [31, p.
92] defines an equivalent elastic modulus as well, where the shear modulus is function of the elastic
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Figure 4.1: The interpenetration of the spider-robot’s footpad and the tunnel wall..dxdpnd otee yiakrd heaex ly lbxd sk oia zidd dxigd
the footpad is not of sphere shape the contact force-displacement law should not

differ dramatically from the case of contacting spheres. Moreover, if the contacting

surfaces are rough then the asperities can be modelled as spheres and therefore we

can use the contacting sphere model. The spheres are initially contact in a point

with zero contact force. Then as external force presses the spheres one against the

other the shapes of the spheres deform and they contact through an area. However

if we consider the non-deformed spheres then we get that the initial contact point on

the sphere displaced in δ = (δn, δt), where δn and δt are the normal and tangential

displacements respectively (Figure 4.1). The compliant contact model is the relation

between the contact force f = (fn, f t) and the displacement δ = (δn, δt).

For the normal direction the Hertz model [31, 21], which has been verified theoret-

ically and experimentally, establish that the normal traction over the circular contact

modulus and Poisson’s ratio.
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area is given by

qn =
4G

πR(1 − ν)
(Rδn − r2)1/2, (4.1)

where r (0 ≤ r ≤
√

Rδn) is the radial distance from the center of the contact area.

For the tangential direction Mindlin [45] showed that when two axially pressed

spheres are further displaced tangentially, the contact area and the normal traction

are unaffected and the axisymmetric tangential traction is given by

qt =
4Gδn

π(2 − ν)
(Rδn − r2)−1/2.

However, for our application this loading path is not applicable, since we need to

apply the loading force in both directions. In that case Walton [78] showed that for

the special loading path where

δt

δn
= c = constant (4.2)

the tangential and normal tractions are given by

qn =
4G

πR(1 − ν)
(Rδn − r2)1/2, (4.3)

qt =
8Gc

πR(2 − ν)
(Rδn − r2)1/2. (4.4)

For this loading path the normal and tangential contact forces are computed by

integrating the tractions over the contact area as follows,

fn =

∫ √
Rδn

0

qn2πrdr =
8Gδn

√
Rδn

3(1 − ν)
, (4.5)

f t =

∫ √
Rδn

0

qt2πrdr =
16Gcδn

√
Rδn

3(2 − ν)
. (4.6)



CHAPTER 4. CONTROL OF SPIDER-LIKE ROBOT 103

4.2.1 The Contact Stiffness Matrix

For further analysis we use a first order approximation (or linearization) of the contact

forces. The contact stiffness matrix is defined as

K =






∂fn

∂δn

∂fn

∂δt

∂f t

∂δn

∂f t

∂δt




 (4.7)

By continuity argument we can assume that in the vicinity of Walton path (i.e.

δt

δn ≈ c 6= constant) the tractions and forces have the similar form as in equations

(4.5,4.6).

The normal force is only a function of δn. Therfore it’s derivatives are

∂fn

∂δn
=

4G
√

Rδn

1 − ν

and

∂fn

∂δt
= 0.

To compute the partial derivatives of the tangential contact force we apply the

derivative definition as follows

∂f t

∂δn
= lim

∆δn→0

f t(δn
0 + ∆δn, δt

0) − f t(δn
0 , δt

0)

∆δn

and

∂f t

∂δt
= lim

∆δt→0

f t(δn
0 , δt

0 + ∆δt) − f t(δn
0 , δt

0)

∆δt
.

From the geometric relations of figure (4.2) we can express f t as function of δn

and c rather then function of δn and δt. This will enable us to use the former Walton

model. The relations are

f t(δn
0 + ∆δn, δt

0) = f t(δn
0 + ∆δn, c − ∆c)
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Figure 4.2: Schematic representation of the geometric relations in infinitesimal
perturbations from the nominal penetration.dxigdn zeilniqihipitpi` zefefz xear miixhne`ibd mixywd ly zihnkq dbvd.zilpinepd

f t(δn
0 , δt

0 + ∆δt) = f t(δn
0 , c + ∆c)

Recall that

f t(δn, c) =
16Gcδn

√
Rδn

3(2 − ν)
.

Now we can write

∂f t

∂δn = lim∆δn→0
f t(δn

0
+∆δn,c−∆c)−f t(δn

0
,δt

0
)

∆δn

= lim∆δn→0
16G(c−∆c)(δn

0
+∆δn)

√
R(δn

0
+∆δn)−16Gcδn

0

√
Rδn

0

3(2−ν)∆δn

From figure (4.2) we observe that

(c − ∆c)(δn
0 + ∆δn) = δt

0 = cδn
0 .

For the
√

R(δn
0 + ∆δn) term we use first order approximation (using Taylor series)

as follows
√

R(δn
0 + ∆δn) =

√

Rδn
0 +

1

2
√

Rδn
0

R∆δn.
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Substitute these results back yields

∂f t

∂δn = lim∆δn→0

16Gcδn
0
(
√

Rδn
0
+ 1

2

√
Rδn

0

R∆δn)−16Gcδn
0

√
Rδn

0

3(2−ν)∆δn

=
16Gcδn

0
R

6
√

Rδn
0
(2−ν)

=
8Gδt

0
R

3
√

Rδn
0
(2−ν)

Next we compute the derivative of f t with respect to δt. We express f t as function

of δn and c then from the derivative definition we have

∂f t

∂δt = lim∆δt→0
f t(δn

0
,c+∆c)−f t(δn

0
,c)

∆δt

= lim∆δt→0
16G(c+∆c)δn

0

√
Rδn

0
−16Gcδn

0

√
Rδn

0

3(2−ν)∆δt

= lim∆δt→0
16G∆cδn

0

√
Rδn

0

3(2−ν)∆δt .

From figure(4.2) we find the following geometric relation,

∆δt = (c + ∆c)δn
0 .

Recall that δt = cδn
0 . Thus from this relation we have

∆c =
∆δt

δn
0

Substitute this relation back to the partial derivative of f t yields

∂f t

∂δt = lim∆δt→0
16G∆δtδn

0

√
Rδn

0

3(2−ν)δn
0
∆δt

=
16G

√
Rδn

0

3(2−ν)
.

we conclude with the following stiffness matrix

K =






4G
√

Rδn

1−ν
0

8GRδt

3
√

Rδn(2−ν)
16G

√
Rδn

3(2−ν)




 . (4.8)

Next we wish to examine the positive definiteness property of K. But since K is

an asymmetric matrix we examine the positive definiteness of the symmetric part of
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K. Denote (K)s = 1
2
(K + KT ) the symmetric part of K, and (K)as = 1

2
(K − KT )

the skew-symmetric part of K. The following lemma assert the conditions for which

the symmetric part of of K is positive definite.

Proposition 4.2.1 (Positive definiteness of K) Let K ∈ R
2×2 be a frictional

contact stiffness matrix. Then for

−
√

12(2 − ν)

(1 − ν)
<

δt

δn
<

√

12(2 − ν)

(1 − ν)

(K)s is positive definite

Proof: Since K is not a symmetric matrix, we express K as sum of symmetric matrix,

(K)s and a skew-symmetric matrix (K)as. Tr((K)s) is the sum of (K)s’s eigenvalues

and it is positive for all δn > 0. Thus if the multiplication of Ks’s eigenvalues is

positive then all the eigenvalues are positive. The multiplication of (K)s’s eigenvalues

is simply det((K)s), and the condition for (K)s’s positive definiteness is
∣
∣
∣
∣
∣
∣
∣

4G
√

Rδn

1−ν
4GRδt

3
√

Rδn(2−ν)

4GRδt

3
√

Rδn(2−ν)
16G

√
Rδn

3(2−ν)

∣
∣
∣
∣
∣
∣
∣

=
16RG2(12(δn)2(2 − ν) − (δt)2(1 − ν))

9δn(2 − ν)2(1 − ν)
> 0.

Since the denominator is positive we demand positive nominator. It follow that

12(δn)2(2 − ν) > (δt)2(1 − ν).

Finally, the condition for (K)s to be positive definite is given by

−
√

12(2 − ν)

(1 − ν)
<

δt

δn
<

√

12(2 − ν)

(1 − ν)
.

¤

Finally, note that the contact forces stiffness matrix is given in the contact refer-

ence frame (with respect to the definitions of δn and δt). A simple transformation of
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the form

RT (γ)KR(γ)

enables us to express K in a reference frame rotated by angle γ relative to the contact

reference frame. In this formula R(γ) is a rotation matrix of angle γ.

4.3 Control Law

We first describe the dynamics of spider robots, then present the control laws, and

finally analyze their stability. The spider’s configuration parameters are denoted

as follows. The base configuration (position and orientation) is denoted q0 ∈ IR3.

Each limb possesses n actuated joints, and the joints associated with the ith limb are

denoted qi ∈ IRn. The joint vector of the entire spider is denoted q̄ ∈ IRkn, and the

configuration of the entire spider (i.e. central-base configuration and joint values) is

denoted q = (q0, q̄) ∈ IRkn+3.

4.3.1 The Dynamics of k-Limbed Spider Robot

Our first task is to compute the inertia matrix of a k-limbed spider robot. Since

the limbs are attached to a common central base, the position of the ith limb is

determined by the configuration parameters (q0, qi). Hence the total kinetic energy

of the mechanism, denoted T (q, q̇), is given by

T (q, q̇) = 1
2
q̇T
0 M0(q0)q̇0 +

k∑

i=1

1
2
(q̇0, q̇i)

T Mi(q0, qi)






q̇0

q̇i




 , (4.9)

where M0(p0) is the central-base 3×3 inertia matrix, and Mi(q0, qi) is the ith limb

(n + 3)× (n + 3) inertia matrix. However, in general T (q, q̇) = 1
2
q̇T M(q)q̇, where
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M(q) is the spider’s total inertia matrix. Equation (4.9) thus implies that M(q) is

the symmetric positive-definite matrix:

M(q) =















M0 M01 M02 ·· M0k

MT
01 M11 0 ·· 0

MT
02 0 M22 ·· 0

·· ·· ·· ·· ··

MT
0k 0 0 ·· Mkk















(kn+3)×(kn+3)

where

Mi =






0 M0i

MT
0i Mii




 .

The inertia matrix has a special structure which reflects the spider’s kinematics.

The non-zero entries in the first row and column correspond to the kinematic coupling

between the central-base and each limb, and the zero entries correspond to the lack

of any coupling between the spider’s limbs.

Next we describe the external forces and torques that act on the spider mecha-

nism. First, the spider’s actuators apply joint torques. These torques are denoted

(0, τ), where 0 ∈ IR3 represents the absence of central-base actuation, and τ ∈ IRkn

represents the nk joint torques. Second, the tunnel walls apply reaction forces on the

spider’s holding footpads. Denote 2 ≤ m ≤ k the number of limbs that brace against

the tunnel. Without loss of generality we assume the indices of the bracing limbs are

in the range 0 . . . m. Note that the k−m limbs whose indices are m . . . k are free and

does not contact the environment. The net wrench due to these forces is given by
∑m

i=1 JT
i Fi, where Fi is the ith contact force and Ji = Dxi(q) is the Jacobian matrix of

this contact. Finally, the spider’s motion as a single rigid body incurs damping. This

damping has three major sources. The first source for this damping is due to plastic
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deformations and hysteresis at the contacts. Kumar et. al. [36, 35] first modelled

the contact forces hysteresis as equivalent damping. The second source is viscoelastic

losses due to material compression at the contacts [17]. The third source for this

damping is caused since in our experimental apparatus the spider is supported by

planar air bearings against a horizontal plane, and frictional losses in these bear-

ings is an additional source of damping. Since only the central-base configuration q0

varies when the spider moves as a single rigid body, we write these damping effects

as (−D0q̇0,~0), where D0 is a 3×3 positive-definite matrix and ~0 ∈ IRnk. Summarizing

all the external influences, the spider’s dynamics is given by

M(q)q̈ + B(q, q̇) =






0

τ




 −






D0q̇0

~0




 +

m∑

i=1

JT
i Fi, (4.10)

where B(q, q̇) = Ṁ(q)q̇ − 1
2
q̇T ( d

dq
M(q))q̇ contains Coriolis and centrifugal forces.

4.3.2 The Control Law

We now present a control law for k-limbed spider robots. In order to bring all parts of

a spider robot to a desired configuration, we induce forces and torque on the spider’s

unactuated central-base as follows. Consider for example the three-legged spider robot

depicted in Figure 3.1. The spider brace against the tunnel walls using two limbs,

and it has to bring its third limb to a new position specified by a higher-level motion

planner. During this motion, all parts of the spider are free to move, provided that the

two footpads contacting the environment remain stationary with respect to each other.

The latter condition ensures that from the perspective of the tunnel walls, the spider

remains grasped as a single rigid body throughout its motion. Since the spider hold

itself in a stable frictional grasp the two footpads will settle at their original position
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once the moving parts reach their destination. In order to realize this behavior, the

motion planner specifies a sequence of target configurations to the robot controller,

such that each target configuration is stable frictional grasp. The motion planner

is not discussed in this paper. However, quasistatic motion paradigms for 3-legged

spider robot is described in chapter 3. We now proceed with the description of the

control law.

Let q∗ = (q∗0, q̄
∗) denote the spider’s desired configuration. Then the control law

is the PD rule:

τ(t) = −P̄ (q̄(t) − q̄∗) − D ˙̄q(t), (4.11)

where P̄ and D are nk×nk positive-definite matrices of proportional gains and damp-

ing coefficients. Note that the PD rule (4.11) requires no cancellation of the spider’s

nonlinear dynamics, and as such is simple to implement. Note, too, that in the case

where P̄ and D are diagonal matrices, (4.11) becomes a decentralized control law,

where each joint needs only measure its own angular state. This approach allows

straightforward implementation of (4.11) using standard controller boards.

4.3.3 Equilibrium Point of the Spider-Robot System

Substituting the control law in the dynamical equation (4.10) gives the closed-loop

system:

M(q)q̈ + B(q, q̇) = −P (q − q∗) +
m∑

i=1

JT
i Fi − Qq̇, (4.12)

where Q = diag(D0, D) is a positive-definite damping matrix, and P = diag(03×3, P̄ )

is symmetric positive semi definite gain matrix. Our first task is to identify the

static equilibrium point of (4.12). Substituting q̇ = 0 in (4.12) gives the equilibrium

condition:
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k∑

i=1

(
∂

∂q0

xi(q0, q̄)

)T

Fi = 0 and
m∑

i=1

(
∂

∂q̄
xi(q0, q̄)

)T

Fi = −P̄ (q̄(t) − q̄∗). (4.13)

By construction, the motion planner specifies an equilibrium posture for the spider,

at which the footpads penetrate the tunnel walls by a small amount. This posture

determines the desired spider configuration q∗ which appears in the control laws.

The equilibrium point of the closed-loop system is achieved by pressing the footpads

against the tunnel walls at the specified contacts, until the equilibrium condition

(4.13) is satisfied. The loading process is done by gradually increasing the penetra-

tions δn
i and δt

i while holding the ratio ci =
δt
i

δn
i

constant. This loading path meet the

requirement for walton path. Moreover, This loading path enables to increase the

contact force magnitude while maintaining the same line of action for the force, as

we have

cf
i =

F t
i

F n
i

= ci
2(1 − ν)

(2 − ν)
. (4.14)

The first part of (4.13) requires that the net wrench on the central-base due to the

tunnel’s reaction forces be zero. The second part of (4.13) requires that the closed-

loop joint actuators balance the joint torques induced by the tunnel’s reaction forces.

The following lemma establishes that such a balance can be achieved.

Lemma 4.3.1 [Equilibrium point] Let q∗ be a spider configuration at which m limbs

(2 ≤ m ≤ k) press against the environment in an equilibrium posture. Let P =

diag(03×3, P̄ ), and let R(γi) be a rotation matrix by the ith tunnel segment angle γi.

Then first order approximation for an equilibrium configuration of the entire robot, q̂,

is given by

q̂ = q∗ +

(

P +
m∑

i=1

JT
i RT (γi)KiR(γi)Ji

)−1 m∑

i=1

JT
i Fi(δ

∗
i ).
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Provided that q̂ is sufficiently close to q∗ to allow the approximation.

Proof: The conditions for equilibrium as shown in (4.13) are:

P (q − q∗) =
m∑

i=1

JT
i Fi(δi), (4.15)

where δi = (δn
i , δt

i). In the vicinity of q∗ we can use first order approximation to the

contact forces as follows,

Fi(δi) = Fi(δ
∗
i ) − RT (γi)KiR(γi)(δi − δ∗i ),

where δ∗i is the vector of footpad penetrations corresponding to q∗. the multiplication

by R(γi) and RT (γi) are used to convert the contact force and penetrations from the

contact local frame to the global frame. Denote the ith contact point correspond to

zero penetration x0
i . Therefore we can write δi = xi − x0

i and δ∗i = x∗
i − x0

i , where x∗
i

is the ith footpad position corresponding to q∗. Thus δi − δ∗i becomes xi − x∗
i , and if

xi is close to x∗
i then xi − x∗

i ≈ Ji(qi − q∗i ). substituting these results back to (4.15)

yields

P (q − q∗) =
m∑

i=1

JT
i Fi(δ

∗
i ) − JT

i RT (γi)KiR(γi)Ji(qi − q∗i ).

Rearranging this equation gives the equilibrium configuration

q̂ = q∗ +

(

P +
m∑

i=1

JT
i RT (γi)KiR(γi)Ji

)−1 m∑

i=1

JT
i Fi(δ

∗
i ).

Finally, note that the matrix
(
P +

∑m
i=1 JT

i RT (γi)KiR(γi)Ji

)
is invertible since P has

full rank with respect to q̄ and
∑m

i=1 JT
i RT (γi)KiR(γi)Ji has full rank with respect

to q0. ¤
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4.3.4 Linearization of Spider-Robot System About Equilib-

rium

Nonlinear system has equivalent stability property as the linearized system. There-

fore For further analysis of the nonlinear system stability property we will analyze

the stability property of the linearized system. Next we develop the terms for the

linearized system. The nonlinear system as in (4.12) can be written in reduced order

as:

ṗ1 = p2

ṗ2 = M−1(p1)
(
−B(p1, p2) − P (p1 − p0

1) − Qp2 +
∑m

i=1 JT
i (p1)Fi(p1)

)
.

(4.16)

For system of the form ṗ = f(p) the linearized system about an equilibrium point, p̂,

defined as

δṗ =
df

dp

∣
∣
∣
∣
p=p̂

δp,

where δp = p− p̂. The equilibrium point p̂ satisfies f(p̂) = 0. p̂ can be divided to two

parts p̂ = (p̂1, p̂2). Note that in mechanical systems p2 is the generalized velocities and

therefore p̂2 = 0. In (4.16) all the terms in B(p1, p2) are quadratic in the generalized

velocities and vanish in the linearization. Thus the linearized system is

δṗ1 = δp2

δṗ2 = M−1(p̂1)
[
−P +

∑m
i=1

(
−JT

i (p̂1)R
T (γi)KiR(γi)Ji(p̂1) + D2xi(p̂1)Fi(p̂1)

)]
δp1

−M−1(p̂1)Qδp2,

where D2xi(p̂1) is a third order tensor and by multiplying it by the contact force

Fi(p̂1) we get a nk × nk matrix. rewriting the above system in matrix format yields

δṗ =






0 I

M−1
[
−P − ∑m

i=1

(
JT

i RT
i KiRiJi − D2xi(p̂1)Fi

)]
−M−1Q




 δp.
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Another option to write this linear system is as follows

Mδq̈ + Qδq̇ +

[

P +
m∑

i=1

(
JT

i RT
i KiRiJi − D2xi(q̂)Fi

)

]

︸ ︷︷ ︸

K̃

δq = 0, (4.17)

where δq = q − q̂.

General results [34, 33, 11, 49] of the stability of such systems consider the case

where M,Q and K̃ are symmetric matrices. In this case if Q and K̃ are positive def-

inite then the system is asymptotically stable. However in our case Ki is asymmetric

and that cause the entire proportional gain, K̃, to be asymmetric, so the general

result cannot be applied here. Other results on asymmetric systems [74, 28, 29, 1]

analyze the system stability using symmetrization of the asymmetric matrix. Note

that this symmetrization process is numeric and therefore can not give us any insight

on the general conditions for the stability of the system. In the next section stability

analysis of our linearized system will be considered.

4.4 Stability Analysis

In this section we analyze the equilibrium stability of the spider-robot closed loop

system. Since the compliant contacts produce asymmetric stiffens matrix we first

develop the condition for asymmetric linear system to be asymptotically stable. Then

we apply these condition to our closed-loop system.

4.4.1 Stability of 2nd-Order Asymmetric Linear Systems

Consider the following second order linear asymmetric dynamic system

p̈ + Kvṗ + Kpp = 0, (4.18)
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where Kv ∈ IRn×n is symmetric positive definite matrix and Kp ∈ IRn×n is asym-

metric matrix, while it’s symmetric part (Kp)s ∈ IRn×n is positive definite. The

following Theorem states that if the skew-symmetric part of Kp is small enough and

the symmetric part of Kp is positive definite then the system (4.18) is asymptotically

stable.

Theorem 7 (Stability of asymmetric system) Consider the system of (4.18). Let

β ∈ IR be the minimal eigenvalue of Kv ∈ IRn×n. Let α ∈ IR be the minimal eigen-

value of the symmetric part of Kp ∈ IRn×n, and let ω ∈ IR be the matrix norm 2 of

the skew-symmetric part of Kp. Then if

|ω| <
√

αβ

the system is asymptotically stable.

Proof: System (4.18) can be written as a first-order linear system:

d

dt






p

ṗ




 =






0 I

−Kp −Kv






︸ ︷︷ ︸

A






p

ṗ






For asymptotic stability it suffice to show the conditions for which the real part of

each of the eigenvalues of A is negative. Let λ ∈ C be an eigenvalue of A with

corresponding eigenvector v = (v1, v2) ∈ C
2n, v 6= 0. Then,

λ






v1

v2




 =






0 I

−Kp −Kv











v1

v2




 =






v2

−Kpv1 − Kvv2




 .

It follows that if λ = 0 then v = ~0, and hence λ = 0 is not an eigenvalue of A.

Further, if λ 6= 0, then v2 = ~0 implies that v1 = ~0 ≥. Thus, v1, v2 6= 0 and we may

2The matrix norm is defined as ‖E‖ = max{‖Eu‖} over all vectors ‖u‖ ≤ 1 [26, p. 293].
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assume without loss of generality that ‖v1‖ = 1. Using this we write

λ2 = v∗
1λ

2v1 = v∗
1λv2 = v∗

1(−Kpv1 − Kvv2) = −v∗
1Kpv1 − λv∗

1Kvv1, (4.19)

where ∗ denotes the complex conjugate transpose. Since Kv is symmetric positive

definite matrix we can write β̃ = v∗
1Kvv1 > 0. Next Kp will be written as Kp =

(Kp)s + (Kp)as. Then α̃ = v∗
1(Kp)sv1 > 0, and iω̃ = v∗

1(Kp)asv1, where i =
√
−1.

Substituting these results to (4.19) yields

λ2 + β̃λ + α̃ + iω̃ = 0. (4.20)

Note that every eigenvalue of A satisfies this equation. Therefore if we demand

negative real part of the solutions of (4.20) then we assure the stability of the system

(4.18). The solutions for (4.20) are:

λ1,2 = 1
2

(

−β̃ ±
√

β̃2 − 4(α̃ + iω̃)

)

. (4.21)

The second term here is square root of a complex number. Consider for instance

the complex number z = a + ib. The absolute of z is
√

a2 + b2 and it’s argument is

θ = arctan
(

b
a

)
. Then

√
z = ±(a2 + b2)

1

4 ∠
θ
2
, and in cartesian representation

√
z =

±(a2 + b2)
1

4

(
cos

(
θ
2

)
+ isin

(
θ
2

))
. Additionally we have cos(θ) = a√

a2+b2
, and the

trigonometric identity cos
(

θ
2

)
=

√
1+cos(θ)

2
. Therefore

Re{√z} = ±(a2 + b2)
1

4

(

1
2

+ 1
2

a√
a2 + b2

)1
2

,

where in our case a = β̃2 − 4α̃ and b = 4ω̃. Utilizing this result to (4.21) implies that

Re{λ1,2} = 1
2






−β̃ ±

(

(β̃2 − 4α̃)2 + 16ω̃2
) 1

4



1
2

+ 1
2

(β̃2 − 4α̃)
√

(β̃2 − 4α̃)2 + 16ω̃2





1
2







.



CHAPTER 4. CONTROL OF SPIDER-LIKE ROBOT 117

In order to have Re{λ1,2} < 0 we need

β̃ >
(

(β̃2 − 4α̃)2 + 16ω̃2
) 1

4



1
2

+ 1
2

(β̃2 − 4α̃)
√

(β̃2 − 4α̃)2 + 16ω̃2





1
2

.

Taking the square of both sides and then multiply the inequality by 2 gives

2β̃2 >
(

(β̃2 − 4α̃)2 + 16ω̃2
)1

2



1 +
(β̃2 − 4α̃)

√

(β̃2 − 4α̃)2 + 16ω̃2



 .

Rearranging this inequality results in

2β̃2 >
(

(β̃2 − 4α̃)2 + 16ω̃2
)1

2
+ β̃2 − 4α̃.

Next we add 4α̃ − β̃2 to both sides and then take the square of both sides to have

(

4α̃ + β̃2
)2

>
(

β̃2 − 4α̃
)2

+ 16ω̃2.

Opening the brackets gives

16α̃2 + β̃4 + 8α̃β̃2 > β̃4 + 16α̃2 − 8α̃β̃2 + 16ω̃2.

Rearranging this and dividing by 16 results in

α̃β̃2 > ω̃2,

or simply
√

α̃β̃ > |ω̃|.

Recall that β̃ = v∗
1Kvv1 > 0, α̃ = v∗

1(Kp)sv1 > 0, and iω̃ = v∗
1(Kp)asv1. Next we

wish this inequality hold for every α̃, β̃, and iω̃. In other words this inequality should

be true for every eigenvalue λ and the associated eigenvector ~v. Therefore we may

bound α̃ and β̃ by their minimal values α and β respectively. Note that

0 < α = λmin ((Kp)s) = λmin ((Kp)s) ‖v1‖2 ≤ v∗
1(Kp)sv1 = α̃,
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and

0 < β = λmin (Kv) = λmin (Kv) ‖v1‖2 ≤ v∗
1Kvv1 = β̃.

Additionally we bound ω̃ by it’s maximal value ω as follows

|ω| = ‖(Kp)as‖ = ‖v∗
1‖‖(Kp)as‖‖v1‖ ≥ |v∗

1(Kp)asv1| = |iω̃| = |ω̃|

Finally we have that if ω <
√

αβ then for every α̃, β̃, and iω̃ the inequality
√

α̃β̃ > |ω̃|

holds true. This causes Re{λ} < 0 for every eigenvalue, λ, of A. That results with

an asymptotically stable system (4.18). ¤

Next we discuss the expansion of theorem 7 to the case where inertia matrix exists.

Consider the system

Mp̈ + Kvṗ + Kpp = 0, (4.22)

where all the parameters are as before except for the existence of positive definite

symmetric matrix M ∈ IRn×n. In that case the following corollary establish the

condition for the stability of (4.22).

Corollary 4.4.1 Consider the system of (4.22). Let β > 0 be the minimal eigenvalue

of M−1/2KvM
−1/2. Let α > 0 be the minimal eigenvalue of M−1/2(Kp)sM

−1/2 and

let ω ∈ IR be the matrix norm of M−1/2(Kp)asM
−1/2. Then if

|ω| <
√

αβ

the system is asymptotically stable.

Proof: We define a coordinate transformation as:

p̃ = M1/2p or p = M−1/2p̃.

This transformation is based on similar transformation found in [29, p. 87]. Note that

the matrices M1/2 and M−1/2 are unique, symmetric, and positive definite. Moreover,
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we have M = M1/2M1/2 and M−1 = M−1/2M−1/2. Substitute the new coordination

back to (4.22) results in

M1/2 ¨̃p + KvM
−1/2 ˙̃p + KpM

−1/2p̃ = 0.

Now we multiply this equation by M−1/2 and have

¨̃p + M−1/2KvM
−1/2

︸ ︷︷ ︸

K̃v

˙̃p + M−1/2KpM
−1/2

︸ ︷︷ ︸

K̃p

p̃ = 0.

This system is exactly of the form used for theorem 7, but instead Kv and Kp we

have now K̃v and K̃p respectively. Note that if the latter system is asymptotically

stable it implies that (4.22) is asymptotically stable since they differ only by unique

coordinate transformation. The rest of the proof is straight forward implementation

of theorem 7. ¤

4.4.2 Equilibrium Stability of k-Limbed Spider-Robot

The following theorem establishes a sufficient conditions for the local asymptotic

stability of q̂ under the PD control law. This stability result is a key contribution of

this thesis.

Theorem 8 (Spider-robot stability) Let a k-limbed spider mechanism brace against

the environment with 2 ≤ m ≤ k limbs in an equilibrium configuration q̂ ∈ IRnk+3.

Thus under PD control law (4.11), if the following three conditions,

β = λmin

(
M−1/2QM−1/2

)
> 0

α = λmin

(

M−1/2(K̃)sM
−1/2

)

> 0

ω = ‖M−1/2(K̃)asM
−1/2‖ <

√
αβ

are satisfied then the zero-velocity state (q̂, 0) of the closed loop system (4.12) is lo-

cally asymptotically stable.
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Proof: We show that the linearized system about the equilibrium is asymptotically

stable and conclude that the non-linear system is locally asymptotically stable. Recall

from equation (4.17) the linearized system about the equilibrium as follows:

Mδq̈ + Qδq̇ + K̃δq = 0. (4.23)

This system falls exactly to the form of systems considered in corollary 4.4.1. Accord-

ing to the corollary the conditions for such system to be asymptotically stable are

as follows. First we need β = λmin

(
M−1/2QM−1/2

)
to be positive. Second we need

α = λmin

(

M−1/2(K̃)sM
−1/2

)

to be positive. And the third condition for stability is

ω = ‖M−1/2(K̃)asM
−1/2‖ <

√
αβ. ¤

Next we show how and if these conditions can be satisfied by a k-limbed spider

robot.

To satisfy the first condition we need λmin

(
M−1/2QM−1/2

)
> 0. As defined

in subsection 4.3.3 Q is symmetric positive definite matrix. The following lemma

assert that the transformation M−1/2QM−1/2 does not change the positive definiteness

property of Q.

Lemma 4.4.2 Let M ∈ IRn×n be a symmetric positive definite matrix, and let A ∈

IRn×n be a symmetric matrix. Thus if A is positive definite M−1/2AM−1/2 is positive

definite.

Proof: If A is positive definite then

vT Av > 0 ∀~v 6= 0. (4.24)

And we need to show that

vT M−1/2AM−1/2v > 0 ∀~v 6= 0. (4.25)
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Note that since M−1/2 is unique it is also symmetric. Therefore we can assign ~u =

M−1/2v and rewrite (4.25) as

uT Au,

but from (4.24) we know this term is positive for ~u,~v 6= 0. ¤

To satisfy the second condition we need M−1/2(K̃)sM
−1/2 to be positive definite.

Applying lemma 4.4.2 enables us to prove that (K̃)s is positive definite while positive

definiteness of M−1/2(K̃)sM
−1/2 is approved by the lemma. Recall from (4.17) that

(K̃)s =

(

P +
m∑

i=1

(
JT

i RT
i KiRiJi − D2xi(q̂1)Fi

)

)

s

.

Ki can be decomposed as follows,

Ki = (Ki)s + (Ki)as.

Thus the term JT
i RT

i (Ki)sRiJi is symmetric since

(
JT

i RT
i (Ki)sRiJi

)T
= JT

i RT
i ((Ki)s)

T RiJi = JT
i RT

i (Ki)sRiJi,

and JT
i RT

i (Ki)asRiJi is skew-symmetric since

(
JT

i RT
i (Ki)asRiJi

)T
= JT

i RT
i ((Ki)s)

T RiJi = −JT
i RT

i (Ki)asRiJi.

The term D2xi(q̂1)Fi is symmetric because of the following. D2xi(q̂1)Fi is the deriva-

tive of JT
i Fi with respect to q, while holding Fi constant. Now we specifically write

JT
i Fi =









∂x1

∂q1

∂x2

∂q1

...
...

∂x1

∂qn

∂x2

∂qn














f1

f2




 =









∑
∂xi

∂q1

fi

...
∑

∂xi

∂qn
fi









,
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where for simplicity we denote here xi = (x1, x2) and Fi = (f1, f2). Next we take this

term’s derivative as follows,

∂

∂q









∑
∂xi

∂q1

fi

...
∑

∂xi

∂qn
fi









=









∑
∂2xi

∂q2

1

fi · · · ∑
∂2xi

∂q1∂qn
fi

...
...

∑
∂2xi

∂qn∂q1

fi · · · ∑
∂2xi

∂q2
n
fi









It is easy to see that this matrix is symmetric. so we can conclude that

(K̃)s = P +
m∑

i=1

(
JT

i RT
i (Ki)sRiJi − D2xi(q̂1)Fi

)
.

Next we discuss the positive definiteness of (K̃)s. As in the frictionless contacts

case [64, 69, 65] we show that if the grasp of the mechanism as solid body by the

compliant tunnel is stable then for controller stiffness above lower bound the entire

system stiffness matrix will be positive definite. Since coupling exists between each

limb and the central-base but not between the limbs themselves, the term for (K̃)s

takes the form of

(K̃)s =















K̃00 K̃01 K̃02 ·· K̃0k

K̃T
01 K̃11 + P1 0 ·· 0

K̃T
02 0 K̃22 + P2 ·· 0

·· ·· ·· ·· ··

K̃T
0k 0 0 ·· K̃kk + Pk















.

Note that the 3×3 submatrix K00 represents the stiffness of the equilibrium posture

when the mechanism is considered as a single rigid body and the tunnel represent

k fingers of stiffness (Ki)s which grasp the mechanism as rigid body. The general

formula for K00 was discussed in chapter 2 can be found in lemma 2.3.1. Let us

assume for simplicity that Pi = σiIn×n for i = 1, ..., k, where σi is a positive parameter.
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In order to establish lower bounds on the σi’s which guarantee that (K̃)s is positive

definite. Let v = (v0, v1, ..., vk) be a vector in IRnk+3, such that v0 ∈ IR3 and vi ∈ IRn

for i = 1, ..., k; and let σ = (σ1, ..., σk). Then the quadratic form vT (K̃)sv can be

written as:

vT (K̃)sv = vT
0 K̃00v0 + 2

k∑

i=1

vT
0 K̃0ivi +

k∑

i=1

vT
i (K̃ii + σiI)vi.

Note that vT (K̃)sv = vT
0 K̃00v0 when vi = 0 for i = 1, ..., k. Hence the positive defi-

niteness of K̃00 is necessary for the positive definiteness of (K̃)s. Since the mechanism

hold itself as a single rigid body, Lemma 2.3.1 implies that K̃00 has to be positive

definite in order to have stable holing posture. Thus the tunnel should stably grasp the

mechanism as a single rigid body. Let σ0 > 0 denote the minimal eigenvalue of K̃00

and, for a given matrix E, let ‖E‖ denote the matrix norm induced by the Euclidean

norm3. Then vT (K̃)sv can be bounded as follows

vT (K̃)sv ≥ σ0‖v0‖2 − 2
k∑

i=1

‖K̃0i‖‖v0‖‖vi‖ +
k∑

i=1

(σi − ‖K̃ii‖)‖vi‖2. (4.26)

The first two summands in (4.26) can be written as follows

σ0‖v0‖2 − 2
∑k

i=1 ‖K̃0i‖‖v0‖‖vi‖ = σ0

∑k
i=1 (‖v0‖2 − 2ci‖v0‖‖vi‖)

= σ0

∑k
i=1

{
(‖v0‖ − ci‖vi‖)2 − c2

i ‖vi‖2} ,

where ci = ‖K0i‖/σ0. Substituting this expression in the quadratic form (4.26) gives:

vT (K̃)sv ≥
k∑

i=1

σ0(‖v0‖ − ci‖vi‖)2 + (σi − ‖K̃ii‖ −
1

σ0

‖K̃0i‖
2
)‖vi‖2. (4.27)

Since σ0 > 0, the right side of (4.27) is positive if the coefficient of ‖vi‖2 is positive.

Thus we obtain the lower bound on the controller’s stiffness parameters:

σi > ‖K̃ii‖ +
1

σ0

‖K̃0i‖
2

for i = 1, ..., k. (4.28)

3The matrix norm is defined as ‖E‖ = max{‖Eu‖} over all vectors ‖u‖ ≤ 1.
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Any value of the σi’s above these lower bounds guarantees that the matrix (K̃)s is

positive definite, and consequently that M−1/2(K̃)sM
−1/2 is positive definite.

To satisfy the third condition we need ω = ‖M−1/2(K̃)asM
−1/2‖ <

√
αβ. Specif-

ically we have

(K̃)as =
m∑

i=1

JT
i RT

i (Ki)asRiJi,

and recall that

Ki =






4G
√

Rδn
i

1−ν
0

8GRδt
i

3
√

Rδn
i (2−ν)

16G
√

Rδn
i

3(2−ν)




 .

Substituting Walton loading path ci =
δt
i

δn
i

yields

Ki = G
√

Rδn
i






4
1−ν

0

8ci

3(2−ν)
16

3(2−ν)




 .

Which it’s skew-symmetric part is

(Ki)as = G
√

Rδn
i






0 − 8ci

3(2−ν)

8ci

3(2−ν)
0




 .

Note that the maximum eigenvalue of (Ki)as depends on the value of |ci|. Small |ci|

correspond to penetrations which are more in the normal direction and consequently

forces that are more normal than tangential. Moreover, small |ci| introduces small

asymmetric part of Ki and help satisfy the third condition of the theorem. Thus

the third condition introduce an upper bound to the sum of the |ci|s. However this

is not the only condition on the |ci|s. From proposition 4.2.1 we have the following

condition for (Ki)s to be positive definite:

|ci| <

√

12(2 − ν)

(1 − ν)
.
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From (4.14) we have an upper bound on |ci| which guarantees that the contact force

is within it’s friction cone as follows:

cf
i =

F t
i

F n
i

= ci
2(1 − ν)

(2 − ν)
< µ

Finally, the third upper bound on |ci| is form the third condition of theorem 8

‖M−1/2(K̃)asM
−1/2‖ <

√
αβ

as discussed before. The selection of |ci|s value is such that it satisfies all these three

upper bounds. This together with the selection of stable holding posture for the

mechanism as single rigid body, and together with high enough proportional gain in

the joint’s controllers, are sufficient conditions for the equilibrium of the mechanism

to be locally asymptotically stable.

4.5 Conclusion

We described a control method for spider-like robots that move quasi-statically in fric-

tional tunnel environments. That completes previous results on the control of spider-

like robots that move quasi-statically in frictionless tunnel environments [64, 65, 69].

To induce forces and torques on the spider’s unactuated central-base, we used grasp

theory, that determines the conditions under which the mechanism is stably grasped

by the tunnel as single rigid-body. When compliance at the contacts is taken into

account, stable grasp yields passive stabilization of the mechanism as a single rigid

body. In addition compliant frictional contact model introduce asymmetric stiffness

matrix. New results presented here show that if the symmetric part of the system

is asymptotically stable and if the asymmetric part is ”small” enough compering to

the symmetric part then the asymmetric system will be asymptotically stable. Using
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these two results we presented a PD control law for general k-limbed spider robots.

We presented an approximation for the equilibrium point of the mechanism as func-

tion of the PD target point q∗. In other words specific selection of q∗ determines the

equilibrium penetrations δ̂ = (δ̂n
1 , δ̂t

1, . . . , δ̂
n
k , δ̂t

k). Then we introduced three inequali-

ties in δ̂,P , and |ci| = |δt
i/δ

n
i |. We showed that P should be selected stiff enough, and

|ci| should be selected small enough. The bounds for P and |ci| has been computed

analytically. Moreover, we showed that the amount of normal penetration δn
i does

not change the stability property of the system, but it does affects the convergence

path. Note that this result is consistent with previous results on spider robot control

in frictionless environments. Here as there we showed the existence of a lower bound

on the controller proportional gain, and in both cases we need the mechanism to be

stably grasped by the tunnel as a single rigid body.



Chapter 5

Experimental Results

In this chapter we describe the experimental setup and summarize the results of the

spider robot motion in a tunnel built in our laboratory. The experiments where

conducted using our 12 DOF spider-robot. The main goal of these experiments is to

verify the PCG, the control algorithms, and the related simulation results.

5.1 Experiments Setup

Kinematic analysis of the robot motion shows that three links and three joints for

each limb are required [59]. However, when operating in a congested environment,

additional degree of freedom is required in order to increase maneuverability while

retaining a manageable mechanism complexity. The spider robot therefore consists

of four links and four joints for each limb.

Two key dimensions of the robot affect the PCG algorithm: the central body

and the total limbs’ length. The central body is a thick block that contains three

driving motors and some electronics. The robot radius denoted as R is the length
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of a fully stretched limb measured from the center of the base to the limb’s footpad.

The choice of R affects the ability of the robot to reach desired footholds along the

tunnel walls. Based on the tunnel dimension the robot radius chose to be 77.2cm

with a base dimension of 14cm (from the center of the base to the limb’s first joint).

To minimize inter-link interference, the robot limbs work in two distinct planes,

upper plane and lower plane. The upper plane limbs never interfere with the lower

plane limbs (except for a possible interference of the passive supports, discussed be-

low). The resulting design allows simultaneous motion of the three limbs with minimal

inter-link interference. The robot moves in a horizontal two dimensional tunnel. How-

ever, vertical gravitational forces may generate a torque that can tip the robot out

of the horizontal plane. To prevent tilting during locomotion, the central body and

each limb are equipped with a supporting mechanism consists of a planar air bear-

ing. While preventing possible tilt, the planar bearings generate only small undesired

friction forces between the robot and the horizontal plan on which is operates.

Each limb is actuated by 4 different motors proportional to the required torque.

The first joint (closest to the central body) is equipped with the biggest motor and

the footpad joint is equipped with the smallest motor. Optical encoders are attached

to each joint, providing accurate angle measurements regardless of any backlash.

Motion is controlled using MEI controllers that enable synchronized motion of all

limbs. Figure 3.1 shows the spider-robot.

The experimental setup includes the spider robot, a planar tunnel with piecewise

linear walls constructed of 5 linear segments. The configuration of the walls is such

that it provides various geometric features for different types of motion such as parallel

walls, diverging walls and converging walls. The walls are made of transparent stiff

plastic (Plexiglas) coated with medium rough sand paper. A lower bound on the
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friction coefficient between the robot’s footpads and the walls is 0.5. As mention in

the previous section, the robot is travelling on a horizontal plan using air bearing

supports, reducing the friction between the robot and that plan to low values. All

walls are perpendicular to the plan and can produce large enough reaction forces

required for the robot motion.

5.2 Experimental Results

The PCG algorithm is applied off-line before motion starts and trajectories for all

12 actuators are being constructed and stored in the controller. The output of the

PCG algorithm is a series of foothold positions. These foothold positions are marked

and numbered on the tunnel walls in Figure 5.1. The is series robot’s steps along the

tunnel is presented in Figure 5.2 as a path in the contact c-space. Before starting the

experiments the tunnel walls were marked according to the desired foothold positions.

The experiment starts with the calibration process outside the tunnel, followed

by controlled motion in which the robot positions itself at the starting point. When

motion starts, all actuators are synchronized frame-by-frame while actual position of

each joint is continuously recorded. This data is then used for motion analysis.

Although cameras are being used during the experiments, the visual data is not

incorporated into the motion control. Not using feedback on the central base position

and orientation requires a close match between the planned trajectory and the actual

motion. In that case the system is open-loop with respect to the central base config-

uration, and deviation from the desired trajectory may result in contact loss between

one or more of the footpads and the walls. However, the system is locally robust to er-

rors in the central base configuration. This robustness is due to the fact that footpads
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Figure 5.2: The shortest path from S to T along the edges of the sub-cube graph in
contact c-space. In every node (step) along the path it is marked the foothold point

on the tunnel of (limb 1, limb 2, limb 3).zeivxebitpew agxna zeaizd-zz sxb zezyw jxe`l T -l S-n xzeia xvwd lelqnd.(3 lbx ,2 lbx ,1 lbx) dxeva dfig`d zeewp zepneqn (rv) znev lka .rbnd
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are aimed to points inside the tunnel walls to apply positive contact forces. Foothold

location is locally robust because the nominal contact point is the center of contact

independent cube. Without visual or other absolute feedback mechanism the robot

cannot converge to the nominal trajectory, similar to odometric errors of wheeled

vehicles that increase unboundedly. But if the robot do not diverge far enough from

the nominal trajectory then motion can still be conducted due to the local robustness

property.

To bound the contact forces between the robot and tunnel walls, and to reduce

electromagnetic interferences, current of all actuators is limited to 3A. Speed and

acceleration of all actuators is also limited to 4.5deg
sec

and 4.5 deg
sec2

respectively. This

is required in order to prevent large inertial forces that may interrupt our motion.

Low speed and low acceleration motion is more accurate. This accuracy is needed

to prevent the central-base of the robot from diverging far from the predesigned

trajectory. Moreover, high accelerations of the center of mass of the robot demands

large contact forces. For example if we wish to accelerate the robot’s center of mass by

0.01 m
sec2

we need a net forward force of 24∗0.01 = 0.24 N , where the robot mass is 24

Kg. Consider the case where the robot hold itself between two parallel walls (Figure

5.3) such that the line connecting the two foothold positions form a 25o angle with the

horizontal line. The coefficient of friction is 0.5 and α = Arctan(0.5) = 26.565o. A

given contact forces f1 and f2 are initially antipodal to form an equilibrium grasp. The

force can rotate not more than 1.565o without braking the friction cone constraint.

By rotating both contact forces by that angle we produce 2fi sin(1.565o) net forward

force. So, to produce 0.24 N net forward force we need initial contact force of 4.4

N . And if we wish to increase the acceleration to 0.05 m
sec2

we need initial contact

force of at least 22 N which is relatively high. Note that this computation does not
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Figure 5.3: Illustration that shows how net forward force is produced by the contact
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take into account the friction forces in the planar bearing that demands additional

forward force.

In our experiments no force or torque feedback is being used, and motion is con-

trolled entirely by decentralized PD controllers with feedback on the joints angles.

Figure 5.4 shows a full motion of the robot from one end of the tunnel to the

other end. This figure presents the entire robot configuration history during motion

from S to T . In the first raw of graphs in the figure the x, y and θ coordinates of

the central-base are presented, in every other raw the joints angles of every limb is

presented. The leftmost graph shows the angle of the inner joint while the rightmost

graph shows the angle of the distal joint. Total trajectory length measured as the

y coordinate of the central base is 1.5m and total motion time is 33 minutes. This

low speed results from the overall current limit which reduced the voltage to the DC

motors. However, the low speed enabled very accurate motion along the pre-designed

path without any feedback on the central base position and orientation. This accuracy

of the motion can be seen in the motion graphs as very small deviations between the

desired and the actual paths. A considerable large deviation from the predesigned



CHAPTER 5. EXPERIMENTAL RESULTS 134

Figure 5.4: Measurements of the spider configuration parameters during the
experiment. The desired path for every joint is indicated by dashed lines and the

solid lines are the actual measurements.i"r oneqn ievxd lelqnd .ieqipd jldna heaexd ly divxebitpewd ixhnxt ly zein.sivx ew i"r zex`ezn lreta zeinde eweewn ew
path happened during the few last minutes of motion in the distal link of the second

limb. This can be explained as follows, the distal joint did not succussed to reach

it’s desired angle before contacting the tunnel’s wall. After contacting the tunnel and

applying force on the tunnel the distal motor, which is the smallest motor, did not

have enough torque to reach it’s desired angle. This angle was corrected only when

the limb brake contact with the wall and move the the next foothold position. Last,

Figure 5.5 presents snapshots from the video of the robot motion. The full video is

also available to download from our website at http://www.technion.ac.il/∼robots/.
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Figure 5.5: Snapshots from the video showing the spider robot motion in the tunnel..dxdpnd jxe`l rp yiakrd-heaex z` d`xnd e`ied hxqn zepenz



Chapter 6

Conclusion

This work deals with the navigation and control of a planar spider robot in 2D-

tunnel environments. The spider-robot moves quasi-statically by bracing with two

limbs against the environment while moving it’s free limb to a new foothold position.

Note that during this motion the spider is free to change it’s internal configuration

as long as the holding footpads will not change their relative configuration. In this

case under the conditions of theorem 8 local asymptotic stability of the spider is

guaranteed. A necessary condition for the stability of the mechanism is that tunnel

stably grasp the spider as a single rigid body. Therefore in chapter 2 we investigate

the case of rigid body grasped by compliant fingers. In this case we analyzed the

condition for asymptotic stability of the rigid body; we found the basin of attraction

of the object’s equilibrium; and we characterized the set of external wrenches that

can be applied on the object without destruct it’s stability. These results has been

verified experimentally.

In chapter 3 we presented an algorithm, named PCG, to select the sequence of

foothold positions along the tunnel. The PCG algorithm approximates the collection
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of feasible 3-limb postures by maximal cubes. The algorithm next partitions the

cubes into sub-cubes and defines a graph whose nodes are sub-cubes and whose edges

represent feasible motion of a limb between any 3-limb postures. A shortest path

search on the resulting graph generates a 3-2-3 gait sequence that moves the robot

from start to target using minimum number of foothold exchanges.

In chapter 4 we introduced a decentralized PD controller for the robot. we devel-

oped the robot’s dynamic equations. In order to express the contact forces in theses

equation a compliant contact model has been used. From the contact forces model

we derived the contact stiffness matrix. We showed that this matrix is asymmetric.

Since the overall linearized system is asymmetric a general new result on the stability

of asymmetric second order linear systems has been developed. This result is based

on the idea of considering a stable symmetric system and then adding the asymmetric

part. If the asymmetric part is small enough it will not destruct the stability of the

system. This result was implemented on the spider-robot system to give the stability

conditions. It was shown the following three conditions for the asymptotic stability

of the mechanism. First, the entire mechanism should be stably grasped as a single

rigid body by the tunnel. Second, the proportional gain of the controller must be

above a certain lower bound. Third, each contact force should be inside it’s friction

cone and close enough to the normal direction.

Experimental results demonstrate motion of the spider along the tunnel, while

selecting it’s foothold positions by the PCG algorithm. The controller’s gain was

tuned high enough to meet the requirements of theorem 8. The significance of these

experiments is to first verify the theoretical results developed here, and second to

show that these results are applicable to a real walking machine.

Future extensions of this research may take the following directions. First,
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current work (by E. Rimon and Y. OR) is concerned with the inclusion of gravity.

Especially we would like to rotate the horizontal table supporting the robot and take

off the upper part of the tunnel. This will give us a two dimensional walker over one

dimensional terrain.

Second, an on-line navigation algorithm may be developed to overcome errors

during the motion. This algorithm has to use localization system such as a visual

system mounted on top of the tunnel or a laser scanner mounted on the central base

of the robot.

Third, an additional work may be done in handling the case of reconstructing

stable holding posture after loosing necessary contact with the tunnel. As for now

if a necessary contact is lost the spider is hanging in the tunnel unable to continue

walking. This work can be combined with an on-line navigation algorithm.

Fifth, In the future we may want to extend this work to a three-dimensional spider

robot moving in three dimensional tunnels. It seems that most of our theoretic work

can be straight forward implement on 3D-spiders.

Sixth, one may want to develop spider-robot in various size scales. Sizes of spider-

robots may be from few millimeters for motion within blood vessels in a human body

to few meters for motion in large tunnels or piping systems.

Seventh, a major extension of this work or even a new research should be in the

field of dynamic walk. In this field the robots exploit the inertial forces caused by it’s

own motion to help him conduct the full desired motion.



Appendix A

Additions for Force Closure Grasps

A.1 Conditions for Force Closure with Compliant

Contacts

Proof sketch of Proposition 2.2.1: Let N be a small neighborhood of config-

urations about q0. As B’s configuration varies in N , the contact forces vary in a

neighborhood about the contact forces of the initial grasp. Since the initial grasp is

non-marginal, by a continuity argument all contact forces generated by varying B’s

configuration in N still lie in their respective friction cones. (This statement holds

true even when the location of some contact points changes due to local rolling of B.)

Next we establish that any external wrench in a neighborhood about the origin

can be balanced by feasible contact forces. When B is at a configuration q ∈ N ,

the net wrench generated by the contacts is given by the negated gradient −∇U(q).

Consider now the gradient ∇U(q) as a mapping from configuration space to wrench

space. By assumption ∇U(q0) = 0. According to the Inverse Function Theorem, ∇U

maps an open neighborhood about q0 to an open neighborhood about the zero wrench
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if the derivative of ∇U at q0, D2U(q0), is non-singular. Since q0 is a non-degenerate

local minimum of U , D2U(q0) is non-singular as required.

Finally we establish that B would automatically settle at a configuration where

the contact forces balance the external wrench acting on B. Let wext denote a fixed

external wrench acting on B. The dynamics of B is governed by the equation: M(q)q̈+

B(q, q̇) = −∇U(q) + wext. (The contacts also apply damping forces which we ignore

for simplicity.) The external influences on B can be written as the negated gradient

of a composite potential function: Φ(q) = U(q)−wext ·q. A general result concerning

the dynamics of mechanical systems states that the flow of a damped mechanical

system governed by a potential function Φ is attracted to the local minima of Φ [34].

We have already shown that for every wext in a neighborhood about the origin there

exists a configuration q1 such that ∇Φ(q1) = 0. The equilibrium point q1 is a stable

attractor if it is a local minimum of Φ i.e., if D2Φ(q1) > 0. But D2Φ(q) = D2U(q),

and the entries of D2U(q) vary continuously with q. Since the eigenvalues of a matrix

vary continuously with its entries, D2U(q) remains positive definite in a neighborhood

of q0. By shrinking N if necessary, we conclude that q1 is a local minimum of Φ, and

B would automatically settle at q1. ¤

A.2 Computation of the Grasp Stiffness Matrix

In this appendix we compute the two formulas for D2U(q) which appear in Lemma

2.3.1. To begin with, U(q) =
∑k

i=1 Ui(q) where Ui(q) is the elastic energy induced by

the ith active-compliance contact. Using the linear compliance law (2.4), the elastic
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energy induced by the ith contact is:

Ui(q) = 1
2
(Xi(r

0
i , q) − x0

i )
T
Ki(Xi(r

0
i , q) − x0

i )

−F 0
i · (Xi(r

0
i , q) − x0

i ),

where xi = Xi(r
0
i , q) = R(θ)r0

i +d. The first derivative of Ui is: DUi(q) = −DXri
(q)TFi(q),

where Fi(q) = F 0
i − Ki(xi(q) − x0

i ). The second derivative of Ui is:

D2Ui(q) = DXT
ri
(q)KiDXri

(q) − D2Xri
(q)T Fi(q). (A.1)

Recall that [u×] is the 3×3 skew-symmetric matrix satisfying [u×]v = u × v for all

v ∈ IR3. Then DXri
(q) = [I, (−ρi)×]. The second derivative, D2Xri

(q), is a vector-

valued symmetric bilinear function. To obtain a formula for D2Xri
(q), we compute

the derivative of DXri
(q) along a configuration-space trajectory q(t). The velocity of

B along q(t) is denoted q̇ = (v, ω), where v and ω are B’s linear and angular veloc-

ities. Since ρi = R(θ)r0
i ,

d
dt

DXri
(q(t)) = [0, (−Ṙr0

i )×] = [0, (ρi×ω)×]. The action

of this derivative on the force Fi is: ( d
dt

DXri
(q(t)))

T
Fi =






0

(ρi × ω) × Fi




. Using

a triple cross-product identity, we obtain that (ρi × ω) × Fi = [(ρi · Fi)I − ρiF
T
i ]ω =

−[Fi×][ρi×]ω. On the other hand, the chain rule implies that d
dt

DXri
(q(t)) =

(D2Xri
(q))q̇. Hence the action of D2Xri

(q) on Fi is given by the following matrix:

D2Xri
(q)T Fi =






0 0

0 −([Fi×][ρi×])s




 .

Substituting for DXri
(q) and D2Xri

(q)T Fi in (A.1) and summation D2U(q) =
∑k

i=1 D2Ui(q)

gives formula (2.5) for 3D grasps. In the 2D case, we evaluate each D2Ui(q) along a

velocity vector q̇ = (v, ω) such that v = (vx, vy, 0) and ω = (0, 0, ωz). In particular,

[ρi×]ω = ωzJρi where J =




0 1

−1 0



, and [Fi×][ρi×]ω = (ρi · Fi)ωz. When these
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terms are substituted into D2Ui(q) and the sum D2U(q) =
∑k

i=1 D2Ui(q) is taken,

formula (2.6) is obtained.



Appendix B

Details of the PCG Algorithm

This appendix contains two details of the PCG algorithm. First we describe the

necessary modification to the algorithm when a cell contains two or three possibly

overlapping convex sets of feasible 3-limb postures. Since each convex set is ap-

proximated individually by p maximal cubes, it is possible that two maximal cubes

originating from different convex sets would overlap. However, each cube still has its

own unique orientation vector. The partitioning of the maximal cubes into sub-cubes

proceeds as before. The edges between sub-cubes are assigned a weight of unity or

zero according to the following two cases. If the two sub-cubes connected by the edge

are disjoint, the edge is assigned a unit weight as before. In the second case the edge

connects two copies of the same sub-cube. We represent the two sub-cubes as distinct

nodes, and assign zero weight to the edge connecting the two sub-cubes. Note that

zero-weight edges provide important pathways in the sub-cube graph. Rather than

representing a physical limb lifting and re-placement, these edges represent a freedom

of the algorithm to select among more than one limb for its next step.

The following lemma asserts that motion of a limb between two reachable 3-limb
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postures along an edge satisfies the reachability constraint.

Lemma B.0.1 Consider two reachable 3-limb postures. If two limbs and their footpad

positions are common to both postures, there exists a path that takes the third limb

between the two postures such that the three footpads are continuously reachable along

the path.

The lemma generalizes as follows. If two k-limb postures share at least two limbs

and their contacts, there exist a path for the remaining k−2 limbs between the two

postures such that all k footpads are continuously reachable along the path.

Proof: The minimum-radius discs containing the two triplets of foothold positions

necessarily overlap, since two foothold positions are common to both postures. The

radius of the two discs is bounded by R, since the two triplets of foothold positions

are reachable. It follows that any motion of the third limb between its two footholds

such that its footpad lies in the union of the two discs guarantees that the three

footpads, one moving and two stationary, are continuously reachable along the path.

¤
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mipipr okez
1 zilbp`a xivwz2 milnq zniyx7 dnwd 111 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xwgnd zenexz mekiq 1.114 zix`pil zexwean zefig` ly zegekd xebq zveaw 214 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dnwd 2.116 . . . . . . . . . . . . . . . . . zegek xebqa zefig` ly zixhne`ib dxbd 2.217 . . . . . . . . . . jekig mr rbn zeaxrnd zefig` ly dibelepinxh 2.2.118 . . . . . . . . . . . . . . . . iaihw` zegek xebqa zefig` lr dxfg 2.2.219 . . . . . . . . . . . . . . . miyinb mirbn mr zefig`a zegekd xebq 2.2.322 . . . . . . . . . . . . . . . . zeyinb zerav` mr zefig` ly zegekd xebq 2.322 . . . . . . . . . . . . . . . . . . . . . zegekd xebq zveaw ly oeiti` 2.3.126 . . . . . . . . . . ix`pil zeyinb weg zgpda zegekd xebq zveaw 2.3.227 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . zilaelb zeaivi zfilp` 2.427 . . . . . . . . . . . . . . feg`d hwiiae`d ly lwynd ieeiy zeewp 2.4.129 . . . . . . . . . . . . . . . . . . . . . . . . . . zeaivid ixefi` oeiti` 2.4.2



d mipipr okez38 . . . . . . . . . . . zeqpkzd ob`l dewp jeiy zwial mzixebl` 2.4.339 . . . . . . . . . . . . . . edylk litext zelra zerav` xear zegekd xebq 2.540 . . . . . . . . . . . . . . . . . . dly zihnizn dbvde dirad xe`iz 2.5.144 . . . . . . . leblib mixyt`n xy`k zixewnd lwynd ieeiy zewp 2.5.246 . . . . . . . . . . . . . . . . lwynd ieeiy zewp ly leblibl zeaivi 2.5.349 . . . . . . . . . . . . . . . . . . . . . . . . . . . miieqipe zeivleniq ze`vez 2.649 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ieqipd zkxrn 2.6.150 . . . . . . . . . . . daivid zegekd xebq zveaw z` zn`nd ieqip 2.6.255 . . . . . zeaivid lr mipey miizlgzd dvigl zegek ly drtydd 2.6.358 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . mekiq 2.760 dfig` zeewp zxigal mzixebl` PCG 360 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dnwd 3.165 . . . . . . . . . . . . . . . . . . . . . . . . . . . zeiweg zeilbx-zlz zefig` 3.270 . . . . . . . . . . . zeiwegd zeilbx-zlzd zefig`d zveaw ly zexinwd 3.370 . . . . . . . . . . . . . . . . zeiwegd zefig`d zveaw ly zexinwd 3.3.172 . . . . . . . . . . . . . . . . . zeiaew i"r aexiwd ziira ly zexinw 3.3.275 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PCG mzixebl` 3.483 . . . . . . . . . . . . . . . . . . . . . . zeilniqwnd zeaizd xtqn zxiga 3.583 . . . . . . . . . . . . . . . . . . . . . zexenw zeveaw oia zeixeyiw 3.5.184 . . . . . . zeilniqwnd zeaizd ly ziqgid divxebitpewd zxiga 3.5.285 . . . . . . . . . . . zeilniqwnd zeaizd xtqn zwial mzixebl` 3.5.386 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . divleniq ze`vez 3.688 . . . . . . . . . . . . . . . . . . . . . PCG mzixebl` ly divleniq 3.6.193 . . . . lelqnd jxe` lr zeilniqwnd zeaizd xtqn ly drtydd 3.6.2



e mipipr okez95 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . mekiq 3.798 yiakr heaex ly dxwa 498 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dnwd 4.1100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . yinb rbn len 4.2103 . . . . . . . . . . . . . . . . . . . . . . rbnd ly zegiywd zvixhn 4.2.1107 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dxwad weg 4.3107 . . . . . . . . . . . . . . . miitb-k lra yiakr heaex ly dwinpid 4.3.1109 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dxwad weg 4.3.2110 . . . . . . . . . . . . yiakrd heaex zkxrn ly lwyn ieeiy zewp 4.3.3113 . . . . lwyn-ieeiy zewpa yiakrd heaex zkxrn ly divfix`pil 4.3.4114 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . zeaivi zfilp` 4.4114 . . . . . . . . . . . . . . . . . zeixhniq` zeix`pil zekxrn zeaivi 4.4.1119 . . . . . miitb-k lra yiakr-heaex ly lwyn-ieeiy zewp zeaivi 4.4.2125 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . mekiq 4.5127 miieqip ze`vez 5127 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ieqipd zkxrn 5.1129 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ieqipd ze`vez 5.2136 zepwqne mekiq 6139 zegek xebqa zefig`l zetqez `139 . . . . . . . . . . . . miyinb mirbn mr zefig` xear zegek xebql mi`pz `.1140 . . . . . . . . . . . . . . . . . . . . . dfig`d ly zegiywd zvixhn aeyig `.2143 PCG mzixebl` ihxt a



f mipipr okez144 zexewn zniyxk xivwz



mixei` zniyx-na repl lbeqnd ilbx-4 yiakr heaex (a) .yiakrd heaex ly zexe ipy 1.1mr zexdpna repl lbeqnd ilbx-3 yiakr heaex (b)-e ,jekig `ll zexdp9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .jekigbpk fg`p miitb daexn heaex (b) .hwiiae` zfge` zerav` zaexn i (a) 2.115 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .dxdpn zept18 . . . . . . . . . . . .jekig mr mirbn zeaxrnd zefig`l miiqiqa mipeniq 2.240 . . . . . . . . . . .hwiiae`l i rav` oia leblbd zrepz ly ihnikq miyxz 2.349 . . .leblib zrepz jldna i rav` lr milretd zegekd ly ihnikq miyxz 2.450 . . . . . . . . . . . . . . . . . . . . . . zeirav`-e zefig`l ieqipd zkxrn 2.5d`vez `ed ewde ,lreta zeind od zeewpd .mivitwd ireaw zin 2.651 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .zix`pil diqxbx lylr zegekd zlrtd ipeeik z` d`xnd ieqipd jldn ly ihnkq miyxz 2.752 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .hwiiae`dzegekd xebq zveawe (b)-e aivi hwiiae`d oda zeivxebitpewd zveaw (a) 2.852 . . . . . . . . . . . . . . . . . . . . . . . . . . . .oey`xd ieqipd xear daividlr lirtdl ozipy daivid zegekd xebq zveawa `vnpd ilniqwnd gekd 2.9eli`e zihilp` d`vez oiivn ewd .gekd zlrtd ly zieef lka hwiiae`d53 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ieqipa enp zeewpdg



h mixei` zniyx54 .mihpnende zegekd agxna mibven hwiiae`d lr elrtedy mihpnende zegekd 2.10lr xedh hpnen lrted vik d`xnd ieqipd zkxrn ly ihnikq miyxz 2.1155 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .feg`d hwiiae`d-ld gek len hwiiae`d lr dlrtdl ozipd ilniqwnd ipevigd hpnend 2.12z` zex`zn zeewpde ayegnd hpnend z` x`zn ewd .izlgzdd dvig56 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ieqipa npy hpnendzegek xear mihpnende zegekd agxna zbven daivid zegekd xebq zveaw 2.1357 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .mipey miizlgzd dvigl64 . . . . . . .zixeyin dxdpn jeza rpd ilbx-zlz yiakr heaex ly lr han 3.1-pew agxn ly divfixhnxte (b)-e ,zixeyin dxdpna ilbx-zlz heaex (a) 3.266 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ely rbnd zeivxebit68 .zepey zeilbx-e zefig` izy dliknd (b)-(c) ,ziweg zilbx-zlz dfig` (a) 3.3
(a) `ed ∆ xy`k dfig`d zeewp zyely z` liknd ilnipind wqid 3.472 . . . . . . . . . . . . . . . . . . . .zieef-ddk yleyn (b)-e ,zieef-g yleynodly zid dwelge (b)-e ,rbnd zeivxebitpew agxna zeaiz yely (a) 3.576 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .miixtnd mixeyind i"r-niqwnd zeaizd xtqn ly drtydd z` d`xnd zinin-e divxhqeli` 3.687 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .lelqnd jxe` lr zeil88 . . . . . . . . . . . . . . . . .(si, sj) xeyina zeilbx-e lwyn-ieeiy zegepz 3.789 . . .rbnd zeivxebitpew agxna zeiwegd zeilbx-zlzd zegepzd lk sqe` 3.8`za zeiwegd zeilbx-zlzd zegepzd ly zeaiz yng zervn`a aexiw 3.991 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I1×I6×I1zeilbx-zlzd zegepzd z` zeaxwnd zeilniqwnd zeaizd 270 sqe` 3.1091 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .zeiwegd



i mixei` zniyxagxna zeaizd-zz sxb zezyw jxe`l T -l S-n xzeia xvwd lelqnd 3.1192 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .rbnd zeivxebitpewdxvei xy` dfig`d zeewp zxiqe ,zeivleniql dyniy xy` dxdpnd 3.1294 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PCG mzixebl` i"r101 . . . . . .dxdpnd otee yiakrd heaex ly lbxd sk oia zidd dxigd 4.1zeilniqihipitpi` zefefz xear miixhne`ibd mixywd ly zihnkq dbvd 4.2104 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .zilpinepd dxigdn-xebl` i"r dvei xy` dfig`d zeewp zxiqe ,ieqipl dyniyy dxdpnd 5.1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .PCG mziagxna zeaizd-zz sxb zezyw jxe`l T -l S-n xzeia xvwd lelqnd 5.2dxeva dfig`d zeewp zepneqn (rv) znev lka .rbnd zeivxebitpew131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(3 lbx ,2 lbx ,1 lbx)133 . . . . . . . . . . . .rbnd zegek i"r dniw gek xvep vik d`xnd miyxz 5.3lelqnd .ieqipd jldna heaexd ly divxebitpewd ixhnxt ly zein 5.4134 . . . .sivx ew i"r zex`ezn lreta zeinde eweewn ew i"r oneqn ievxd135 . . . .dxdpnd jxe`l rp yiakrd-heaex z` d`xnd e`ied hxqn zepenz 5.5



xivwzepd ilblb akx ipt lr zkled dpekn ly oexzid .zekled zepekn mlera migztn ax onf dfnmienzn dnr zifkxnd dirad .ddeab zexiar dyex ea dpaen `l ghy i`eeza xwirazxhn .drepzd jldna heaexd zeaivi lr xenyl vik `id zekledd zepeknd igztndyib dgzet df xwgna .zexdpna dligfl miitb lra yiakr heaex gezit dpd xwgndzept bpk lwyn-ieeiya fg`p heaexd da dkild zxev zxiga i"r dirad oexztl ziegiireaiwd zixe`iza epxfrpe zewlg dxdpnd zept ik epgpd `yepa znew deara .dxdpndmyle ,heaexl yexd ilnipind zerexfd xtqn zriaw myl Rimon and Burdick lydaiqdn dxingn `id zewlg dxdpnd zepty dgpdd ,mle` .dfig`d zeaivi zgkeddixhne`ib zlra dxdpn jeza mwzdl lkei `l heaexd jekig miiw `l xy`k .d`adik gipdl ef deara epxga ef daiqn .zeliawn zept izy lynl enk geina dheytzrepz zlrezl mirbna jekigd zegek z` lvpl lkep okle ,zewlg opi` dxdpnd zept,heaexd lr dlirtn daiaqdy divw`ixd zegek awr zxvep heaexd zrepz .heaexd.ezrepz jldna lwyn-ieeiya envr fg`i heaexdy jka dpzen drepzd lelqn oepkzezxhn .ely zeiniptd zeilegd z` ripdl iyteg oiir yiakrd dxen`d drepzd zxevaly daiaqa rpd ixeyin yiakr heaexl dxwae drepz mzixebl` gezit okl `id ef dearzenwzd el exyt`i oiir xy` ilnipin miitb xtqn lra zeidl heaexd lr .zexdpnzrbl zi`yx lbx lk ik migipn ep` ziy`x .ze`ad zegpdd zgz dxdpnd jxe`l daivi`l miilbxd zetk lr .lbxd sk z`xwpd dly dpexg`d dilegd zervn`a wx daiaqak



l xivwzjeza repi heaexd ,zipy .daiaqd bpk segl wx zei`yx ode ,mew`e zeixk zepwzen.oirhewnl zeix`pil zept zlra zinin-e zixeyin dxdpnep` dxdpnd zept bpk lwyn-ieeiya fg`p heaexd da dkild zxev epxgae zeid-ynd ieeiy megz z` oiit`l dvxp okl .lwyn-ieeiy zefig` oiit`l oey`x alya miyxp-iae`l zerav`d oia mirbna jekig miiwy jk zerav` xtqn i"r feg`d hwiiae` ly lw-iae`d zeivxbitpew agxna od lwynd ieeiy megz z` oiit`l mipipern ep` ,xy`k .hwixewgl mipipern ep` ,mle` .eilr milrtend ipevigd hpnende zegekd agxna ode hwi.znieqn zegiyw zelra zerav` i"r dligza fg`p hwiiae`d oda zeiaiqt zefig` wxgek dlirtn `l dxwad zkxrn mle` hwiiae`d lr ipevig hpnene gek milirtn jyndaavna .rav`d zegiywe rbnd zewp zfefz awr xvepy gekl xarn zerav`d i"r sqepieeiy zewpl qpkzi hwiiae`d ziaeig dpid dfig`d ly zegiywd zvixhny dinae dfzewp dze` ly zeqpkzdd ob` zeleab z` epayig ok enke epiiti` dze` dyg lwynel` ze`vez .qxen ziixe`iza epynzyd lwynd ieeiy zeewp oeiti` myl .lwyn ieeiy.dxdpnd zept bpk fg`pd heaexd zeaivil mi`pzd zriawl jynda eynyi.dxdpnd zept lr rbnd zeewp ly zihnehe` dxigal mzixebl` epgzit ,jynda.mi`ad mi`pzd ipya zenerd dfig` zeewp ly svx `evnl xyt`n df mzixebl`-dy `ed ipyd i`pzd .lwyn-ieeiy zfig` exvi dfig`d zeewpy `ed oey`xd i`pzdagxna rvazn dfig`d zeewp svx oepkz .heaexd ly drbdd geeh jeza eidi zeewp-xzend mixefi`d ly aexiw rvazn zexenw zepkz zehiy zervn`a .rbnd zeivxebitpew-izd ly zid dwelg zrvazn okn xg`l .zeaiz zxfra rbnd zeivxebitpew agxna midaiz-zzn xearl ozip m`e znev `id daiz-zz lk ea sxb ly mipezp dpan dxynd zeaz`ivnl sxba xzeia xvw lelqn ly yetig rvazn seqal .zyw zniiw f` diipyl zg`.dxdpnd jxe`l dfig` zeewp ly svxzebx n odn zg` lkl xy` zerexf k yiakrl .heaexd ly dxwad ziiraa zrk oepjqa yi yiakrl xnelk .zetqep yteg zebx yely siqen ifkxnd-sebd .zerpenn yteg



n xivwz.zrpenn-zz zkxrn epi` yiakrd ,mle` .zerpenn kn wx okezn ,yteg zebx kn+3 lkdzeptd bpk zefge`d zerexfd dxdpnd zept bpk fg`p yiakrd xy`ky meyn z`fohw dnny drixia repl yiakrd z` mivl`n dyrnl xy` miihnpiw miveli` zeaivn`iadl zpn lr yiakrd irepn kn -a lirtdl yi mihpnen eli` `id dxwad ziira kn -ndrepzd meiqay jk yexd mewind l` yiakrd ly divxebitpewd ipzyn kn + 3 lk z`lr mixyen mihpnene zegek xevil mipipern ep` hxta .drixid lr aey `vni yiakrd.miievxd divhpiixe`de mewind l` eze` `iadl zpn lr ifkxnd-sebd-t i"r aivi lwyn-ieeiya yiakrd zfig` lr zqqazn epnyi dze` dxwad zhiylwyn-ieeiy zfig` zbyen da dgepza zex`yp yiakrd ilbx-zetk xy`k .dxdpnd zepzirahd zeyinbd awr mixvepd divw`ixd zegek ,ezaiaql qgia yiakrd ly daivi.g` giyw-sebk mfipknd z` aviil ik elrti mirbna jekigd zegek awre mixnegd ly.mi`ad miiaiqtde miiaihw`d miaikxd lr zqqazn epnyii dze` dxwad zhiy okl-ilbxd zetk ik dgihand dxeva mirpennd heaexd iwxtn ly drpd `ed iaihw`d aikxddxdpnd ly hand zewpn ef dxeva .diipyl qgia zg` zegiip dpx`yz zefge`d mi-ir ep` ef dyix zexnl ik oiivp .drepzd lk jyna g` giyw-sebk bdpzn yiakrd,ievx drepz lelqn lk jxe`l ziytegd lbxd z`e ifkxnd-sebd z` ripdl miiyteg oizegiip dpx`yz zefge`d miilbxd zetky `ed drepzd lelqn lr iigid i`pzd xy`kmixvepd divw`ixd zegek lr jnzqn dxwad ly iaiqtd aikxd .diipyl qgia zg`z` xi`ydl zpn lr zefge`d miilbxd-zetk lr milret el` zegek .dxdpnd zept i"rdxdpnd zept ,zexg` milina .divhpiixe`e mewin eze`a g` giyw-sebk yiakrdi"r xvepd ohw witqn il`ivxpi` gek lk zihnehe` elhai rbnd zeewpa jekigd zegekezegekd dril ribz ziytegd lbxd xy`k drepzd meiqa .yiakrd ly mirpd miwlgdweia dpavizz zefge`d miilbxd-zetke ,eqt`zi dzrepzn erap xy` miil`ivxpi`d.izlgzdd onewinaxebqd begd zkxrn zeaivi z` ogap heaexd ly dxwad weg z` epiia yiy xg`l



p xivwzlen i"r rbnd zegek z` milnn ep` df alya .yiakrd ly lwynd ieeiy zewp aiaqi"r oiit`zn df xyw .rbnd zewp zfefz oial rbnd gek oia xiyi xyw ozepd yinb rbnsqepa .zixhniq dpi` `idy jka zpiit`zn ef dvixhn .epgzit dze` zegiyw zvixhn.iaeig didi rbnd ly zegiywd zvixhn ly ixhniqd wlgdy jkl `iand i`pz ep`vn`l `id yiakrd ly xebqd-begd zkxrn ly divfix`pild mby jkl znxeb ef zeixhniq`dixe`iz epgzit lwyn-ieeiy zewp zaiaqa heaexd zeaivi z` oegal ik okl .zixhniqlr zqqazn ef dixe`iz .ipy xqn zeix`pil zeixhniq` zekxrn zeaivi zpigal dygzeixhniq` "hrn" dl siqep okn xg`le daivi zixhniq zkxrn ogap xy`ky dxryddepgkede) epgzit ef dxryd qiqa lr .zkxrnd ly zllekd zeaivia mebtl xen` `l dfzkxrnl siqedl ozip xy` zeixhniqd-i` zenk lr oeilr mqg (zihilp` dzepekp z`.dzeaivia rebtl ilanel` miieqip .miieqip zervn`a egzety zeixe`zd meyii z` lreta epnbd ,meiqlepid df heaex .epzarna gzet xy` yiakrd heaex ly ipyd xed zervn`a erveaminkzqn miieqipd .zinin e dxdpn jeza jledd ilbx-zlz ixeyin yiakr heaexdnly drepz d`xnd ,miheaex heeipl darnd xz`n eixedl ozip xy` ,e`iee hxqazhiy zervn`a xwean heaexd ef drepz jldna .dteq re dxdpnd zligzn heaexd ly.PCG mzixebl` zervn`a dfig`d zeewp z` xgeae epgzity dxwad


