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Abstract

In conventional motion planning a wheeled mobile robot navigates toward a goal con-
figuration while avoiding collision with obstacles. However, many motion-planning
problems are more suited for legged robots that interact with the environment in
order to achieve stable locomotion. For example, surveillance of collapsed structures
for survivors, inspection and testing of complex pipe systems, and maintenance of
hazardous structures such as nuclear reactors, all require motion in congested, un-
structured, and complex environments. In this work a second generation of planar
spider-like robot for quasi-static motion in tunnel environments has been developed.
A control method for this class of robots is introduced. The control method is based
on new results in the fields of grasp theory, and control of asymmetric 2"¢-order lin-
ear systems. The control method ensures that when a spider-like mechanism bracing
against the environment at equilibrium posture the naturally occurring compliance
at the contacts stabilizes the mechanism as a single rigid body. Next an algorithm,
named PCG, for selecting sequence of foothold positions along the tunnel has been
developed. Finally, experimental results of the spider robot motion in tunnel envi-

ronment verify the theories developed in this work.
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Chapter 1

Introduction

In conventional motion planning a wheeled mobile robot navigates toward a goal
configuration while avoiding collision with obstacles. However, many motion planning
problems are more suited for legged robots that interact with the environment in order
to achieve stable locomotion. For example, surveillance of collapsed structures for
survivors [73], inspection and testing of complex pipe systems [55], and maintenance
of hazardous structures such as nuclear reactors [62], all require motion in congested,
unstructured, and complex environments. Our goal is to develop general purpose
multi-limb mechanisms that uses quasi-static motion to navigate in such complex
environments. In quasi-static motion, inertial effects due to moving parts of the robot
are kept small relative to the forces and torques of interaction between the robot and
the environment, and during this motion the robot maintains stable equilibrium with
the environment.

A spider-like robot consists of k articulated limbs attached to a central body, such
that each limb ends with a footpad (Figure 1.1). We assume that the robot moves

quasistatically by exerting forces on the tunnel walls, while the robot is supported
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against gravity by frictionless contacts mounted under the mechanism. In general,
a spider-like robot must have at least three limbs in order to move quasistatically in
planar tunnel environments. At every instant the spider braces against the tunnel
walls in static equilibrium using two or three limbs. During a 2-limb posture the
spider moves its free limb to the next foothold position. During a 3-limb posture the
spider changes its internal geometry in preparation for the next limb lifting.
Spider-like and snake-like mechanisms are examples of robots that can move qua-
sistatically in congested environments. Examples of spider-like robots are the pipe-
crawling robots of Neubauer [51] and Pfeiffer et al. [60]. Other examples are the
ladder-climbing robot of Dubowsky et al. [14, 40] and the nuclear-reactor servicing
robot of Stone et al. [73]. Snake-like mechanisms are related to spider-like mecha-
nisms, since both mechanisms brace against the environment while moving free parts
toward a new position. Chrikjian and Burdick [9], Hirose and Morishima [23], and
Shan and Koren [63] developed snake-like mechanisms that move by locking some of
their links to the ground while allowing other links to move. Legged locomotion over
a terrain is related to locomotion in congested environments. Examples of works in
this area are by Boissonnat et al. [5], Hirose and Kunieda [22], Marhefka and Orin
[41], McGeer [43], and Van-den-Doel and Pai [77]. However, we focus on locomotion
in congested tunnel-like environments rather than legged locomotion over a terrain.
We make the following assumptions. First, we assume piecewise linear tunnel
walls with known geometry. The tunnel can be discontinuous and can include holes
or intersections. Second, each limb contacts the environment only through its footpad,
which can only push against the environment. Third, each footpad contacts the tunnel
walls through a frictional point contact, with a known lower bound on the coefficient

of friction.
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(b)

Figure 1.1: Two generations of a planar spider-robots. (a) 4-limb spider-robot
capable of moving in frictionless tunnel environments, and (b) 3-limb spider robot
capable of moving in frictional tunnel environments.

N2 TN YND SN0NN M0I-4 ¥LIAJY VIAN (a) WPADYN VI DY MNT MY
J12°0 BY TMININA YD 0NN 2931-3 ¥A0Y VAN (b)), TN

This work is a continuation of previous work on planar spider-robots moving in
frictionless tunnel environments. In the previous work a first generation of the spider-
robot has been developed (Figure 1.1 (a)) [64, 59, 58]. A potential function based
and a PD control laws have been developed for this case [64, 65, 69]. A navigation
algorithm for the motion of spider-robot in frictionless tunnel has been developed as
well [19]. However, this navigation algorithm does not consider all possible foothold
positions on the tunnel walls, rather it selects only one possible foothold position for
every triplet of tunnel segments.

The design of the second generation spider shown in figure 1.1 (b) is strongly
based on our experience with the first generation. We made two major changes in
this version of the robot. First we use larger motors then in he first generation
since we wish to use this robot for motion in gravitational force field (though it is
not in the scope of this work). Therefore the motors should be powerful enough to

support the entire robot’s weight. The second change is by attaching the optical
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encoders that measure each joint angle directly to the joint axle rather on the back
of the motor. This way the controller has an accurate (8000 counts per revolution)
measure of the joints angles and it can compensate for backlash in the gears. Since the
mechanism apply forces on the tunnel walls the backlash is compensated (but dead
zone still exist). Having unknown backlash is a major problem because it produces
large amount of uncertainty in the footpads positions. Attaching the sensors directly
on the joint axle overcome this problem.

Our goal is thus to develop a control and navigation algorithms for the motion of
planar spider robot in tunnel environments. This work is divided to three independent
work units. In the first part presented in chapter 2 we consider an object grasped by k
compliant fingers. We analytically compute the conditions for it’s stability and the set
of external wrenches (i.e. forces and torques) that can be applied on object without
destructing it’s stability. This chapter on grasping is important and applicable for
the control of spider-robot in a tunnel. When the spider-robot does not change it’s
internal configuration then from the tunnel point of view it can be seen as the tunnel
walls grasp the mechanism. The second part presented in chapter 3 deals with optimal
selection of sequence of foothold positions for the spider throughout the tunnel. The
third part presented in chapter 4 introduces a decentralized PD control algorithm for
the robot and provide conditions for it’s stability based on the results from chapter 2
and based on new results on the stability of asymmetric second order linear systems.
Experimental results of chapter 5 present full motion of the spider in the tunnel. In
these experiments the foothold positions were selected by the algorithm of chapter 3

and the spider controller uses the control algorithm introduced in chapter 4.



CHAPTER 1. INTRODUCTION 11

1.1 Summary of Contributions

Here we summarize the contributions and the significance of the results presented in
each chapter.

Contributions of chapter 2: In this chapter we introduce a class of grasps named
linearly controlled force closure grasps, where a rigid object grasped by compliant fin-
gers. The fingers obey linear force-displacement law, and contact the object through
frictional contacts. The chapter makes four contributions. First, it provides neces-
sary and sufficient conditions for force closure with compliant contacts. In particular,
the geometrical condition for active force closure is necessary but not sufficient for
force closure with compliant contacts. Second, the chapter characterizes the set of
external wrenches that can be resisted by a given grasp. This set, called the force
closure set, depends on the grasp geometry, the amount of friction at the contacts, the
kinematics and dynamics of the grasping mechanism, as well as the preloading forces.
Third, the chapter describes how to explicitly compute the force closure set for grasp
arrangements where a compliant mechanism holds a rigid object. The chapter also
presents global stability analysis, and computes the basin of attraction of the equi-
librium point. Fourth, the chapter allows to compute the force closure set even for
curved fingers where a rolling motion between the object and the fingers can occur.
Finally, The force closure set has been verified in experiments. Part of this work was
published in [67, 70].

Contributions of chapter 3: This chapter presents an algorithm, called PCG,
(short for Partitioned Cubes Gaiting) for planning the foothold positions of spider-like
robots in planar tunnels bounded by piecewise linear walls. we focus on 3-limb robots,

but the algorithm generalizes to robots with a higher number of limbs. The input to
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the PCG algorithm is a geometrical description of the tunnel, a lower bound on the
amount of friction at the contacts, as well as start and target foothold positions. Using
this knowledge, we established that the feasible 3-limb postures consist of a union of
convex sets in contact c-space. Using efficient convex programming techniques, the
algorithm approximates the possible foothold positions as a collection of cubes in
contact c-space. Each cube represents a contact independent set of feasible 3-limb
postures. A graph structure induced by the cubes has the property that its edges
represent feasible motion between neighboring sets of 3-limb postures. This motion
is realized by lifting one limb while the other two limbs brace the robot against the
tunnel walls. A shortest-path search along the graph yields a 3-2-3 gait pattern that
moves the robot from start to target using a minimum number of foothold exchanges.
In practical environments the algorithm runs in O(np®log(np)) time, where n is the
number of tunnel walls and p is related to the cube approximation of contact c-space.
Simulation results demonstrate the PCG algorithm in a tunnel environment, and
experimental results present the spider-robot walking in a tunnel while selecting it’s
foothold positions according to the PCG algorithm. This work has been partially
published in [66].

Contributions of chapter 4: In this chapter we consider a k-limbed spider mech-
anism, such that each limb has n actuated degrees of freedom. The limbs are inter-
connected by a central base that has three unactuated degrees of freedom. A spider
robot thus has kn+3 degrees of freedom, of which only kn degrees of freedom are
actuated. If we regard the spider’s configuration space as IR*"*3, the control problem
is how to induce forces and torques on the spider in order to bring it to a desired

Rkn+3

configuration in . We present a control approach which is guaranteed to work
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no matter what is the mass distribution of the spider or the geometry of the envi-
ronment. Our approach exploits the natural compliance in the contacts to stabilize
the mechanism using two three or even more footholds. Since we have frictional
contacts we first derive the contact stiffness matrix. The contact stiffness matrix is
not symmetric and we present the condition for it’s symmetric part to be positive
definite, which is a key property that we need in order to prove the stability of the
mechanism. Next we present the spider-robot dynamic equations. We introduce a
simple decentralized PD controller for the actuated joints of the robot. Then we find
the equilibrium point of the closed-loop system. Following we analyze the stability
of the system using linearization about the equilibrium. The linearized dynamics of
the system is asymmetric. Therefore we develop new criteria for for the stability of
second order asymmetric linear systems. These criteria are based on the fact that we
consider system which it’s symmetric part is stable, then a small enough asymmetric
part should not destruct the stability of the system. In this chapter we introduce a
computed lower bound on the stiffens of the PD controller the symmetric system is
stable. Additionally an analytic criterion for the maximum allowed magnitude of the
asymmetry of the system has been developed.

Contributions of chapter 5: This chapter presents experiments conducted with
our 3-limbed spider robot. In these experiments the foothold positions were selected
using the PCG algorithm and the entire mechanism was controlled with the control
algorithm developed. The significance of these experiments is to show an application
of the theories presents in this work. Moreover, it shows that it is possible to use
these navigation and control theories in order to preform motion of real walking spider

robot in tunnel environment.



Chapter 2

Force Closure Set

2.1 Introduction

The notion of force closure was originally formulated for multi-fingered robot hands
[32, 61]. This notion should be called active force closure, since it requires that the
fingers be able to actively balance any disturbing wrench (i.e. force and torque) acting
on the grasped object. Active force closure requires sophisticated contact-force sen-
sors and agile contact-force controllers whose action must be precisely coordinated.
However, in applications such as fixturing the grasping elements are simple devices
that are preloaded against an object with initial grasping forces [46]. Physical pro-
cesses at the contacts, such as friction and compliance, provide passive stabilization
of the object against external disturbances. Another important application concerns
multi-fingered mechanisms that establish an initial grasp of an object. Using decou-
pled position-based controllers for the individual fingers, the effective compliance of
the grasping mechanism together with friction at the contacts provide stabilization

of the grasped object (Figure 2.1(a)). A related application is a multi-limbed robot

14
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W)
Figure 2.1: (a) A multi-fingered hand grasping an object. (b) A multi-limbed robot
bracing against tunnel walls.
THID INNI DP9 NI VAN (b) VPN TMNMN NMYIANN NI T (a) 2.1 IPN
I 9T

bracing against a tunnel-like environment in static equilibrium (Figure 2.1(b)). Here
the tunnel walls play the role of the grasped object, and the robot stabilizes itself
by pushing against the walls using decentralized position-based controllers. In all of
these examples stabilization is achieved without active control or coordination of the
contact forces.

Consider a grasp arrangement where each finger or contacting body obeys its
own force-displacement law. In particular, some fingers may apply a fixed force
on the object. The grasp is force closure if for suitably selected initial grasping
forces, the fingers or bodies contacting the object balance any external wrench in a
neighborhood about the origin. The literature on active force closure is only partially
relevant for studying force closure with compliant contacts. Examples of works on
friction-based active force closure are [42, 53, 76]. Specifically, Jen Shoham and
Longman [30] developed a force control law for the fingers to stabilize force-closure

grasps. Examples of works that additionally consider the structure of the grasping
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mechanism are [3, 20, 27, 39, 47].

This chapter makes four contributions. First, it provides necessary and sufficient
conditions for force closure with compliant contacts. In particular, the geometrical
condition for active force closure is necessary but not sufficient for force closure with
compliant contacts. Second, the chapter characterizes the set of external wrenches
that can be resisted by a given grasp. This set, called the force closure set, depends
on the grasp geometry, the amount of friction at the contacts, the kinematics and
dynamics of the grasping mechanism, as well as the preload forces. Third, the chapter
describes how to explicitly compute the force closure set for grasp arrangements where
a compliant mechanism holds a rigid object. Such grasp arrangements arise in multi-
fingered hands and multi-limbed robots that interact with rigid objects using simple
position-based controllers [13]. The chapter also present global stability analysis, and
show analytical criterion for the global stability of the equilibrium point. Fourth,
the chapter allow to compute the force closure set even for curved fingers where a
rolling motion between the object and the fingers can occur. Finally, we compare the
the passive closure set for 2-finger linearly compliant planar grasps with experiments.

The experiments verify the force closure set and closely match the computed set.

2.2 Geometric Definition of Force Closure (GGrasps

In this section we review the notion of active force closure. Then we describe necessary

and sufficient conditions for the existence of force closure with compliant contacts.
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2.2.1 Frictional Grasps Terminology

We study 2D or 3D grasps, where a rigid object B is held in frictional point contact
by k rigid bodies Aj,...,Ax. The bodies Aj,..., A) represent fixturing elements or the
fingertips of a multi-fingered hand. Although we use the language of grasping, these
bodies can also represent the footpads of a multi-limbed robot. The contact point
between A; and B is denoted r; when expressed in B’s body frame, and x; when
expressed in a fixed world frame (Figure 2.2). The two representations of the i'"
contact point are related by the rigid-body transformation: x; = Rr; + d, where d
and R are the position and orientation of B with respect to a fixed world frame.
The orientation matrix R is parametrized by the exponential map, R(f) = exp(6),
where § € IR in 2D and 6 € IR® in 3D. The object configuration is parametrized by
q = (d,0) € R™, where m = 3 in 2D and m = 6 in 3D. The wrench generated by a

force F; acting on B at x; is given by the familiar formula:

w; = i where p;, = R(0)r;.
pi % F;
The collection of wrenches that act on B at a particular configuration ¢ is called the
wrench space at q. This space can be identified with R™.

We assume the standard Coulomb friction model: |F}| < u|F}*|, where F} and
F!" are the tangent and inward normal components of F;, and p is the coefficient of
Coulomb friction!. The force F; can only push on the object, and this constraint is
described by the inequality F* > 0. The friction cone at the i contact, denoted

FC;, is the collection of all frictional forces that can be applied to B at x;, and it is

given by

'In 3D, under a soft-contact model there is also frictional torque about the contact normal.
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world
frame

Figure 2.2: Basic notation for frictional grasps.
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FC;={F;: F'>0and —uF < F/ < puF/'}.

The set of wrenches generated by all forces in F'C; forms a cone of feasible wrenches.

The it" feasible wrench cone, denoted W;, is given by

Wi = {wi: w; = " |, vE e FCy).
p; < I
When B is held by k fingers, we say that B is in equilibrium if in the absence of any

external wrench there exist feasible wrenches w; € W, for ¢ = 1,...,k such that

Zf:l w; = 0.

2.2.2 Review of Active Force Closure

Active force closure is the standard notion of force closure [53, 76]. The collection
of wrenches that can be generated by k frictional contacts is given by the set sum:

Wi+ 4+ W ={wi+ - +w,:w; €W, for i =1,...,k}. This notation is used
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in the following standard definition.

Definition 1 Let an object B be held in equilibrium grasp by k frictional point con-
tacts. Let W; be the feasible wrench cone of the it" contact. Then the grasp is active
force closure if the sum of the wrench cones Wi+ - - -+ W)} spans the entire wrench

space IR™, where m=3 in 2D and m=6 in 3D.

The active aspect of the grasp lies in the assumption that the grasping bodies can
generate any contact force within the respective friction cones. The following theorem
gives a simple rule for determining force closure [53, 80]. By definition, a grasp is
non-marginal when the contact forces are non-zero and lie in the interior of their

respective friction cones.

Theorem 1 (Active Force closure) Let a 2D or 8D object B be grasped by k fric-
tional contacts, such that the contacts do not lie along the same spatial line when the
grasp is 3D. Then the grasp is active force closure iff it is possible to establish a

non-marginal equilibrium grasp of B.

2.2.3 Force Closure with Compliant Contacts

Force closure is based on the assumption that the contact forces can be freely modified
within the respective friction cones. However, when the contact points are compliant
each contact force obeys some force-displacement relationship subject to friction con-
straints at the contacts. To formalize this notion, we define three types of contacts
that encapsulate three common types of force-displacement laws and other modelling

idealizations.

Definition 1 e A rigid-body contact is a stationary rigid-body that passively inter-

acts with B through a frictional contact. e A fixed-force contact is a frictional point
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contact that applies a specific force at the contact point. e A compliant contact is
a frictional contact that applies force according to a force-displacement relationship

of the contact point.

Let us give examples of these types of contacts. Rigid-body contacts are commonly
used in fixturing applications to restrict the motions of a workpiece. Fixed-force
contacts are generated by mechanisms such as pressure-controlled hydraulic fixels and
force-controlled robot grippers. Compliant contacts are generated by finger and limb
mechanisms whose joints are controlled by position-servoed controllers [13, 61], or by
spring loaded fixtures. A more complex type of contact occurs when several contacts
are coupled together by the grasping mechanism. Such coupled contacts often occur
in power or enveloping grasps [80]. In order to avoid such coupled contacts, we assume
that each contact is generated by its own independent mechanism.

We now give necessary and sufficient conditions for force closure of grasps having
frictional compliant or fixed-force contacts, as well as frictionless rigid-body contacts.
The conditions are based on the following notion of potential energy function. The
wrench generated by a compliant contact can be written as w; = —WVU;(q), where
U;(q) is the elastic potential energy function induced on B by the i compliant con-
tact?. Similarly, the wrench generated by a fixed-force contact is induced by a po-
tential function which is linear in x;, where z; = R(0)r; + d. The wrench generated
by a frictionless passive rigid-body contact also has the form w; = —VU;(q), where
the elastic energy function is given by the Hertz formula from elasticity theory [31].
(This theory treats the contacting bodies as quasi-rigid.) The total potential energy
of B is the sum U(q) = Zle Ui(q).

th

2U;(q) is identically zero when the i'" contact is broken.
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Proposition 2.2.1 Let a 2D or 3D object B be held in equilibrium grasp by k in-
dependent compliant frictional contacts, fixed-force frictional contacts, or frictionless
rigid-body contacts. Let qo be B’s equilibrium configuration, and let U(q) be the po-
tential energy induced on B by the contacts. Then the following two conditions are
sufficient for force closure:
1. The initial equilibrium grasp is non-marginal. (In

3D the contacts must not lie along a common line.)
2. The equilibrium qo s a non-degenerate local min-

imum of the potential energy function U(q).
Moreover, in all generic grasps conditions (1) and (2) are also necessary for passive

force closure.

A proof of the proposition is sketched in appendix A.1. The first condition of the
proposition states that the grasp must satisfy the condition for active force closure.
L.e., the grasp must be active force closure if the contacts are made fully active.
The second condition is the standard stability condition for compliant grasps [27,
39]. The stability condition ensures that when an external wrench acts on B, the
object would automatically settle at a new equilibrium in the vicinity of qo where
the contact forces balance the external wrench. Note that two issues play a role in
this convergence. First, the equilibrium induced by the external wrench must be
locally stable. Second, the original unperturbed equilibrium must lie in the basin of
attraction of the new equilibrium. Finally, the proposition generalizes to any type of

contact whose dynamics varies smoothly with the external wrench acting on B.
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2.3 The Force Closure Set of Compliant Grasps

Given a force closure grasp, the force closure set is the collection of external wrenches
which are automatically balanced by the contacts. In this section we characterize the

force closure set of force closure grasps with compliant contacts.

2.3.1 Characterization of The Force Closure Set

Let us depict a fundamental difficulty in computing the force closure set. The
Coulomb friction model allows generation of tangential forces at the contacts up
to a limit determined by p times the normal component of the contact forces. In
compliant grasps the normal component of the contact forces is determined by the
initial preload of the grasp, and can change only in response to an external wrench
W, acting on B. In other words, the normal loadings at the contacts cannot “sponta-
neously” change as they do in fully active contacts. Thus we write the normal loading
at the ¥ contact as F"(weyt). The friction cone at the i'" contact is determined by
the inequality |F}| < uF"(wey), and this friction cone determines a w,,,-dependant
feasible wrench cone denoted W;(we,;). An external wrench can be possibly balanced
by the contacts only when the recursive relation we,; € Wi(wept) + -+ + Wi(Went)
holds true. The solution of this recursive relation is a key step in computing the
closure stability set.

The compliant grasps are defined as grasps where a rigid object B is held by
compliant finger mechanisms. This class of grasps also includes multi-limbed robots
bracing against a rigid environment. The rigidity of B is an excellent approximation—

although all objects exhibit some natural compliance at the contacts, this compliance
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is negligible relative to the compliance induced by the joints of the grasping mecha-
nism. For example, consider our experimental multi-limbed robot depicted in Figure
2.1(b) [71]. Each limb of this robot has four joints actuated by Maxon motors that
generate a stiffness of 2 N/mm at the footpads. In contrast, the stiffness of objects
made of Aluminum is 4.5 - 103> N/mm.

We make the following simplifying assumptions. First, each finger mechanism is
assumed to interact with B through a pointed finger-tip. This assumption implies
that when a finger-tip locally rolls on the surface of B, the location of the contact
point remains fixed in B’s body frame. Second, we assume that each finger mechanism
is fully actuated, so that it can generate any force in IR", where n=2 in 2D and n=3
in 3D. Our third assumption is that each finger generates a force-displacement law of

the form:

Fy = F) + f(i), (2.1)

where FY and z{ are the contact forces and contact points at the initial equilibrium
grasp, and f; is a smooth function such that f,(z;) = 0 when z; = z9.

Our first step in the characterization of the force closure set is to express the
contact forces as a function of the object configuration ¢ = (d,#). The i'" contact
point is given by z; = R(0)r; + d, where r; is the description of x; in B’s body
coordinates. Let r¥ denote the coordinates of r; at the initial grasp. Let F@Q denote
the collection of B’s configurations where the contact forces lie in their respective
friction cones. (The set F( is considered below.) Then the pointed-finger assumption
together with the rigidity of B guarantee that the points r; remain fixed in B’s body
frame, for all configurations ¢ € FQ. Thus we may write z; = R(0)r) + d for

i = 1,...,k. Substituting for the x;’s in (2.1) gives the desired expression for the
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contact forces:
Fi(d,0) = F) + fi(z:(d,0)) i=1,.. k. (2.2)

The approach presented here for computing the contact forces was originally proposed
by Bicchi [2]. However, Bicchi assumes only a small change of Ag in the object’s con-
figuration, with a linear force-displacement law. Our formulation generalizes Bicchi’s
approach to any object configuration and any force-displacement law.

Next we write an expression for the set of feasible configurations F(). This set
is given by the intersection FQ = NF_,FQ;, where FQ; denotes the collection of
B’s configurations where the " contact force Fj(g) lies in the friction cone FC;.
Let n; denote the inward normal to the boundary of B at r;, written in B’s body
coordinates. And let N; be the inward unit normal to the boundary of B at z;,
expressed in world coordinates. Then N; = R(#)n;, and the normal component of
the i’ contact force is: F* = F;- N; = F;- (R(0)n;). The tangential component of F}
is: Bl = ||[I = N;NIE|| = ||[I — ninl]R(0)TF||. Substituting for F* and F! in the

inequalities that define F'C; gives:

FQi= {q=(d,0): F;-(R()n;) >0 and
1[I = ninl |R(O)"F|| < pF; - (R(O)n:)}

where p is the coefficient of friction. Substituting for the forces F; according to (2.2)
gives:
FQi={q=(d,0): Fy(d,0)-(R(0)n;) >0 and
Il =ninf]R(0)" Fi(d. 0)|| < pFi(d, 0)-(R(0)na) }.
The desired set F( is the intersection of the sets FQ; for i = 1, ..., k. Our third step
is to identify the configurations that guarantee stable convergence of B to the equilib-

rium induced by an external wrench. This condition is captured by the requirement
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that the second-derivative matrix of the grasp potential energy function, D*U(q),
be positive definite. The set of configurations that satisfy this stability condition,

denoted P, is given by
P={q=1(d.0): \uin(D*U(q)) >0}, (2.3)

where A.,;, denotes the minimal eigenvalue of a matrix. Condition (2.3) guarantees
local stability of the equilibrium induced by w.,; at q. However, it does not guarantee
that B’s original equilibrium at ¢q lies in the basin of attraction of the new equilibrium
at ¢. The condition for global convergence from ¢q to ¢ is presented in the next section.

Finally, the net wrench generated on B by the contact forces is w = Zle(Fi, p; X
F;). Since F; and p, are functions of ¢, w can be interpreted as a mapping from
configuration space to wrench space. The force closure set, denoted W, is the image

in wrench-space of the configurations ¢ in @ NP under the mapping w(q):

k ;
W= w:Z Fita) L qEeEFQNP
i=1 \ pi(qQ) X Fi(q)

Any wrench w,,; in YW would be automatically balanced by the contacts of the grasp.
Theorem 2 For any w.,; € W there exist a locally stable equilibrium point ¢*

Proof: The equilibrium equation is

. Fi(q")
i\qd
Wzt = Z
i=1 \ pi(q*) X Fi(q")
and since w,,; is function of ¢* thus there exist a configuration ¢* that is an equi-
librium point. Moreover, This equilibrium point ¢* is in FQ[)P. It means that the

forces can be applied by the frictional contacts, and the equilibrium is locally stable.

O
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2.3.2 The Force Closure Set Under Linear Compliance Law

Next we compute the force closure set of compliant grasps whose contacts specifically

obey a linear compliance law of the form:

Fy, = F) — K;(z; — 1Y), (2.4)

(2

where F and z? are the contact forces and contact points at the initial equilibrium
grasp, and K; is an n X n positive semi-definite matrix (n = 2 in 2D and n = 3 in

3D). First we substitute the linear law (2.4) into (2.2):

Fi(d,0) = F) — K;(R(O)r) +d) —20) i=1,..,k
Next we substitute for the contact forces Fj(d, ) in the inequalities that define the
sets F(@Q;. This substitution yields a closed-form expression for the set of feasible
configurations, FQ = N_, FQ,. Finally, the inequality that defines the locally stable
configurations requires a formula for D?U(q). This formula is provided in the following
lemma. Given a vector u € IR®, [ux] denotes the 3 x 3 skew-symmetric matrix

satisfying [ux]v = u x v for all v € IR®.

Lemma 2.3.1 ([53, 68]) Let a rigid object B be grasped by k compliant contacts
each satisfying the linear compliance law (2.4). Then the formula for D*U(q) in the
3D case 1s:

D*U(q) =
K Kilp;x] (2.5)

[PiX]TKi [PiX]TKi[Pix]‘i‘([ﬂx][mx])s
where for a given matriz A, A; = 3(A+A"). The formula for D*U(q) in the 2D case

k
2im1

18!
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b K; —K;Jp;
D*U(q) =) : (2.6)
i=1 | =(Jp)'Ki (Jp))"KiJp;+Fi-p;

0 1
where J = )
-1 0

The full derivation of D?U(q) appears in Appendix A.1

2.4 Global Stability Analysis

In this section we will develop analytic criteria to check wether the origin is in the
basin of attraction of a given equilibrium point. This will ensure that an object
located initially in the origin of the world reference frame will converge to a given

equilibrium point while an external wrench applied on the object.

2.4.1 The Grasped Object Equilibria

First we would like to find all the possible equilibrium point for a given constant
external wrench we,;. Note that we, = (wy, wt)T, where wy and w, are the force and
the torque parts of w.,; respectively. In equilibrium Zle F, +wy = 0, and if we
substitute F; from (2.4) we get

k

i=1
Next we isolate the position vector d as function of p(6) and denote P = Zle K;.

Thus we have

k
d=P' Y {F) = Kipi(6) — )} +wy. (2.7)
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The second equilibrium equation is that the sum of the external torque and the
torques that all the forces apply on the object is equal to zero. Explicitly that means

that Zle{pi x F;} +w, = 0, and substitution of F; yields

> o [E? = Kilpu(6) + d = ad)] } + i =0,

Note that this is a scalar equation. The term p; x F; can be written as p! JF;.

Substitution of the linear compliance law for F; and d from equation (2.7) yields to

k k
Z{piTJ[FiO — Ki(p; — 2f + P Z{FJQ — Kj(pj — )} +wp)]} +w, = 0.
i=1 j=1
To ease the writing we denote
Ay = JK,PT'K;,
B; = JK;,

and

k
Ci = J(F) + Ki(af = PV {F)+ K;a2%}),
j=1
Where i = 1..k and j = 1..k. Furthermore, A;;, B; and C; are all constants that do

not depend on the object configuration and not on the external wrench. We rearrange
the above equation and have

DD (i) Ay (8)) — pi(6) Bipi(8) + pi(8)" Ci — pi(6)" T Puwy] + 1wy = 0. (2.8)

i=1  j=1

Based on this result the following lemma characterize the possible number of equilib-

rium points a grasped object can have.

Lemma 2.4.1 (Maximum Number of Equilibrium Points) Let a rigid object
B be grasped by k compliant contacts each satisfying the linear compliance law (2.4).
Then for a given external wrench and preloading forces,B has 0,2 or 4 equilibrium

points.
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Proof: The only unknown variable in the scalar equation (2.8) is #. The solution
of this equation give us the 6 values of the equilibrium points. These values can be

substitute into (2.7) to calculate the complete configuration of the equilibrium points.

cos(f) —sin(0)
pi(0) in equation (2.8) is r
sin(0)  cos(0)
th

i" initial contact point. So equation (2.8) contains terms of sin?(6),cos*(f) and

0

70

where r? is a constant vector of the

sin(0) - cos(f). There are no higher orders of the power of sin(f) and cos(#). Next we

use the famous substitution of z = tan(36), then sin(f) = lizzQ and cos(0) = ;jz

It

we substitute these terms into (2.8) and solve for z, we get a quartic equation (i.e.
fourth order polynomial equation) in z [16]. A fourth order polynomial has 0,2 or 4
real roots. Two times the arc tan of these roots are the 6 values of the equilibrium

points and together with d(6) from (2.7) they are the critical points of U(q). O

2.4.2 Stability Characterization

we examine the shape of U(q). The following lemma states the specific shape of the

level sets of U(q) in every 6 layer.

Lemma 2.4.2 (Shape of § Layers of Level Sets of U(q)) The shape of the set
{qg=(d,0):U(d,0 = Const.) = Const.} is ellipse, point or ().

Proof: Let us write U(q) explicitly as

k
1
Ulq) = Z[g(ﬂi +d— o)) Ki(pi+d—a)) = (pi+d =) F)] = ¢"wewr. (2.9)

=1

It is possible to rewrite U(q) in the following form

1
U(q) = 5dTPd + Vi d + Gy,
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where P =300, Ki, Vil = S0 (pf Ki—a K= FY") —wf, and Cy = £, (pf Kipi—
pF Kzl + %x?T K20 — pT FO+ 29" F9) —w, - 0. The completion of U(q) to full quadratic

form yields

Ulq) = %(d + P W) P(d+ P~'Vy) — %VQTP—% + Cy, (2.10)
and for U(q) = Cy = Const we get

%(d + P V)T P(d+ P 'V) = Cy — Cp + %VHTPWQ. (2.11)

For a given 6§ = Const layer the right hand side of equation (2.11) is a constant scalar
number and the left hand side is a quadratic form with the matrix P positive definite.
That is equation (2.11) is simply an ellipse equation that can be degenerated to a
point or to an empty set. 0]

Following are definition lemma and theorem that help us finding the topology of

the sub level sets of U(q).

Definition 2 (Compact Function) Let a function f(x): R™ — R be a continuous
differentiable function, and let X¢ = {x cflx) < C} be a sub level set of f(x), where
C € R. Then f(x) is a compact function if there exist a constant Cy such that for

any C < Cy Xc =0, and for any C > Cy X is compact.

Lemma 2.4.3 (Compact Function U(q)) The function U(q) as in (2.9) is a com-
pact function. Meaning that for every C € R the sub level set of U(q) Qc = {q :

U(g) < C} is a compact set or ) .

Proof: To show that ()¢ is compact we have to show that Q¢ is closed and bounded.
U(q) is bounded from below because of the following reasons. The first term of (2.10)

is positive semi definite since it is a quadratic form with the matrix P positive definite.
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The second and third terms in (2.10) depends only on § which is a bounded cyclic
coordinate. These terms are continuous functions of 6 € [0, 27] and therefore accept
a minimal and maximal values —M; < =1V, P71V} 4+ Cy < Mj, where M; and M
are positive real constant numbers. Thus all the components of U(g) sums up to a
function that is bounded from below. For C' smaller from this lower bound Q¢ = 0,
otherwise Q¢ # () and for that case we need to prove that Q¢ is compact. Next we
Show that Q¢ is bounded. The first term in (2.10) is a quadratic form that takes the
form u? Pu with P € R?*? positive definite matrix. For such quadratic form we can
have

Ain (P[] < 4" Pt < Ao (P) ]|,

where u is an arbitrary vector and A (P),Amaz(P) are the minimal and maximal
eigenvalues of P. The reason for this is as follows. We can define an orthonormal
matrix A, where the columns of A are the normalized eigenvectors of P. The matrix
AT PA is the diagonal matrix diag(A;(P), M\ (P)), and vT' AT PAv = A\ (P)vi+Xo( P)v3.
Following Apin (P)||v]|? < vTATPAv < Mpae(P)||v||>. Define u = Av and we get
Anin(P)|[0|I? < uT Pu < Ao (P)|Jv]]2. But ||ul|?* = uTu = vTATAv and since A is
orthogonal ATA = I and |ju]|> = vTv = ||v||>. Substituting back this result yield
Amin(P)||u])?* < T Pu < Apao(P)||ul|?>. Using this result we can substitute these

bounds to (2.10) and get

U(q) = 5Amin(P)|[(d + P~ Vp)||* — M.

N | —

The triangle inequality state that ||wq| — [|wa| < ||wi + we| < |Jwi]| + ||w2]|. Using

the triangle inequality we get

U(q) 2 5Amin(P)(ld]l = [P~ Vl)* — M.

DO | —
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Since ||P~!Vp|| is a continuous function over the interval 6 € [0, 27| it accept a min-
imum and maximum values M, < ||P~!'Vp| < M,. Substituting this result to the

previous equation yields

U(q) 2 5Amin(P)(ldl| — Ma)* — M. (2.12)

N —

Consider the sub level set where U(q) < C' then

1
5 Amin(P)(|ldl] = Mz)* = My <U(q) < ©

So we get (||d|| — My)? < QA(S:](\]@)) since Apin(P) is positive. It follows that

2(C + M)

d)| <
]l < o (P)

—f—MQER,

where R is the radius of the circle containing all the (z,y) points for which U(q) < C.

We conclude that
Qc C{(z,y.0): 0 € (0,27, (z,y) € B(0, R)},

where B(0, R) is the closed 2D ball with radius R and center in (0,0). This mean
that )¢ is bounded within a close cylinder. Finally, there exist a theorem that states
that for a continuous function f : R™ —— R the source set of a closed set is close.
From (2.12) it is clear that U(g) is bounded from below by A, (P)M3 — M; and
C' bounds it from above. Since the image of U(q) is a close set the source set of ¢ is

close. We proved that ()¢ is a bounded close set and therefore compact. 0

Theorem 3 (Existence of connected sub level set of compact function) Let
a function f(z) : R™ — R be a compact function, and let X¢o = {x Cf(x) < C’} be
a sub level set of f(x), Then there exist C' = C* such that for any C > C* X¢ is a

connected compact set.
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Proof: By definition (2) for any C > C* > Cy X¢ is compact. Denote all the
connected subsets of X¢o X; for e = 1,2,..., N. X, is a connected compact set. By
it’s own definition X; is connected. X; is bounded as being a subset of a bounded
set. X, is a closed set because of the following reasons. There is no continuous path
that belong to X¢ and connect any z; € X; to any x; € X; otherwise X; and X
would be unite to one subset of X¢. Thus X; cannot close an open set X; and since

Xo = Ufil X; X; must be a closed set. Denote z]* € X, as

m .
zj" = arg min f(z).

Define a segment I';;(t) : [0,1] = R™ such that I';;(0) = 2" and [';;(1) = z7". In
other words I';; is a continuous path connecting z7" to 27" and as such is a compact
set of points. In a compact set continuous function accept a minimum and maximum
values. Therefore the maximal value of f(z) along the path I';;(¢) is

Cij = max f(Dy;(1)).

t€(0,1]

If C > Cj; then the entire path I';; is within X and there is a connection between
X; and X;. Finally, if

C" = maxCjy;
I’J

then for C' > C* there is a path connecting any X; to any X; and X¢ is a connected
compact set. 0
According to lemma (2.4.3) and to theorem (3) there exists C* for which the set

Qc ={q:U(q) < C*} is a connected compact set.

Lemma 2.4.4 (Existence of cylinder within a sub level set of U(q)) LetU(q)

be as in (2.9), and let Qr, = {q : U(q) < CL} such that Qr, is a connected compact set
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that contains all the critical points of U(q). Then for large enough Cr, R'(CL) > 0,
and there exist d € R? such that {q = (d,0) : 0 € [0,27] and ||d||* < R'} C Q.

Proof: We follow the first steps of lemma 2.4.3 to get

U(q) < =Amaa(P)(|d + PVpl[)? + Ms.

N | —

All the (d,0) points for which 3. (P)(||d + P~'Vg|)? + M3 < Cp, are within Q.

From the triangle inequality [Jw:|| — ||wz|| < |Jwy + wa|| < |Jwy|| + ||wa]| we have
A (Pl + PV 4+ My < C
Substituting the bound for |P~1Vp|| < M, yields
1 2
5 mar (P)([[dl] + Ma)? + My < Ci.
Isolating ||d|| yields

Q(CL — Mg)
)\macc(P)

For Cp, large enough R'(CL) > 0 and the cylinder of radius R’ is within the C, sub

||| < - M;=FR

level set of U(q). Additionally, if qi,...,qs are the critical points of U(q) then set

Cp > max{U(ql),...,U(q4)} to contain gy, ..., g4 within Q. O

Proposition 2.4.5 (Equilibria classification) Let U(q) be as in (2.9), and let
QL =1{q:U(q) < Cr} as in lemma 2.4.4. Then U(q) has 2 or 4 critical points
that can be classified as follows:

In case U(q) has 2 equilibria:

e U(q) has 1 minimum and 1 saddle.

In case U(q) has 4 equilibria:
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e U(q) has 1 minimum and 3 unstable points.

e U(q) has 2 minima and 2 saddle points.

Proof: To prove this proposition we need to use the Morse theory. We assume U(q)
is Morse function meaning all it’s critical points are not degenerate D*U(q) # 0 in
all the critical points. Thus all critical points of U(q) are discrete and separated from
each other. Morse theory can be applied on a compact differentiable manifold. This
is the reason we proved )y, is a compact connected set (lemma 2.4.3 and theorem 3).

Now we review the relevant parts of Morse theory. Morse theorem (part A) [44,
page 4]: as C varies within the open interval between two adjacent critical values the
topological type of ()¢ remain constant.

The definition of Morse data for a function U(q) at a critical point ¢; in @, is a
pair of topological spaces (A, B) where B C A with the property that as C' crosses
the critical value U(g;), the changes in Q¢ topology can be described as gluing in A
along B.

Morse theorem (part B) [44, page 4]: Let U(g) be a morse function on a smooth
manifold )7 morse data measuring the topological change in Q¢ as C crosses the
critical value U (g;) of the critical point ¢; is given by the "handle” (D*x D", (0D*) x
D™™*), where A is the number of negative eigenvalues of the Hessian matrix of U(g;),
and n is the dimension of ().

Here D' denotes the closed i-dimensional disk and 9* denotes its boundary ¢ — 1
sphere. (Note that 0-disk is a point and its boundary is empty.

The Morse data of U(q) is as follows:
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Critical point Morse data (A, B) and its graphical description

minimum (DY x D3,0D° x D?) — (@,@)

saddle with 1 negative eigenvalue | (D' x D?, 0D' x D?) =

saddle with 2 negative eigenvalue | (D? x D', 0D? x D') = (@,ﬁ)

maximum (D3 x D° 0D? x DO) = @,@)

(@1, is a connected compact set without any pinching since it contains a cylinder.
We wish to find a combination of critical points that forms a set with same topological
characteristics as those of Q1. Note that our space is (x,y, ), where x € Rand y € R
are linear coordinations, while 6 is a cyclic coordination. One can imagine this space
as a surface of a cylinder with one extra linear coordinate.

() must contain a minimum point of U(g) since a continuous function accepts
a minimum and maximum values in a compact set. Moreover, the minimum point
is inside @ while the maximum is on its boundary. Note that U(q) = CL on the
boundary of ()7. Thus if the minimum point is on the boundary it means that
U(q) = const. and this is impossible.

Generally, if we have only one minimum point of U(q) then except of a very thin
set flows, all the other flows will converge to the minimum of u(q). Note that every
small perturbation will cause the system to leave this set and to converge to the
minimum.

In case U(q) has 2 critical points there exist only one minimum since If we have 2

minima points we end with 2 disconnected 3D balls and this is not equivalent to the

topology of Q.
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In case U(q) has 4 critical points, @)1, can not contain 3 minima points. The reason
for this is that the topology of 3 minima points is 3 disconnected balls, but we have a
connected set, Thus we need a "handle” with 3 gluing surfaces which we do not have.

We conclude that U(g) can have 1 or 2 minima points. In case U(q) have 4
critical points with two minima points we still need to characterize the other two
critical points.According to the mountain pass theorem [48, 54] and the saddle point
theorem between two minima points there exist a saddle point. So now we have two
minima points and a saddle. Since 6 is acyclic coordinate and since (); contain a
cylinder in the full range of 6, there exist another saddle between the two minima in
the other way around 6. 0
In case there are two minima points in (); and two saddle points. Denote
the two minima points as ¢j, ¢5 and the two saddle points as gf, ¢g5. We can order
the points in a way that 0] < 07 < 05 < 65. The following proposition states which

points are within the basin of attraction of ¢j.

Proposition 2.4.6 (Basin of attraction) Let U(q) be as in (2.9), and let Qp =
{q :Ulq) < CL} as in lemma 2.4.4. For the case U(q) has 2 minima points and 2

saddle points. A point qo is within the basin of attraction of qf if:
e Ulgo) <minfU(q7), U(g3)]

o 07 <0y <0

Proof: The first item states that the system initial energy must be lower then the
lowest saddle. The sub level set is a positive invariant set and the flow can not move
the state between disjoint subsets of the sub level set. This assures that the system

will stay within the basin of attraction of ¢j and will not have enough "energy” to
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pass to the basin of attraction of ¢5. The second item states that the plane 0 = 0444
separates between the two basins of attraction of the two minima points. To prove
that we suppose 0 = 0,444 1S N0t a separating plane and will see that this lead to a
contradiction to lemma 2.4.2. The saddle point ¢° is both on the 6 = 0,44 plane
and on U(q) = U(q®) manifold. Thus according to lemma 2.4.2 the intersection of
the manifold and the plane is the isolated point ¢° or an ellipse that contains ¢® on
its boundary. But if the 6 = 64,44 is not the separating plane it necessarily intersect
both the two basins of attraction. Following it is impossible that the intersection
between the plane 6 = Os,qq. and the manifold U(q) = U(¢®) to be a unique ellipse
rather it must be two tangent sets, and the tangent point suppose to be ¢°. We
get a contradiction to lemma 2.4.2 and we conclude that the plane 0 = 0,44 is a
separating plane and it’s intersection point with the manifold U(q) = U(¢®) is the

unique point ¢°. [l

2.4.3 Convergence Point Algorithm

Concluding the analysis of the equilibria points we have the following algorithm that
uniquely define to which point the system converges from a given initial configuration
point qo = (do, th).

Basin of Attraction Algorithm:

Input: Initial configuration qq, and external wrench w,,; applied on B.
Output: Stable equilibrium point which B converges to ¢*(wezt, qo)-

Algorithm:
1. Solve (2.8) to find the 6 values of the equilibrium points.

2. Normalize all the 8; such that 0 < 6, < 2.
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10.

Substitute all the 6; into (2.7) to find the entire ¢; configurations of the equilib-

rium points.

Compute D?*U(g;) for all the g;.

If D?U(q;) > 0 for only one i = i* then assign ¢* = ¢ and exit.

Identify 0} and 65 with the corresponding ¢} and ¢; for which D*U(q}) > 0.

Identify 05 and 63 with the corresponding ¢ and ¢35 for which D*U(q?) < 0.

I U(qo) = min[U(q;), U(g3)] then exit "the algorithm can not define uniquely

to which equilibrium point the system converges”.
Order the critical points such that 67 < 05 and 07 < 65.
If 07 < 6y < 03 then if 07 < 07 < 03 assign ¢* = ¢/ and exit. Else

(a) If 65 + 27 > 0y > 05 then if 65 + 2m > 07 > 05 assign ¢* = ¢/ and exit.

(b) If 0 > 6y > 05 — 27 then if 65 > 0 > 05 — 27 assign ¢* = ¢ and exit.

The importance of the above algorithm is that it allow us to uniquely calculate

the point ¢* for a given external wrench w,,;. Note that this algorithm is simply a

description of an analytical function. Finally, we can write the force closure stability

set as

ngobal - {wext :0 S Et(q*(wext)) < Mﬂn(q*<w6xt)) for 1 = 1k}

2.5 Force Closure Set for Curved Fingers

In this section we relax the sharp pointed finger assumption and allow the fingers to

be curved in the vicinity of the contact point. This also allow rolling motion between
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Figure 2.3: Schematic view of rolling motion between the i** finger and the object.
DP»IINT @ YANN P2 500N IYNN SV U0 DIVIN

the object and each finger.

2.5.1 Problem Statement and Mathematical Representation

As in the previous section we use a linear control law such that the finger apply a
force

F=F) — Ki(z; — 2Y) (2.13)

K3 (2

However, now this force is applied in a point called control point which is located on
the tip of the finger where the designed contact point is located. The control point
is stationary relative to the finger. Additionally the object frame origin is located at
the control point (figure 2.3).

Since the fingers can roll on the object boundary we have additional k degrees of
freedom. For the stability matter we need to express Fj(x;) as function of these 3+ k

degrees of freedom.
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Denote the " finger orientation a;. We parameterize the object and the finger
boundary curves with the length parameters s and s respectively. In this parame-
terization g;(s?) is a vector from the object origin to the boundary of B near the i
contact point. Note that the parameters are in opposite directions to be consistent
with the rolling direction. For example in figure (2.3) sf* and s? parameterize the
boundaries of the object and the fingers in contra-clock-wise direction. h;(s#) is a
vector from the " finger control point z; to the contact point with B z¢. The i"

contact point location relative to a stationary frame is given by

2 = R(0)gi(s5) + d,

(2

and the control point, z;, location in this frame is
T =x; — R(¢i)hi(324)- (2.14)
Substitution of x¢ into (2.14) yields
i = R(0)gi(s7) +d — R(¢i)hi(s7"). (2.15)

Rolling contact constraints: In order to have a contact between the i** finger and
the object we demand

vy =0, Vi

where v?' is the difference between B’s and the i finger velocities in the normal
direction.

Since there exist a point contact between the finger and the object we have the
following two constraints. In the first constraint we assume to have a no slippage

contact. This will later on be justified by demanding F; € F'();. Thus, denote

si =80 = —sf, (2.16)
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The second constraint states that at the contact point, the tangent vector to the
boundary of the finger is identical to the tangent vector to the boundary of the

object. This means that

-1 0
sin*(¢;) = 1. Now we can express R(¢;) as function of # and s; as

R(0)gi(s7') = R(#i)hi(=s7"), (217)
where (-); = %() Since the parameterizations g;(s?) and h}(s7') are uniform pa-
rameterizations therefore ||gi(sP)|| = ||hi(sf)|| = 1. Tt is possible to solve (2.17)
for

cos(¢;) = hi' R(0)g;
sin(¢;) = hi' JR(0)g;,
0 1
where J = ] and h; = h;(—s;). One can check that indeed cos*(¢;) +

R(6.) hTR(0)g;  —hi" JR(0)g;
W JR(0)g; R R(0)g;

For simplicity we define a new variable
pi(0, si) = R(0)g; — R(¢i)hi,

which is the vector connecting the object origin to the finger’s initial contact point

(where the compliant law force act). This let us write
zi(q, si) = pi(0,s;) + d.

The roll potential energy: The total roll potential energy U(q, s1, ..., Sg) is

k
1
U(Qa S1yeny Sk) = 5 Z [(x’b - x?)TKZ(m’L - .ZU?) - m?ﬂo} - quemt- (218)
=1
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Lemma 2.5.1 (Derivatives of U(q)) Let U(q) asin (2.18)Then it’s first derivative

s given by

k
DU(Q7517 "'7Sk) = - ZszT<Q7 S1yeeey Sk)ﬂ(%sla "'7Sk>7
=1

and it’s second derivative s

K; —K;Jp; T Kip;
| P (Te) Ki(Tp) + p Fr - pl JKip+ (Jpi)"
D*U(q, 81, ..., 81,) = Z
| oK K BT e oK — g,

Proof: A straight forward derivation of U(q, sq, ..., Sx) yields

k
DU(q, s1, ..., Sk) = — ZD[EZT(Q, 81,y Sk)Fi(q, 81, -y SE).
i=1

The second derivative of U(q, s1, ..., Sg) 18

k
D2U(q, 51, .., 1) = Z D} (q, 81, ..., sx)KiDx} (q, 81, .y 55)— D2} (q, 81, ey 58) F5(q, 815 o5 Sk
i=1

Next we compute the first and second derivatives of x;(q, si) = p;(6, s;) + d. The first
derivative is
D%‘(q, Si) = []2x2 s —Jpis P;]
For computing D%z;(q, s;) we compute the derivative of Dzl (q, s;)F; while holding
F; constant. Thus we have
F;
Dz (g, s:)Fi = | —~(Jp))TF,

pit Fi



CHAPTER 2. FORCE CLOSURE SET 44

Computing D[Dz¥(q, s;)F;] when F} is constant yields
O2x2 Ogx1 O2x1
D?z{ (g, 5:)F; = Oixe  —pi B ~(Jp)"F;
Oe —(Jp))"Fi pi" Fi
The first term in D?U;(q, s;) is
K; — I p; Kip;
Dz (q, ) KDy (¢,5:) = | pFJK; (Jp)TKi(Jp:) pFTKip
PP Ky P Kidp p Kp)
Combining the two terms to construct D?Us(q, s;) yields
K; —KiJp; Kip;
DUi(g,s:) = | pTJK; (Jpi)"Ki(Jpi) + pl'Fy pl JKipi + (J o) F
PIK pl Kidpi+ (Jp)"F plf Kip, — p{" Fi

Summing D?U;(q, s;) over the k fingers gives

K; —K;Jp; s Kz’Pfi
| P (Te) T Ki(Tp) + p By - pl TKip+ (Jpi)" F
D*U(q, s1, ,sk)zz
T AR K UATE e TR AR

2.5.2 Imitial Equilibrium Point with Rolling

We show that an equilibrium point of grasping system with pointed sharp finger is
still an equilibrium point even if we replace the sharp fingers with curved ones. This

is not trivial since we add k£ DOF to the dynamic system.
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Lemma 2.5.2 (Equilibrium point) If ¢* is an equilibrium point of the grasping
system with pointed sharp fingers, Then (¢*,0,...,0) is an equilibrium point for the

grasping system with curved fingers (i.e. when the rolling parameters s; vanish).

Proof: In equilibrium point

F;
i —(Jp:))'F;
DU(q,sl,...,sk):—Z =0.
i=1 i F;
o Fi

Thus we need to evaluate p; and p} for s; = 0. Note that h;(s; = 0) = 0. Therefor
when evaluating p;(0;,s;) = R(0)gi(s;) — R(¢i)h(s;) for s; = 0 we get p;(6;,0) =
R(0)g;(s;). Similarly p, = —R'(¢;)h; becomes p}(6,0) = 0. For that reason all the k

last rows of DU(q, 1, ..., i) vanish. The first two rows becomes

i F;
i=1 \ R(0)g:(0) x F;

which is exactly the conditions for ¢ to be an equilibrium point when the fingers are
sharp and therefor vanish when ¢ = ¢* and s; =0 for ¢ =1, ...k. 0

Note that there are only two forces applied on each finger. The first force is the
compliance law force which act in the initial contact point. The second force is the
contact force applied in the contact point. In order the finger to be in equilibrium
these forces have to act along the same line of action in the same magnitude in
different directions. The condition for the forces to act along the same line can be

phrased as p) - F; = 0. (The physical meaning of p' is presented in the next sub
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section.) Thus the conditions for an equilibrium point are

Zle Fiy = Weg
Zf:l R(e)gz(sz> X E = Text
pi-Fy;=0fori=1,.. k.

The solution of these k + 3 equations is a set of equilibria points (z,y, 6, s1, ..., Sk)-

2.5.3 Rolling Stability of Equilibrium Point

Here we examine the stability property of the (¢*,0, ...,0) equilibrium point.

Theorem 4 (Equilibrium stability) Ifq* is a stable equilibrium point of the grasp-
ing system with pointed sharp fingers then (q*,0,...,0) is locally stable equilibrium

point of the grasping system with curved fingers.

Proof: In order to prove the proposition we need to show that F; € FQ, fori =1,....k
and that D?U(q, s1, ..., ) is positive definite in the (¢*, 0, ..., 0) point. The proposition
states that ¢* is a stable equilibrium point of the grasping system with pointed sharp

fingers. Thus, F; € FQ; for i = 1,..., k. Evaluating D?U(q, s1, ..., sx) at (¢*,0,...,0)

yields
Ki —K;Jpi 0
| K Up) Ki(p) +pi -0
D*U(q",0,...,0) = >
A 0 o TR

The upper left 3 x 3 sub matrix of D?U(q*,0, ...,0) is simply the DY(¢*) matrix of the
grasping system with pointed sharp fingers. Since we know that ¢* is a stable equi-

librium point of this system then DY(g*) is positive definite. Therefor the condition
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for the matrix D*U(q*,0,...,0) to be positive definite is that the term —p/TF? > 0

fori=1,.. k.

Next we investigate the term — p;’TFi. The derivatives of p; with respect to s; are

pi = R(0)g; — R(¢i)h; — R'(¢i)h; = —R'(¢3)h
pi = —R"(¢i)hi — R'(d:)h;.
In order to have better understanding of the physical meaning of p! we need to find

the meaning of R'(¢;). Specifically,

WTR(0)g, —hTJIR(0)g, WTR(O)g!  —hTIR()g!
R(6,) = 7 R(0)g; i JR(0)g; L (0)g; i JR(0)g; (2.19)
hTJIR@O)g;  h{TR(0)g; hTJR(0)gi  hi"R(0)g!

(2
For general curve we have h’-h’ = 0 ¢”-¢g’ = 0 since we use a uniform parameterization.

If we assume that the fingers and the object have locally arc shape bounding curve

and if we assume the following radii of curvature,
finger radius of curvature at the it" contact point = ai
object radius of curvature at the i** contact point = BL
then
h;’(si) = —OQJ}L;(Sl)
9i (si) = BiJgi(s:)
Substituting h!(s;) and g/ (s;) back to (2.19) yields

76, —ai(JR)TR(0)g;  ci(Jh;)TTR(0)g; Bihit R(0)Jg;  —pBihiT TR(0)]g;
i) = +

—ai(Jh)TIR(0)g;  —ai(Jh)T R(0)g: Bili JR(0)Jg;  BikiT R(6)Jg;
Simplifying R'(¢;) with the following identities, JR(0) = R(6)J, JR(§)J = —R and

JT = —J, results with

a;sin(¢;)  a;cos(¢;) N Bisin(¢p;)  Bicos(oy;)
—aycos(¢;)  aisin(g;) —Bicos(¢i)  Bisin(e;)

R(¢;) =
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Which is o JR(¢;) + BiJ R(¢;). Therfore we have
R'(¢i) = (o + 3;) JR(¢s). (2.20)

Recall that p! = —R"(¢;)h; — R'(¢:)h; and for s; = 0, h; vanish so we have p! =
—R/(¢;)Rh;. Additionally, from (2.20) we have R'(¢;) = (ca; + 8;)JR(¢;). Substituting
these terms to —p/TF? yields —p/"F; = (o + 3;)(JR(¢;)h;)" . Thus the stability

condition becomes
(i + B)(JR(p)R)TFY > 0fori=1,...k

The JR(¢;)h; vector is a unit vector pointing into B. Thus, (JR(¢p;)hl)TFY is the
compressing part of F since F must be a compressing force and not a tension force.
Therefore in general (JR(¢;)hi)TF? is positive. For a convex object (3 > 0) and
convex fingers (oy; > 0) The system will be locally stable if it was stable for sharp
fingers. Figure 2.4 show that the control force together with the contact force produce
restoring torque. Then the fingers converge to their original state where the initial
contact point contacting the object. In case the finger is concave (a; < 0) the object
must be convex (# > 0). In this case the size of the radius of curvature of B must
be smaller or equal to the size of the radius of curvature of A so (|ay| < |F]|) and
a; + f; > 0. In case the object is be concave ( < 0) the finger must be convex
(c; > 0), and the size of the radius of curvature of B must be greater or equal to
the size of the radius of curvature of A so (Jay| > |5]) and «; + 5; > 0. Next we
show that a; + 3; = 0 is almost impossible. In this case the radius of curvature of the
finger equals the radius of curvature of the object but one is convex and the second is
concave. This case is not practical since it is almost impossible to manufacture two

objects with exactly the same radius of curvature. O
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contact force

original control force F,

contact point vy,
B
Xp

Figure 2.4: Schematic view of the forces applied on the i** finger during roll motion.
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2.6 Simulations and Experimental Results

This section presents several experiments conducted in order to verify the computed
force closure stability set. All experiments involve stability of two fingers grasps. The
first experiment presents a set of external wrenches on the boundary of the force
closure stability set. The second experiment shows how the preloading forces affect

the size of the force closure stability set. First we present the experiments setup.

2.6.1 Experiments Setup

Figure 2.5 shows the apparatus used for the experiments. This apparatus includes
two compliant sphere shaped fingers made of aluminum. Each finger can move along
horizontal and vertical frictionless linear guides. For the passive compliant of the
fingers we use a linear compressible springs. We calculate the springs coefficients from

the calibration process shown in figure 2.6. The coefficient of the horizontal springs is
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Figure 2.5: The apparatus used for the two-fingered grasp experiments.
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k1 = 0.1122[N/mm)] , and the coefficient of the vertical spring is ko = 0.1402[N/mm).
For measuring the contact forces we use a 6-DOF agile small-size force and torque
sensor. The force and torque sensor is used for measuring the preloading forces and for
determining the friction coefficient u between the object and the fingers. The grasp
object is a 100mm x 100mm rectangle aluminum piece, coated with high friction
material providing p = 0.5. We attach four rollers to the bottom of the object in
order to minimize friction between the object and the supporting table. The wrenches
are applied using 50[g] weights connected to the object by a string. In the following
sections we use [mm] as length units, [rad] for angle units, [N] for force units, and

[N - mm)] for torque units.

2.6.2 Verifying the Force Closure Stability Set Experiment

In this experiment we apply various external wrenches on the object to determine

which wrench causes the object to converge to a stable posture. We then compare
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horizontal springs calibration vertical springs calibration
6 6
5 | linear regression output: y = 0.1122x 5 | linear regression output: y = 0.1402x
R® = 0.9918 R? = 0.9088 Qg

— 4 — 4
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Figure 2.6: The springs calibration. The marked points show the measured points,
and the line results from the linear regression.
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these results to the computed force closure stability set. Figure 2.7 shows schemat-
ically the point and directions of the applied external forces. In this experiment we
use a preloading forces of Fy = 5.8[V] for each finger. These forces are antipodal and
horizontal. For these conditions we calculate both the feasible configurations set and
the force closure stability set (figure 2.8). The upper and the lower surfaces of the
manifold in figure 2.8 (both in the configuration space and in the wrench space) are
associated with the D?U(q) > 0 constraint, while the surfaces of the manifold that
bounds the force closure stability set from the sides are associated with the friction
cones constraints.

In this experiment we apply forces in different angles. Since the force action
line does not pass through the object’s frame origin, this force also generates an
external torque. We gradually increase this external force until instability occurs.
The instability is observed as a slip of the contact points or as a relatively large
movement of the object. The results of this experiment are shown as dots in figure

2.9 and are compered to the analytic calculated maximum applicable external force
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Figure 2.7: Schematic view of the experiment setup that shows how the external
forces are been applied to the grasped object.
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Figure 2.8: (a) The feasible configurations set and (b) the force closure stability set
of the first experiment.
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Figure 2.9: For every angle of application the graph shows the maximum applied
external force in the force closure stability set. Solid line represent analytic results
and the doted marks represent experimental results.
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(the solid curve).

Figure 2.10 presents the wrenches applied in this experiment. For any given angle
of external force, the wrench applied on the object increases linearly. Furthermore, as
the angle of force increases, the torque component of the wrench becomes dominant.
As we use 50 grams weights for the external force we have discrete and finite number
of wrenches points. Figure 2.10 shows that all wrenches that cause the object to
converge to a stable posture are within or very close to the boundary of the force
closure stability set manifold. Increasing the external force beyond the boundary of

the force closure stability set causes instability, marked as x in figure 2.10.



54

CHAPTER 2. FORCE CLOSURE SET

Figure 2.10: The applied external wrenches shown in the wrench space.
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Figure 2.11: Schematic view of the experiment setup that shows how the pure
external torque is been applied to the grasped object.
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2.6.3 The Effect of Preloading Forces on Stability

The objective of the second experiment is to observe the effect of different preloding
forces on the size of the force closure stability set. Especially we are interested
in the maximal external torque that can be applied on the object without losing
stability. When high preloading force is applied, instability occurs since D?*U(q)
becomes singular or even negative definite. Instability due to singularity of D?U(q)
involves a rotation of the object since the pure translation part of D?U(q) is >_ K;
which is always positive definite. Thus we choose to examine the effect of preloding
forces on the maximal allowable torque. A schematic view of the apparatus used for
this set of experiments is shown in figure 2.11.

For these conditions we calculate the maximal allowable external torque and plot

it as a function of the preloading force (the solid curve in figure 2.12). We first set the
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Figure 2.12: The maximal allowable external torque vs. the preloading forces. In
solid line is the computed maximal torque, and the marked dots are the
experimental measurements.

ITONNNN NNNIN MD 51 VPAINN DY NOYAND JIPIN MOPNN INNN VINIIN
N022 TTNIY VINMN IXR TNINRTD MTHZINM 2AWVINKDN VIMNIN DX IR PN

amount of preloading force and gradually increase the external torque until instability
occurs. We repeat this experiment for various preloading forces. The maximal torque
for which the system remained stable in each experiment is plotted as dots in figure
2.12.

The maximal torque curve in figure 2.12 can be divided into two curves. In the first
curve (for preloading force between 0.1 to 3.3) the preloading force is relatively small
and instability results in a slip at the contacts. In this part of the curve the maximal
external torque that can be applied monotonically increases as the preloading force
increases. In the second curve (for preloading force between 3.3 to 6.9) the preloading
force is relatively high and no slippage occurs at contacts. Instead, instability occurs

when the object severely rotates. The maximal external force that can be applied,
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Figure 2.13: The force closure stability set presented in the wrench space for
different preloading forces.
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decreased as the preloading force increases. Increasing the external torque above
a certain limit causes the matrix D?U(q) to become negative definite due to the
term p - F' in D?U(q) which becomes more negative as contact force increases. This
phenomenon is often referred as "the coin snapping problem”.

Figure 2.13 shows the manifold that bounds the force closure stability set for vari-
ous preloading forces. The volume of the force closure stability set is small for low and
high preloading forces, and larger for the middle range preloading forces. In addition,
the shape of the force closure stability set is affected by the constraints bounding the
set. As for low preloading forces friction is the only constraint bounding the force
closure stability set, while for large preloading forces the bounding constraints are
also due to the positive definiteness of D?U(q). For higher preloading forces the force
closure stability set does not contain the origin resulting in instability for any given

external wrench.

2.7 Conclusion

In active force closure the fingers resist external wrenches by actively applying the
required forces at the contacts. Active grasping requires sophisticated contact-force
sensors and contact-force controllers whose action must be precisely coordinated. In
passive force closure each contact satisfies some fixed force-displacement law. The
contacts apply preload grasping forces, and the balancing of external wrenches is
performed automatically by the contacts. Passive grasping can be implemented with
controllers that simply maintain fixed joint torques or fixed joint positions, without
any coordination of the individual contacts.

We formally defined force closure with compliant contacts and provided necessary
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and sufficient conditions for generic force closure grasps. In particular, the geometrical
condition for active force closure is necessary but not sufficient for force closure with
compliant contacts. To guarantee force closure, the grasped object must automati-
cally converge to a nearby equilibrium where the contact forces balance the external
wrench. Next we characterized the force closure set of compliant-rigid grasps. In
these grasps a rigid object B is held by compliant grasping mechanisms. We derived
analytic expressions for the force closure set of such grasps. we used linear force-
displacement laws for the following. A global stability criterion ensuring that the
original unperturbed equilibrium would converge to the new equilibrium induced by
the external wrench is presented. We characterize the force closure set for fingers
having any shape at the contacts

Finally, we compare the force closure set of 2-finger and planar grasps with an
experimental results that show a good matching between the computed set to the

experiments results.



Chapter 3

PCG: A Foothold Selection

Algorithm

3.1 Introduction

This chapter presents a polynomial time algorithm, called PCG (short for Partitioned
Cubes Gaiting), for planning the foothold positions of spider-like robots in planar
tunnel environments.

A spider-like robot consists of k articulated limbs attached to a central body, such
that each limb ends with a footpad (Figure 3.1). We assume that the robot moves
quasistatically by exerting forces on the tunnel walls!, while the robot is supported
against gravity by frictionless contacts mounted under the mechanism. In general,
a spider-like robot must have at least three limbs in order to move quasistatically in
planar tunnel environments. At every instant the spider braces against the tunnel

walls in static equilibrium using two or three limbs. During a 2-limb posture the

'In quasistatic motion inertial effects due to moving parts of the robot are kept small relative to
the forces and torques of interaction between the robot and the environment.

60
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spider moves its free limb to the next foothold position. During a 3-limb posture
the spider changes its internal geometry in preparation for the next limb lifting. The
PCG algorithm is presented in the context of such 3-limb robots. However, we also
discuss the generalization of the algorithm to robots having a higher number of limbs.

We make the following assumptions. First, we assume piecewise linear tunnel
walls with known geometry. The tunnel can be discontinuous and can include holes
or intersections. Second, each limb contacts the environment only through its footpad,
which can only push against the environment. Third, each footpad contacts the tunnel
walls through a frictional point contact, with a known lower bound on the coefficient
of friction. The foothold positions are represented as points in contact c-space, which
is defined as follows. Let L be the total length of the tunnel walls, and let s; € [0, L]
be the arc-length parametrization of the position of the i contact along the tunnel
walls (Figure 3.2). Then for a k-limb mechanism contact c-space is the k-dimensional
space (si1,...,s;) € [0, L]*. Fourth, we lump the kinematic structure of the robot
into a single parameter called the robot radius and denoted R. This parameter is
the length of a fully stretched limb, measured from the center of the robot’s central
base to the closet point on the limb’s footpad. The algorithm uses this parameter to
ensure that the selected foothold positions can be reached from the robot’s central
base.

The use of contact c-space is common in the grasp planning literature. For ex-
ample, Elci Longman and Shoham [15] uses contact c-space of circle and ellipse in
order to re-grasp the object and thus manipulate it. However, they do not optimize
the number of re-grasp manipulation needed. Nguyen [52] and Ponce et al. [56, 57]

introduced the notion of contact independent regions. Given a k-finger grasp of a



CHAPTER 3. PCG: A FOOTHOLD SELECTION ALGORITHM 62

planar object, a contact independent region is a k-dimensional cube? in contact c-
space. This cube represents k segments along the object’s boundary, such that any
placement of the k contacts inside these segments generates an equilibrium grasp. We
use a similar notion in our representation of the feasible footholds as cubes in contact
c-space. Each cube represents three segments along the tunnel walls, such that any
placement of three footpads inside these segments results in a feasible 3-limb equi-
librium posture. Other relevant papers from the grasp planning literature are papers
that discuss finger gaiting. Brook Shoham and Dayan [8] presented a criterion for
enabling sequence of re-grasp manipulations, but they do not globally optimize the
number of re-grasp manipulation needed. Hong et al. [25] describe 3 and 4-finger
gaits for planar objects. However, they assume that once an object is grasped, the
fingers may not change their order along the object’s boundary. In contrast, we im-
pose no restriction on the order of the footpads along the tunnel walls. Goodwine
et al. [18, 79] investigate the stratification of the full configuration space associated
with finger gaiting. While this approach is justifiable for the design of feedback con-
trol laws, motion planning can be carried out in lower dimensional spaces such as
contact c-space. For example, our 3-limb spider robot has 12 actuated joints and
3 unactuated degrees of freedom of the central base, while contact c-space has only
three dimensions.

In the multi-legged locomotion literature, Boissonnat et al. [5, 6] discuss a motion
planning algorithm for multi-legged robots that move in a gravitational field over a flat
terrain. They assume that the legs are allowed to contact only a discrete collection
of point sites. Much like our approach, they lump the kinematic structure of the

robot into a reachability radius, and use this parameter to design a path that takes

2The cube is aligned with the coordinate axes and has three independent lengths.
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the robot from start to target through a sequence of stable stances. Our work differs
from the work of Boissonnat et al. in several fundamental ways. First, we consider
motions where the robot stably braces against tunnel walls rather than maintaining
stable stances against gravity. Second, we allow arbitrary footpad placement along
the tunnel walls rather than on discrete point sites. Third, Boissonnat et al. first plan
a path for the central body in the plane, then select footpad placements that realize
the path. In contrast, the PCG algorithm first plans a sequence of foothold positions
in contact c-space, then determines the mechanism’s joint values that would bring
the footpads to the desired foothold positions. Other papers that consider motion
planning for multi-legged robots are [22, 37, 40, 41, 77]. However, all of these papers
are concerned with locomotion over a terrain in a gravitational field, while we consider
motion in congested tunnel-like environments.

This chapter focuses on the portion of the PCG algorithm that plans a sequence
of foothold positions in contact c-space. The algorithm consists of the following three
stages. The first stage is based on a key result, that the set of feasible 3-limb postures
is a union of convex sets in contact c-space. Using convex optimization techniques, the
algorithm approximates each of the convex sets by p maximal cubes. In the second
stage the algorithm partitions the cubes into compatible sub-cubes, where two sub-
cubes are compatible if it is possible to move between any two postures in these
sub-cubes by a single limb lifting. However, compatibility encodes only a kinematic
transition between two sub-cubes. Each sub-cube is also assigned an orientation
vector which identifies what limbs can be stably lifted from the postures in the sub-
cube. The algorithm constructs a graph whose nodes are sub-cubes and whose edges
connect compatible sub-cubes with suitable orientation vectors. In the third stage

the algorithm searches along the graph for the shortest sequence of foothold positions
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tunnel walls,
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Figure 3.1: Top view of a 3-limb spider robot moving in a planar tunnel
environment.
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that moves the robot from start to target. This sequence yields a minimal 3-2-3 gait
pattern, where minimality is relative to the cube approximation of contact c-space.
The chapter is organized as follows. In Section 3.2 we characterize the feasible 3-
limb postures in contact c-space. The feasible postures must be reachable, form stable
equilibria, and satisfy a condition that allows their inclusion in a 3-2-3 gait pattern.
In Section 3.3 we establish that the feasible 3-limb postures are a union of convex
sets in contact c-space. It is also shown in this section that the approximation of a
convex set by p maximal cubes is a convex optimization problem. In Section 3.4 we
describe the PCG algorithm and analyze its computational complexity. In practical
tunnel environments the robot can reach from any given position only a small number
of walls. In such environments the algorithm runs in O(np®log(np)) time, where n is
the number of tunnel walls and p is the number of cubes used in the approximation

of contact c-space. Next we investigate the effect of various p values on the path
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length and present an algorithm that determine if p should be increased. In Section
3.6 we run the PCG algorithm on a simulated tunnel environment. An experimental
results of the spider-robot walking in tunnel built in our laboratory is presented in
section 5 and show practical implementation of the PCG algorithm. Finally, in the
concluding section we discusses the generalization of the algorithm to robots with a

higher number of limbs.

3.2 The Feasible 3-Limb Postures

In this section we characterize the feasible 3-limb postures as inequality constraints in
contact c-space. The feasible 3-limb postures must form stable equilibria, be reach-
able, and satisfy the following gait feasibility condition. This condition requires that
the 3-limb posture will contain two distinct 2-limb postures—one for entering the
3-limb posture by establishing a new foothold, and one for leaving the 3-limb posture
by releasing some other foothold. Note that the initial and target 3-limb postures
are required to contain one rather than two 2-limb postures. We now consider the

individual constraints.

Equilibrium and stability of 2-limb postures. Gait feasibility requires that a
3-limb will contain two distinct 2-limb postures. Hence we first review the conditions
for equilibrium and stability of 2-limb postures. By definition, a mechanism bracing
against the environment is in static equilibrium if the net wrench (i.e. force and
torque) generated by the contact forces acting on the mechanism is zero. In particular,
a 2-limb mechanism forms an equilibrium posture if the line segment connecting the
two contacts lies inside the two friction cones [52]. As a stability criterion we use

the notion of force closure. By definition, an equilibrium posture is force closure
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Figure 3.2: (a) A 3-limb robot in a planar tunnel, and (b) the parametrization of its
contact c-space.
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if the mechanism can resist any perturbing wrench by suitable adjustment of its
contact forces with the environment [4]. In general, an equilibrium posture in a
planar environment is force closure if the contact forces of the unperturbed posture
lie in the interior of the respective friction cones [80].

We now write the above conditions as inequalities in contact c-space. First we in-
troduce some notation. The contact of each limb with the tunnel walls is parametrized
by a scalar s; € [0, L], where [ = 1,2, 3. Let Wi,..., W, denote the tunnel walls, and
let Iy,..., I, be the partition of [0, L] into intervals that parametrize the individual
walls (Figure 3.2). Thus, for instance, the cube I; x I; X I}, parametrizes the 3-limb
postures where limb 1 contacts the wall W;, limb 2 contacts the wall W, and limb 3
contacts the wall Wj. The unit tangent and unit normal to the wall W, are denoted
t; and n;, where n; is pointing away from the wall. Using this notation, the points
along W, are given by x(s) = x; + st;, where x; is the initial vertex of W; and s € .

Given a contact force f;, we write the force as f; = fit; + fI'n;, where f! and fI* are
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the tangent and normal components of f;. The Coulomb friction cone at a contact
along the i wall, denoted F'Cj, is the collection of forces satisfying the inequalities:
FC;={fi: f >0and — puf* < fI < ufl'}, where p is the coefficient of friction.
Let two limbs with indices [ and m contact the tunnel walls W; and W;. Then
for a 2-limb stable equilibrium, the vector z(s,,)—z(s;) must lie in the interior of the
friction cone F'C;, while z(s;)—x(s,,) must lie in the interior of the friction cone F'C}.

This condition defines a set in the (s;, s,,) plane, denoted £, which is given by

£ ={(s,sm) €Lix Iy + |(x(sm)—(s1)) ti] < u(ﬂﬁ(sm)—x(sl»'%
|((s0) = (sm)) 45| < p(a(s1) ))-m; )

An example of 2-limb stable equilibrium sets appears Figure 3.7. It is important
to note that the inequalities describing 5?]“ are linear in s; and s,,. Hence 5?]“ is a
convex polygon in the (s, s,,,) plane. When EZ” is considered as a subset of the contact
c-space of a 3-limb mechanism, it becomes a three-dimensional set which is denoted
as follows. Let x serve as a place holder for the limb that does not participate
in the 2-limb posture. Then a 2-limb equilibrium set, 833-2 for instance, becomes a

three-dimensional set which is denoted P;;x and given by

Pijx = {(s1,582,83) € [ixI;x[0,L] = |(x(s2) — x(s1))-ti] < p(x(s2) — x(s1)) -7,
[(2(s1) — 2(s2)) ] < pu((s1) — w(s2)) -y}
The set P;;x is a prism orthogonal to the (s1, s2) plane with a polygonal cross section
given by 5%2. Similarly, the sets P;x; and Py;; are prisms orthogonal to the (sq, s3)

and (ss, s3) planes, with polygonal cross sections given by Eis 13 and 823

Reachability constraint of 3-limb postures. A 3-limb posture is reachable when

its footholds lie within the robot’s radius R. For each triplet of walls W;, W;, Wy, the
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Figure 3.3: (a) A gait feasible 3-limb posture, (b)-(c) contains two distinct 2-limb
postures.
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reachability constraint is given by

Rijr = {(s1,52,83) € [xIixI}, : Ic € R* max{||z(s1)—cl|, |z(s2)—cl|, [|x(s3)—c|} < R},
(3.1)
The point ¢ appearing in (3.1) can be interpreted as the center of a disc containing
the three foothold positions, such that the disc radius is bounded by R. As discussed
below, the elimination of the existential quantifier in (3.1) results in a set which is

bounded by quadratic surfaces in contact c-space.

Gait feasibility of 3-limb postures. A 3-limb posture is gait feasible if it contains
two distinct 2-limb equilibrium postures (Figure 3.3). Let us write this constraint in
the cell I; x I; x I}, in contact c-space. The cell I; x I; x I}, corresponds to contact with
the walls W;, W, Wy, and gait feasibility is satisfied by intersection of pairs of 2-limb
prisms associated with the three walls. There are three such pairs—(P;jx, Pixk),
(Pijxs Pxjk), and (Px;k, Pixk)—and the resulting set of feasible 3-limb postures in

the cell, denoted Fjj, is given by

Fiiw = (Pijx N Pixis N Rijie) U (Pijx N Poje N Riji) U (P N Pisck N Rigi) . (3.2)
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Note that the same three walls appear in six cells in contact c-space, each correspond-
ing to a specific assignment of the limbs to the three walls. The entire collection of
feasible 3-limb postures is the union of all such sets over all ordered wall triplets.
We end this section with an assertion that it is always possible to affect a transition
between two 2-limb postures contained in a feasible 3-limb posture by suitable change

of the contact forces.

Lemma 3.2.1 Let a feasible 3-limb posture contain two 2-limb equilibrium postures.
Then there exists a continuous change of the contact forces that allows a transition
between the 2-limb postures, while the mechanism s kept in static equilibrium with

fixed contacts.

Proof:  Since the mechanism has three limbs, any two 2-limb postures must share
a limb in common. Without loss of generality, let the 3-limb posture lie inside P;;, N
Pk in contact c-space, so that limb 2 is common to both 2-limb postures. Let f, and
[ be the contact forces at the 2-limb posture involving limbs 1 and 2, and let g, and
g5 be the contact forces at the 2-limb posture involving limbs 2 and 3. Then it can be
verified that the convex combination (1—s)f; + (1—s) f5 + sg, + sg5 where s € [0, 1]
generates a zero net wrench for all s. This convex combination specifies a continuous
transition between the two 2-limb postures, while the mechanism is kept in static
equilibrium. Specifically, the contact forces of limbs 1 and 3 vary only in magnitude,
while the contact force of limb 2 varies in magnitude and direction between f, and
g,. Finally, since f, and g, lie inside the friction cone at the contact of limb 2 with
the environment, their convex combination also lies inside the friction cone, for all

s € [0,1]. O
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The lemma generalizes as follows. If a k-limb posture contains two equilibrium pos-
tures having a smaller number of limbs, it is always possible to affect a transition
between these two posture by suitable change of the contact forces, while the mech-

anism is kept in static equilibrium.

3.3 Convexity of the Feasible 3-Limb Postures

In this section we discuss two issues concerning convexity that will be used by the
PCG algorithm. First we establish that the feasible 3-limb postures are a union of
convex sets in contact c-space. Then we show that the approximation of a convex set

by p maximal cubes is a convex optimization problem.

3.3.1 Convexity of the Feasible Postures

The set F;j; of feasible 3-limb postures is specified in (3.2) as a union of three sets,
each corresponding to a different pair of 2-limb postures. The following lemma asserts

that each of these sets is convex in contact c-space.

Lemma 3.3.1 In each cell I;x1;xI}, of contact c-space, the set Fji of feasible 3-limb

postures is a union of three convex sets.

Note that any of the convex sets comprising F;j; may be empty. For example, in

Figure 3.8 each set F;;;, is either empty or consists of a single convex set.

Proof:  The three sets that comprise F;; have a similar form. Hence it suffices to
consider only one of these sets, say P;jx N Pxjr N Rijr. The prisms P;;x and Py
are defined by intersection of linear inequalities. Each prism is therefore a convex

polytope in contact c-space. Next consider the reachability set R;;;. The existential
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quantifier in (3.1) acts on a set, denoted R;jx, which is defined in the five-dimensional

space ($1, Sg, S3,C):

Riji = {(51, 52, 83, ¢) € Ix[x<IpxIR* - max{||x(s1) —cl|, [lw(s2) —cl|. [|2(s3) —cl|} < R}.

The norm function ||z — ¢|| is convex in (z,c) space, and each x(s;) is linear in s;.
Since composition of a convex function with a linear map preserves convexity, the
functions ||z(s;) — ¢|| are convex in (si, s9,S3,¢) space. In general, the pointwise
maximum of convex functions is a convex function [12, p. 47]. Hence R;jj. is convex
in (s, s2,s3,¢) space. But R;j; is the coordinate projection of 7_2ijk onto contact c-
space. Since projection preserves convexity, R;j is convex in contact c-space. Finally,

the intersection of convex sets is convex, hence Pj;jx N Py jr N Ryji is convex. O

The PCG algorithm described below approximates the feasible 3-limb postures by
cubes. The approximation requires an explicit formula for the reachable set which we

now describe. The following is an equivalent formulation for R;jp,

Rijr = {(81752,53) € Iix I; X Iy : Tpin(51, 52, 53) < R};

where 7, (81, S2, $3) is the radius of the minimal disc containing the foothold positions
x(s1), z(s2), and z(s3). Let A be the triangle generated by these three points. Then
the formula for 7,,;,(s1, $2, s3) is divided into two cases (Figure 3.4). When A is an
acute triangle (i.e. with angles less than 90°), (81, S2, 53) is the radius of the disc

passing through the three points, given by

_ Nlz(s) = 2(so)l] - [l2(sa) = 2(ss)|[ - [[(ss) — x(s1)]

Tmin(51, 52, 53) = 2[|z(s1) x z(s2) + x(s2) X w(s3) + x(s3) x x(s1)]| ’

where uxv is the scalar obtained by taking the determinant of the 2x2 matrix [u v].

When A is an obtuse triangle, 7,,,;,(s1, S2, $3) is simply half the length of the longest
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Figure 3.4: The minimal disc containing the three foothold positions when A is (a)
an acute triangle, and (b) an obtuse triangle.
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edge of A,

T'min (81, S2, S3) = %12;1?%?3{”“319) - m(sq)H}.

The two-part formula for 7,,(s1, 2, s3) reveals that the set R;;; is bounded by
quadratic surfaces in contact c-space. To summarize, the set F;;, is the union of
three conver sets, each bounded by planar surfaces associated with the 2-limb prisms,

and quadratic surfaces associated with the reachability constraint.

3.3.2 Convexity of the Cube Approximation Problem

We have already established in Lemma 3.3.1 that the set F,j;; is a union of three
convex sets. Now we discuss the approximation of these convex sets by maximal
cubes. We discuss the problem in the context of three dimensional contact c-spaces,
but the result is completely general.

Consider the approximation of a three-dimensional convex set S by p cubes, where

the cubes have arbitrary center and dimensions. We assume as input a desired relative
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configuration for the cubes, where a relative configuration is a specification of an
adjacency relation between the cubes in terms of a set of separating planes, such that
no two cubes can possibly intersect. Each of the separating planes is defined in terms
of the relative position of two cubes, and does not restrict the absolute position of the
two cubes. The " cube is parameterized by its center ¢; € IR®, and its dimensions
along the coordinate axes, h; € IR®. The optimization therefore takes place in the
6p-dimensional space whose coordinates are (ci, hq, ..., ¢y, hy). Our objective is to
maximize the total volume of the cubes. However, the sum of the cubes’ volumes
is not a convex function of the optimization variables. Rather, we use a normalized

total volume function given by?

p

§Z5(C17 hy, ... y Cpy hp) = Z(hilhz?hz’?)) .

=1

=

Next we list the constraints involved in the cube approximation problem. First we
have the requirements that the cubes’ dimensions be non-negative, and that their
centers would lie inside contact c-space. Second, the relative configuration of the cubes
is specified by a list of separating planes, each involving the center and dimensions
of two cubes separated by the plane. Last, we must ensure that the cubes lie inside
the convex set S. The following proposition asserts that the maximization of ¢ over

p cubes contained in S is a convex optimization problem.

Proposition 3.3.2 The mazimization of ¢ = Zf:1<hi1hi2hi3)% over p cubes con-
tained in a convex set S and satisfying a relative-configuration specification is a convex

optimization problem.

Proof: In general, the minimization of a scalar function ¢(z) subject to scalar

constraints ¢ (z), ..., ¥, (x) < 0 is convez if ¢ and ¥y, ..., 1, are convex functions

3We are grateful to Prof. A. Nemirovsky who suggested this function.
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of the optimization variables. In our case, the maximization of the total volume
function ¢ is equivalent to the minimization of —¢, and convexity of —¢ is equivalent
to concavity of ¢. Hence we must first verify that the function ¢ = >"7_ (hj hithg)%
is concave. A sufficient condition is that the second derivative matrix of ¢ be negative
semi-definite. Since ¢ depends only on the variables hy, ..., h,, its second derivative
matrix is block diagonal, with non-zero 3 x 3 blocks corresponding to the second
derivative of the functions ¢; = (hilhighi,g)l/ 3 where i = 1,...,p. The first derivative

of ¢;, written as a column vector, is:

hi2h23
Dy, = —L B,
¢ (hi1 hi2hi3)% hrhis
h’il hi?
The second derivative of ¢; is:
0 hiz hio hizhis
D%*¢; = —L1 | h. | =—— | hih
¢ (hithizhis) 2 hz3 0 hzl (hi1hizhis) 2 hzl hz?; (hﬂ hz3 hzl hz3 hzl th )
hi2 hil 0 hil h’i2
hialis () 0
N S hi1his
(hi1 hi2hi3)% 0 hiz 0
0 0 hirhip

his
The resulting matrix D?¢; has only negative eigenvalues and is therefore negative
definite. The entire matrix D?¢ is consequently negative semi-definite, and ¢ is a
concave function.
Next consider the constraints on the optimization variables. First, the constraint
that the cubes’ dimensions be non-negative is linear in the optimization variables, and

linear functions are convex. Second, a relative configuration of the cubes is specified
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by a list of constraints of the form: ¢;; +1h;; < ¢j; — Lhj1. (This particular constraint
separates the i* and j* cubes along a plane orthogonal to the s;-axis.) We see that
the separation constraints are also linear in the optimization variables. Last consider
the constraint that the cubes must lie inside the convex set S. The ** cube lies
inside § if its vertices lie in §. We may assume that S is specified by inequalities
1(81, 82, 83), - - -, Ur(S1, S2,83) < 0 such that 1y, ..., 1, are convex functions. In that
case a vertex v; lies in S if it satisfies the inequalities ¢ (v;), ..., ¥,(v;) < 0. Each
vertex is given by an expression of the form v; = ¢; £ 1h; for a suitable selection of the
signs of h; € IR®. The vertices are therefore linear functions of the optimization vari-
ables. Since composition of a convex function with a linear map preserves convexity,

the cube containment constraints are convex functions of the optimization variables.

O

It is worth mentioning that convex optimization algorithms, for instance the el-
lipsoid algorithm used in our implementation, generate an e-accurate solution in
O(m?llog(1/€)) time, where m is the number of optimization variables and [ the
number of steps required to evaluate the constraints. An example of the approxima-

tion of a convex set by five maximal cubes appears in Figure 3.9.

3.4 The PCG Algorithm

In this section we describe the PCG algorithm and analyze its computational com-
plexity. First we give an overview of the algorithm. The set of feasible 3-limb postures
in each cell of contact c-space is a union of three convex sets. However, in practical
tunnel environments each cell contains at most one convex set. We describe the al-

gorithm under the assumption of a single convex set per cell, and discuss the case of



CHAPTER 3. PCG: A FOOTHOLD SELECTION ALGORITHM 76

S,=4 plane  S,=6 plane

(7,6,7) (7,6,7)

S,=3 plane

(4,3,4)
S,=3plane  (833)

(8,3,3)

4 P . _ § S,=2
4 P [ plane

(1,1,2)
S,=2 plane

®1,1)

(b) 1 S,=7 plane

Figure 3.5: (a) Three cubes in contact c-space, and (b) their mutual partition into
sub-cubes along the separating planes.
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multiple convex sets in the appendix. The algorithm first approximates each of the
convex sets by p maximal cubes. The number of cubes and their relative configura-
tion are user-specified inputs whose practical selection is discussed below. In order
to describe the next stage of the algorithm we introduce the notion of cube orienta-
tion. A maximal cube parametrizes a set of feasible 3-limb postures, each containing
two distinct 2-limb postures. The two 2-limb postures necessarily share a limb in
common. However, this common limb cannot be lifted, since its lifting would destroy
both 2-limb postures. By construction, all the 3-limb postures parametrized by a
given maximal cube have the same common limb. In contact c-space, we associate
with each maximal cube an orientation vector, which is aligned with the s;-axis of
the limb that cannot be lifted from the 3-limb postures parametrized by the cube.
The orientation vectors play an important role in the graph construction described
below.

In the second stage the algorithm partitions the maximal cubes as follows. The
algorithm constructs an arrangement of all the separating planes of the cubes, where

each separating plane contains one of the cubes’ faces. Using this arrangement, the
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algorithm partitions the cubes as illustrated in Figure 3.5. The figure shows three
cubes and their mutual partition along the separating planes into sub-cubes. Dur-
ing the partition process each sub-cube inherits the orientation vector of its parent
cube. The resulting sub-cubes are disjoint*, and they satisfy the following projection
property. Any two sub-cubes either have the same projection on one of the coordi-
nate planes, or their projection on all three coordinate planes are disjoint. If two
sub-cubes share a projection they are called compatible, and the s;-axis aligned with
the direction of projection is called the direction of compatibility. The algorithm next
defines a graph called the sub-cube graph. The nodes of the graph are center points of
the sub-cubes. The edges of the graph connect compatible sub-cubes whose direction
of compatibility is orthogonal to the orientation vector of the two sub-cubes.

Let us pause to discuss the edges of the sub-cube graph. Every edge of the graph
represents lifting and re-placement of a particular limb. The lifting of a limb must
leave the robot with a stable 2-limb posture. The orientation vector of a sub-cube
describes which limb my not be lifted from the 3-limb postures parametrized by
the sub-cube. Hence all edges emanating from a node must be orthogonal to the
orientation vector of the sub-cube associated with the node. Moreover, all edges
of the sub-cube graph are straight lines parallel to the s;-axes in contact c-space
(Figure 3.11). For example, when an edge is parallel to the s;-axis, motion along
this edge means that only limb 1 is moving, while the foothold positions of limbs
2 and 3 remain fixed. According to Lemma B.0.1 in the appendix, the motion of
a limb between any two sub-cubes connected by an edge can be executed such that
reachability is maintained throughout the limb’s motion. Finally, the start and target

3-limb postures, denoted S and T', are added as special nodes to the sub-cube graph.

4We say that two sets are disjoint when their interiors are disjoint.
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The construction of edges from S and 7' to the other nodes of the graph is described
below.

In the third stage the algorithm assigns unit weights to all edges, then searches
along the sub-cube graph for the shortest path from S to T'. The shortest path on
the graph minimizes the number of limb lifting and re-placement steps along the
path from start to target. However, this minimality is only relative to the cube
approximation obtained in the first stage of the algorithm. A formal description of

the algorithm follows.

PCG Algorithm:

Input: Geometrical description of an n-wall tunnel. A value for the coefficient of
friction. Start and target 3-limb postures S and T. A value for the number of cubes
p and their relative configuration.

1. Cube approximation:

1.1 Determine which cells I; X I; X I}, contain a non-empty set Fj;, of feasible 3-limb
postures.

1.2 Approximate each non-empty set F;;; by p maximal cubes. Assign an orientation
vector to each maximal cube.

2. Cube partition:

2.1 Construct an arrangement of the separating planes of all maximal cubes.

2.2 Subdivide each maximal cube into sub-cubes along the separating planes. Assign
to each sub-cube the orientation vector of its parent maximal cube.

2.3 Define a sub-cube graph with nodes at the center of the sub-cubes, and edges
between compatible sub-cubes whose direction of compatibility is orthogonal

to the orientation vector of both sub-cubes.
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2.4 Define S and T as special nodes and connect them to the graph as described
below.

3. Graph search:

3.1 Assign unit weight to all edges.

3.1 Search for the shortest path along the sub-cube graph from S to 7.

Two technical details of the algorithm need explanation. The first is the construction
of edges from S and T to the other nodes of the graph. For simplicity, let the start
and target be feasible 3-limb postures with their own orientation vector. (In general,
S and T are required to contain only one stable 2-limb posture.) For the start and
target nodes, compatibility with a sub-cube means that the projection of the sub-cube
on one of the coordinate planes contains the corresponding projection of the node.
Having defined orientation and compatibility for .S and 7', the edges connecting these
nodes to the other nodes of the graph are constructed by the rule specified in step 2.3
of the algorithm. The second technical issue is the selection of a relative configuration
for the p cubes. In principal any relative configuration can be used by the algorithm.
In the next section we specify in each cell a relative configuration that separates the
p cubes perpendicular to the cell’s direction vector. This relative configuration tends
to preserve the connectivity of the set feasible 3-limb postures in the cell.

Next we discuss some notable features of the algorithm. First, the uniform weight
assignment reflects our desire to minimize the total number of limb lifting and re-
placement along the path. However, the edges can be assigned different weights,
for instance, ones that reflect a measure of distance traversed between successive
footholds. Second, the path generated by the algorithm is contact independent in two
ways. Each node of the graph parametrizes three contact independent wall segments,

and each edge of the graph can be realized by limb lifting and re-placement between
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any two postures in the sub-cubes joined by the edge. Third, the algorithm treats
the motion of a limb between walls and along a single wall in a uniform manner.
One implication of this uniformity is that small changes to the tunnel geometry, for
instance a change of a long straight wall into a piecewise linear wall, would not have
a significant influence on the path generated by the algorithm. Last, the size of the
sub-cube graph increases with p. However, if an edge exists in the graph for low
values of p, it would persist in the graph for larger values of p. Consequently, the
path from start to target only becomes shorter as p increases.

The remainder of this section is concerned with the computational complexity
of the algorithm. We assume in the analysis that the robot can reach from any
given position only a small number of walls which is bounded by a constant. This

assumption is called local reachability.

Theorem 5 Let S and T be start and target 3-limb postures in a tunnel environment
that satisfies the local reachability assumption. Then the PCG algorithm finds the
shortest path from S to T in the cube approzimation of contact c-space in O(np®log(np))
time using O(np®) space, where n is the number of tunnel walls and p is the number

of maximal cubes in each non-empty cell of contact c-space.

Proof: First consider step 1.1 of the algorithm, identifying which cells of con-
tact c-space contain feasible 3-limb postures. The feasible 3-limb postures must in
particular be reachable, and the algorithm first identifies which cells contain reach-
able 3-limb postures. The radius-R neighborhood about a wall is bounded by two
linear and two quadratic curves. The collection of these neighborhood forms a pla-
nar arrangement of O(n) curves. By the local reachability assumption, a radius-R

neighborhood intersects a constant number of other radius-R neighborhoods. Hence
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the arrangement of radius-R neighborhoods contains O(n) intersection points. A
line sweep algorithm can compute the intersection points in O(nlog(n)) time. Each
intersection point is associated with a finite number of overlapping radius- R neighbor-
hoods, and any triplet of overlapping neighborhoods is a potentially non-empty cell
in contact c-space. Thus we obtain O(n) potentially non-empty cells in O(nlog(n))
time. The actual verification that these cells are non-empty is carried out in the next
step of the algorithm.

Next consider step 1.2, where each non-empty set F,j; is approximated by p max-
imal cubes. Any convex optimization algorithm first computes an initial feasible
solution, or reports that no feasible solution exists. This first step determines which
of the O(n) cells generated by the line sweep algorithm contains a non-empty set
of feasible 3-limb postures. Standard convex optimization algorithms, for instance
the ellipsoid algorithm used in our implementation, generate an e-accurate solution
in O(m?llog(1/€)) time, where m is the number of optimization variables and [ the
number of steps required to evaluate the constraints [50]. In our case m = 6p since
each cube has six parameters. The [ constraints are the validity of the cubes’ relative
configuration, and the containment of the cubes’ vertices in F;;;. The relative con-
figuration consists of p — 1 separating planes, and the total number of cube vertices
is 8p. Thus m = O(p) and | = O(p). The approximation of each set F;;;, by p maxi-
mal cubes takes O(p?log(1/¢)) time. Since there are O(n) potentially non-empty sets
Fijk, step 1.2 generates O(np) maximal cubes in O(np®log(1/¢)) time.

Next consider steps 2.1 and 2.2, where the maximal cubes are partitioned into sub-
cubes. Since there are O(np) maximal cubes, sorting the cubes’ separating planes and
generating their arrangement takes O(nplog(np)) time. Each of the maximal cubes

parameterizes three segments along the tunnel walls. When two limbs contact two of
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the three segments, the local reachability assumption implies that the third limb can
reach a constant number of walls. Since only one limb has moved, the 3-limb posture
resulting from the re-placement of the third limb must reach a maximal cube whose
projection overlaps the projection of the previous maximal cube. Since the limb can
reach a constant number of cells each containing p maximal cubes, every maximal
cube has an overlapping projection with O(p) other mazimal cubes. Consider now the
partitioning of a maximal cube along the separating planes. If we first partition the
maximal cube along the sj-axis, it is divided into O(p) slabs orthogonal to the s;-
axis. The slabs are divided along the sy-axis into O(p?) rectangular prisms. Finally,
the prisms are divided along the sz-axis into O(p®) sub-cubes. Since there are O(np)
maximal cubes, step 2.2 generates a total of O(np*) sub-cubes in O(np?) time.

Step 2.3 concerns the construction of edges between sub-cubes. In our implemen-
tation the edges are constructed during the cube partitioning process. For purposes
of analysis, let us assume that the construction of an edge takes O(1) time, so that the
time for step 2.3 is equal to the total number of edges in the sub-cube graph. Recall
that all edges are aligned with the s;-axes, and that an edge connects compatible
sub-cubes with a matching projection on one of the coordinate planes. A maximal
cube has an overlapping projection with O(p) other maximal cubes. In each of these
overlaps two columns of the maximal cubes have a matching projection. Since each
column contains O(p) sub-cubes, each sub-cube can have a common projection with
O(p?) other sub-cubes. The edge degree of a sub-cube is therefore O(p?). Since there
are O(np?) sub-cubes, the total number of edges is O(np®). Note that the size of the
sub-cube graph, O(np®), is the space requirement of the algorithm.

Finally consider step 3. In general, a shortest path search on a graph with m

vertices and e edges takes O(elog(m)) time. Substituting m = O(np*) and e =
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O(np®), the search for the shortest path along the sub-cube graph takes O(np®log(np))

time. Summarizing all the steps, we obtain a run time of O(nlog(n) + np*log(1/¢) +

np! + np®log(np)) = O(np°log(np)). O

3.5 Selection Number of Maximal Cubes

In this section we oracle p, number of maximal cubes, to sufficiently approximate
the convex set of foothold positions. low values of p may result with connectivity
lose between convex sets or between maximal cubes within a convex set. To check
connectivity between two convex sets we need to check if there ezist two compatible
3-limb postures in every pair of convex sets. Thus, in the first subsection we check
if there exist a common projection on the main planes for two convex sets. In the
second subsection we discuss how to select the relative configuration of maximal cubes
in order to reduce lose of connection between the p maximal cubes approximating
a convex set. The choice of the relative configuration of the maximal cubes has
implication on the ability to conduct steps between the maximal cubes within a
convex set. This section concludes with an algorithm that check whether p maximal

cubes sufficiently approximate a convex set.

3.5.1 Connectivity Between Convex Sets

A connection between two convex sets of feasible 3-limb postures exists if there exist a
common projection on the main planes in direction perpendicular to the two direction
vectors. The following theorem states that the problem of checking the connectivity

between two convex sets is a convex programming problem.
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Theorem 6 Let ¢ = (¢1,...,c,) € C C R* and d = (dy,...,dy) € D C R* be
convex sets. Then the existence problem of points ¢ and d such that ¢; = d; for

i€l ={my,...,my} is a convex programming problem.

Proof:  We construct R?* space, where C' and D are in two orthogonal subspaces
of R%*. Next we construct cylinders over C and D denoted C. C R?* D, c R?*
respectively. Consider the set C.() D.. This set is convex since it is intersection
of convex sets. Every point in C.[] D, is of the form (cl,... ¢k, dl,... d;) and
represents two points in R* that are in C' and D respectively. Denote the subspace
P ={(s1,...,80) : si = s;+x Vi € I}. Every point in Linear subspace P represent two
points in R* that share the same value along the i'h coordinate. The set P () C. () D.
is convex since it is intersection of a hyperplane with convex set. Moreover every
point in P () C.() D. represent a point in C' and point in D such that these points
share the same value along the i*" coordinate. The problem now reduced to find if a
convex set is not empty, that can be done using the deep-cut ellipsoid algorithm [7]

0

3.5.2 Selection of the Maximal Cubes Relative Configuration

We wish to select the relative configuration of the maximal cubes in such way that
it will be possible to carry out at least one step within every convex set. To enable
at least one step within a convex set two consecutive maximal cubes must have a
common projection on one of the major planes, and the projection direction must be
perpendicular to the direction vector of the convex set.

We chose the maximal cubes relative configuration to be linear. In this configu-

ration there is only one plane separating between each cube to the consecutive one.
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This is the simplest configuration yet it well approximates the convex set, since every
cube takes volume of a thick cube shaped layer from the convex set.

We assigned a direction vector to every convex set. It is possible to perform steps
only in directions perpendicular to the direction vector. Therefore a motion between
the maximal cubes can be carried out only if the configuration of the maximal cube is
perpendicular to the direction vector of the convex set. To conclude we choose linear
relative configuration of maximal cubes in direction perpendicular to the convex set
direction vector. Note however that we still have two directions that we can randomly

select one of them for the configuration of the maximal cubes.

3.5.3 An Algorithm to Oracle Number of Maximal Cubes

Next, we describe and algorithm which is simply a function that generate an error
message if the value of p is too small. The criterion to decide whether p is large
enough is based on preserving connectivity within convex set and between convex
sets. We do not want the approximation of the convex sets to brake any possible

connections. Note however that this lower bound is not necessarily tight.

Checking number of maximal cubes algorithm

Input: The maximal cubes approximating the convex sets.

For each convex set F;;, whose orientation vector is along s; do:

1. Check if every consecutive maximal cubes in F;j;; have common projection
along axis perpendicular to s;. if not send message “p is too small”.

2. Find all F,,,, such that
Casel=1: m=iand (n=joro=k)

Casel=2:n=jand (m=1ioro=k)
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Casel=3: o=k and (m=1iorn=yj)

3. For every F,.,, from step 2 do:

3.1 Check if there exist 3-limb postures in F;;;, that is compatible to a 3-limb postures
in F,un, using convex programming technique. If there is not such compatible
pair continue to the next F,,,, in step 3.

3.2 Check compatability of all possible pairs of maximal cubes such that one cube is
in F;;; and the second is in F,,,,. If there is not a compatible pair send

message “p is too small”.

The effect of p value selection can be explained using Figure 3.6. In this 2D figure
when p is too small the connection between the maximal cubes is lost and path is
not available even though connection between the convex sets exists. When p is large
enough there exist connection between the maximal cubes and path is available. In
the figure it can be seen that there is no point of enlarging p beyond some limit since
it will not affect the length of the path (number of steps along the path) or the effect

will be minor.

3.6 Simulation Results

In this section we run several simulations. First we present full implementation of
the PCG algorithm for selection of foothold positions along simulated tunnel. Next
we investigate the effect of various p, number of maximal cubes, values on the path

length.
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3.6.1 Simulation of the PCG Algorithm

We run the PCG algorithm in the tunnel depicted in Figure 3.12. The tunnel consists
of six walls whose lengths are marked in the figure. All lengths are given in terms
of “length units”, but they are basically centimeters. The figure also shows a 3-limb
robot at its start and target positions. In this simulation we set the robot reachability
radius to be R = 60 length units. The coefficient of friction is y = 0.5, a value that
corresponds to rubber coated footpads contacting walls made of metal or perspex.
Note that the simple tunnel already contains significant geometric features. The two
walls at the tunnel’s bottom form a closing cone. The tunnel next turns leftward and
becomes two parallel walls. Finally, the two walls at the tunnel’s top form an opening
cone. These geometric features are significant, since the robot must use friction effects
to traverse such features.

The walls are parametrized by path length in counterclockwise order (Figure 3.12).
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Figure 3.8: The collection of feasible 3-limb postures in contact c-space.
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Thus s = 0 and s = 270 correspond to the bottom and top of the tunnel’s right
side, while s = 270 and s = 540 correspond to the top and bottom of the tunnel’s
left side. Using this parametrization, contact c-space consists of the cube [0,540]3,
which is depicted in Figure 3.8. The center point of contact c-space at (270,270, 270)
represents 3-limb postures where the three footpads touch the upper point of either
side of the tunnel. Topologically, we ought to put a cube-shaped puncture at the
center of contact c-space, since the top points on the left and right sides of the tunnel
are physically distinct. The eight outer vertices of contact c-space represent 3-limb
postures where the three footpads are located at the bottom part of the tunnel.
These vertices represent the 23 = 8 possible assignments of the three limbs to the
tunnel’s two sides. Note that the robot must contact both sides of the tunnel in order

to generate an equilibrium posture. Hence the vertices (0,0,0) and (540, 540, 540) will
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certainly lie outside the set of feasible 3-limb postures presented below. Topologically,
when we introduce a small cube puncture at the center point, contact c-space becomes
a set embedded in a three-dimensional torus. This fact has been noted in the context
of 3-finger grasps by Leveroni and Salisbury [38].

Let us now turn to the computation of the feasible 3-limb postures in contact
c-space. Figure 3.7 shows the collection of 2-limb equilibrium postures in the (s;, s;)
plane. It can be seen that these postures form a convexr polygon in each planar cell.
The edges of these polygons consist of frictional equilibrium constraints and the cell’s
boundaries. Note that the figure is symmetric with respect to the s, = s; axis,
reflecting the possibility of switching the limbs between the two contacts. Figure
3.8 shows the collection of feasible 3-limb postures, consisting of intersection of pairs
of prisms whose polygonal cross section appears in Figure 3.7. In this particular
tunnel all prism intersections automatically satisfy the reachability constraint. (This
is an artifact of our tunnel environment, coefficient of friction, and robot radius.)
The collection of feasible 3-limb postures has a siz-fold symmetry consisting of six
symmetric “arms”: every non-empty cell represents an assignment of the three limbs
to a triplet of walls, and there are six permutations of the three limbs on the triplet
of walls. The arms are roughly aligned with the diagonals of contact c-space, and this
can be explained as follows. The coordinate projection of each arm covers the entire
length of the tunnel. Each arm can therefore be visualized as “dragging” the 3-limb
mechanism as a single rigid body along the entire length of the tunnel. There are
nine non-empty cells in each arm, giving a total of 54 non-empty cells in the entire
contact c-space.

Next consider the approximation of the feasible 3-limb postures in each cell by p

maximal cubes. We use p = 5 maximal cubes per cell and compute the maximal cubes
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Il X [6 X [1 .
Jy x I x I} R DPPIND DP2)I-NONN MNNINN JY M WNN MYNINA 21P

Figure 3.10: The collection of 270 maximal cubes approximating the feasible 3-limb
postures.
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Figure 3.11: The shortest path from S to 7" along the edges of the sub-cube graph
in contact c-space.
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using the ellipsoid algorithm. This value of p preserves the connectivity of the set of
feasible 3-limb postures, while still being sufficiently low to allow reasonable execution
time. Figure 3.9 shows the cube approximation of the feasible 3-limb postures in the
cell I} x Igx I, where the relative configuration is specified by four separating planes
orthogonal to the s3-axis. The result of running the ellipsoid algorithm on the non-
empty cells in one arm of contact c-space appear in Figure 3.10. Since there are
54 non-empty cells, the resulting cube approximation of contact c-space contains
5-54 = 270 maximal cubes. The algorithm next partitions each of the maximal
cubes along the separating planes of the other maximal cubes. The partitioning of
the maximal cubes generated 28,299 sub-cubes in each of the six arms of contact
c-space (the resulting sub-cubes are not shown).

The algorithm next constructs the sub-cube graph, assigns unit edge weights,
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and searches the graph for the shortest path from the start to target postures.
The result of computing the shortest path using Dijkstra’s algorithm is shown in
Figure 3.11. Each segment in the figure is an edge of the sub-cube graph that
represents one limb lifting and re-placement. Figure 3.12 shows the same path in
physical space, where each foothold is marked by its index in the sequence of steps
taken by the robot. Let us denote the sequence of 3-limb postures by (iy,1is,13),
where i; is the foothold position of limb j at the " 3-limb posture. Then the
path computed by the algorithm consists of the 3-limb postures: S = (1,2,3) —
(4,2,3) — (4,5,3) — (4,5,6) — (7,5,6) — (7,8,6) — (7,8,9) — (7,10,9) —
(11,10,9) — (11,10,12) — (13,10,12) — (13,14, 12) — (13,14,15) — (16, 14,15) —
(16,17,15) — (16,17,18) — (19,17,18) — (19,20, 18) — (19,20,21) — (22,20,21) —
(22,20,23) — (22,24,23) — (25,24,23) — (25,24,26) — (25,27,26) — (28,27,26) —
(28,27,29) — T = (30,27,29). This sequence describes a 3-2-3 gait pattern, where
successive 3-limb postures are interspersed by a 2-limb posture that allows motion of
a limb between the two 3-limb postures. Note that the path generated by the algo-
rithm is minimal in terms of the number of steps relative to the cube approximation
of the feasible 3-limb postures (Figure 3.10). Note, too, that the short edge along
the s3 axis in Figure 3.11 corresponds to the transition (7,8,6) — (7,8,9). This edge
takes the robot around the leftward turning corner between the walls Wy and W.
The difficulty in accomplishing this maneuver can be appreciated by inspecting the

narrow overlap between the planar cells I5x [; and Igx I; in Figure 3.7.

3.6.2 The Effect of Number of Maximal Cubes on Path Length

We run several simulation to investigate the effect of the selection of p, number of

maximal cubes, on the path length in terms of total number of steps along the path.
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Figure 3.12: The tunnel environment used in the simulations, and the sequence of
footholds generated by the PCG algorithm.
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For these simulations we used robot reachability radius of R = 77.2 length units and
coefficient of friction p = 0.5. We used the following two tunnels. The first tunnel is
two parallel walls of length of 200 length units and the width of the tunnel between
the wall is 115.8 length units. The second tunnel is in the shape of > |, where the
right wall is in length of 150 length units and the left wall consists on two 80 length
units segments with angle of 140° between the segments. The narrower part of this
tunnel is 101.9 length units width. The results of running the PCG algorithm for

p=2,3,4,5,6 in these tunnels are shown in the following table.

p | number of steps in | number of steps in
| | tunnel > | tunnel

2 no path no path

3 10 9

4 10 9

5 10 8

6 10 7

From this table we can conclude that after path was found with some p enlarging p
may reduce the total number of steps but the amount of steps reduced will be small.
Therefor if path was found with a given p there is no point to increase p dramatically

since the effect of increasing p on the total number of steps along the path is minor.

3.7 Conclusion

We presented the PCG algorithm for selecting the foothold positions of a 3-limb
robot in a planar tunnel environment. The algorithm assumes knowledge of the

tunnel geometry and a lower bound on the amount of friction at the contacts. Using
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this knowledge, we established that the feasible 3-limb postures consist of a union
of convex sets in contact c-space. Using convex programming techniques, the PCG
algorithm approximates the collection of feasible 3-limb postures by O(np) maximal
cubes, where n is the number of walls and p the number of cubes in each non-
empty cell of contact c-space. The algorithm next partitions the cubes into sub-
cubes and defines a graph whose nodes are sub-cubes and whose edges represent
feasible motion of a limb between any 3-limb postures in the two sub-cubes. A
shortest path search on the resulting graph generates a 3-2-3 gait sequence that moves
the robot from start to target using a minimum number of foothold exchanges. In
practical tunnel environments the PCG algorithm runs in O(np®log(np)) time, and
we demonstrated the execution of the algorithm in a tunnel. Experiments conducted
in our laboratory show practical implementation of the PCG algorithm for selecting
the foothold position of a real spider-robot in real tunnel environment.

The algorithm’s main strength is its emphasize on achieving contact independent
foothold placement sequences. Each sub-cube parametrizes three contact independent
wall segments, and each edge can be realized by limb lifting and re-placement between
any two postures in the two sub-cubes connected by the edge. Thus a controller for the
robot’s limbs need only ensure footpad placement within the segments parametrized
by the sub-cubes. The main weakness of the algorithm is the lack of a procedure
for selecting the parameter p. Instead we introduced an algorithm that determine
a lower bound on p, but this lower bound is not necessarily tight. This parameter
has to be sufficiently high to ensure that the resulting cube approximation induces
a sub-cube graph whose connectivity reflects the connectivity of the feasible 3-limb
postures in contact c-space. Yet it must not be too high as to require an unnecessary

long computation time.
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Finally consider the generalization of the PCG algorithm to robots with a higher
number of limbs. In this case some modifications should be done in the algorithm to be
suitable for k-limb mechanisms. It seems that the algorithm directly generalizes to k-
limb mechanisms that move with a k— (k—1) —k gait pattern. Contact c-space in this
case is k-dimensional, and one must first establish that the feasible k-limb postures in
this space are a union of convex sets. If this is the case, the algorithm can be applied
to such mechanisms without any change. However, the computational complexity
of the algorithm would become O(np®*3log(np)) i.e., exponential in the number of
limbs. A second more challenging topic is how to plan the foothold positions of a
k-limb mechanism using a variable gait pattern. For instance, a 4-limb mechanism
can move a single limb at a time, or two limbs at a time, resulting in a variable gait
pattern. One possibility to generate variable gait pattern is by adding more edges to
the graph that connect different & — limb postures. However this will increase the
algorithm complexity considerably. We are currently investigating foothold placement
algorithms for such mechanisms, with the objective of generating a variable gait
pattern that would minimize the number of steps from start to target and will take

reasonable running time.



Chapter 4

Control of Spider-Like Robot

4.1 Introduction

The control problem associated with quasistatic locomotion of spider-like robots is as
follows. Consider a k-limbed spider mechanism, such that each limb has n actuated
degrees of freedom. The limbs are interconnected by a central base that has three
unactuated degrees of freedom. A spider robot thus has kn+3 degrees of freedom, of
which only kn degrees of freedom are actuated. If we regard the spider’s configuration
space as IR3. the control problem is how to induce forces and torques on the
spider in order to bring it to a desired configuration in IR*"™3. Existing solutions
to the problem make specific assumptions either on the spider’s structure or the
environment’s geometry. Roassman and Pfeiffer [60] assume that the spider limbs
have a negligible mass relative to the central-base mass. This assumption induces
a decoupling of the limbs and central-base dynamics, which allows in turn a control
of the limbs’ contact forces and the central-base’s dynamics. It should be noted

that Pfeiffer’s objective is to control the limbs’ contact forces with the tunnel walls,

98
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while we seek to control the spider’s configuration within the tunnel. Another control
approach is proposed by Dubowsky et al. [14] in the context of ladder climbing.
Using Impedance Control [24], they attach virtual springs to the spider footpads and
central base such that the springs’ set-points reflect the desired spider configuration.
However, their approach seems to rely on the specific geometry of a ladder and lacks
a formal proof of convergence.

In contrast, we present a control approach which is guaranteed to work no matter
what is the mass distribution of the spider or the geometry of the environment. Our
approach exploits the natural compliance in the contacts to stabilize the mechanism
using two three or even more footholds. Since we have frictional contacts we first
derive the contact stiffness matrix. The stiffness matrix presented in section 4.2 is
based on model developed by Walton [78] that describe the contact force as function of
the normal and tangential displacements for loading paths where the ration between
the normal and tangential displacements is constant. In the preloading process we
choose a loading path that meets this Walton loading path condition. The contact
stiffness matrix is not symmetric and we show the condition for it’s symmetric part
to be positive definite, which is a key property that we need later on to prove the
stability of the mechanism. Next we present the spider-robot dynamic equations. We
introduce a simple decentralized PD controller for the actuated joints of the robot.
Then we find the equilibrium point of the closed-loop system. Following we analyze
the stability of the system using linearization about the equilibrium of the non-linear
closed-loop system. The linearized dynamic system is asymmetric.

In the literature [29, p. 86] such asymmetric systems are called circulatory systems.
Known results on the stability of circulatory systemsare based on the symmetrizability

of asymmetric matrix. Taussky [74] was the first to define symmetrizability of a
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matrix. She also showed [75] that any real square matrix can be written as the
product of two symmetric matrices. Huseyin [28, p. 174] applied Taussky’s results
to analyze the stability of circulatory systems. Additional results on the stability of
circulatory systems based on the symmetrizability of asymmetric matrix can be found
in [29, 1]. However finding the two symmetric matrices composing the asymmetric
matrix is a numerical process and thus general analytic results on the stability of
asymmetric systems are, to best of our knowledge, not exist. Therefore we develop
criteria for for the stability of asymmetric systems. These criteria are based on the
fact that we consider system which it’s symmetric part is stable, then a small enough
asymmetric part should not destroy the stability of the system. The proof of this
result is inspired by the proof of stability for symmetric systems presented in [49, p.
192].

Other relevant papers that discuss robot’s stiffness matrix are [10, 72|, where they
show the effect of internal forces in closed kinematics chains on the overall stiffness
matrix. However, in these papers the overall stiffness matrix is symmetric.

In this work we introduce a computed lower bound on the stiffens of the PD con-
troller in order to stabilize the symmetric system. Additionally an analytic criterion

for the maximum allowed magnitude of the asymmetry of the system is developed.

4.2 Compliant Contact Model

We use a Compliant contact model for the forces occurs when two quasi-rigid bodies
are pressed one against the other. We consider the case of contact between two

spheres of radius R !, shear modulus G, and Poisson’s ratio v. Though in our case

'For spheres of different radii R is the equivalent radius defined as % = R% + R%. Johnson [31, p.
92] defines an equivalent elastic modulus as well, where the shear modulus is function of the elastic
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Figure 4.1: The interpenetration of the spider-robot’s footpad and the tunnel wall.
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the footpad is not of sphere shape the contact force-displacement law should not
differ dramatically from the case of contacting spheres. Moreover, if the contacting
surfaces are rough then the asperities can be modelled as spheres and therefore we
can use the contacting sphere model. The spheres are initially contact in a point
with zero contact force. Then as external force presses the spheres one against the
other the shapes of the spheres deform and they contact through an area. However
if we consider the non-deformed spheres then we get that the initial contact point on
the sphere displaced in § = (0",0%), where §" and ' are the normal and tangential
displacements respectively (Figure 4.1). The compliant contact model is the relation
between the contact force f = (f", f*) and the displacement 6 = (6™, §").

For the normal direction the Hertz model [31, 21], which has been verified theoret-

ically and experimentally, establish that the normal traction over the circular contact

modulus and Poisson’s ratio.
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area is given by

4G 2\1/2
n n__ 4.1
1 TR(1 —v) (O™ =), (4.1)

where 7 (0 < r < vV Ro") is the radial distance from the center of the contact area.
For the tangential direction Mindlin [45] showed that when two axially pressed
spheres are further displaced tangentially, the contact area and the normal traction

are unaffected and the axisymmetric tangential traction is given by

4Go™
t_ no_2y—1/2
q 7r(2—1/)(R5 )T

However, for our application this loading path is not applicable, since we need to

apply the loading force in both directions. In that case Walton [78] showed that for

the special loading path where

5t
= constant (4.2)

the tangential and normal tractions are given by

4G

n_ _ Y pen 0 2y1/2

q TRO=7) (RO™ —r®)™/=, (4.3)
t_ 8Ge n . 2\1/2

¢ = TR2—7) (RO™ — re)/=. (4.4)

For this loading path the normal and tangential contact forces are computed by

integrating the tractions over the contact area as follows,

VvV R6™ n
. N _ 8GoO"V RO
f _/0 q"2mrdr = ETETR (4.5)
VRO™ n
16Gcd™ vV Ro™
t_ t _
fr= /0 q 2mrdr = 32— ) (4.6)
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4.2.1 The Contact Stiffness Matrix

For further analysis we use a first order approximation (or linearization) of the contact

forces. The contact stiffness matrix is defined as

o o
n t

K= | 07 @ (4.7)
ot aft
o6m 9ot

By continuity argument we can assume that in the vicinity of Walton path (i.e.

g—; ~ ¢ # constant) the tractions and forces have the similar form as in equations
(4.5,4.6).

The normal force is only a function of 9,,. Therfore it’s derivatives are

ofr  AGV R
om 1 —v

and
afr B
W —_— O.

To compute the partial derivatives of the tangential contact force we apply the

derivative definition as follows

oft " fHog + A", 66) — fH(dg,96)
BT Aon

and
Of | 08,0+ A — f(55,8%)
6t astoo Adt '

From the geometric relations of figure (4.2) we can express f' as function of §"
and c rather then function of 4" and &*. This will enable us to use the former Walton

model. The relations are

F1(05 + A0, 6p) = f'(05 + Ad", e — Ac)
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FH68, 88 + A8 = fH(0y, ¢ + Ac)

Recall that

‘en 16Ged™ v Ro™
i e) = ——.
3(2—v)
Now we can write
8 t . t (S'IL_’_Aén7 —Ac)— t 6n75t
&% — 11mA6”—>0 f ( 0 CAénC) f ( 0 0)
I 16G(c—Ac) (67 +A6™)/R(87+A8™)—16Gcs? /RO
= HMAsm—0 3(2_v)Ad"

From figure (4.2) we observe that

(c — Ac)(87 + AS™) = &, = cop.

For the \/R(6 + Ad™) term we use first order approximation (using Taylor series)

as follows

VR(0F + Adn) = /RSy + %RA&".

VRoT
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Substitute these results back yields

16Gedy (y/ ROG+——F—RAS™)—16Gesy y/ ROY

6—ft = limMn 0 2\/@
aém - 3(2—v)As™
16Gcéy R
64/ R63 (2—v)
SGééR
34/ Réf(2—v)

Next we compute the derivative of f! with respect to 6'. We express f' as function

of &" and ¢ then from the derivative definition we have

9Ft . FHOR e+ Ac)—fH (68 ,c)
= limagep TSR
. 16G(c+Ac)8y /ROy —16Gedy /ROy
= HIMAst—0 3(2_v)Adt

. 16GACS? \/ROG
= limas—o0 a5

From figure(4.2) we find the following geometric relation,
AS" = (c+ Ac)dy.

Recall that ¢* = ¢f. Thus from this relation we have

t
Ac:g
o

Substitute this relation back to the partial derivative of f* yields

ot i 16GAS67 \/ROp
oot =  HMAS—0 T3R5y A

16G/Rop
3(2—v) -

we conclude with the following stiffness matrix

4GV Ré™ 0
K = 1—v . (48)
8G RS 16GV R6™

3V R (2—v) 3(2—v)
Next we wish to examine the positive definiteness property of K. But since K is

an asymmetric matrix we examine the positive definiteness of the symmetric part of
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K. Denote (K), = 3(K + KT) the symmetric part of K, and (K)q = 5(K — K7)
the skew-symmetric part of K. The following lemma assert the conditions for which

the symmetric part of of K is positive definite.

Proposition 4.2.1 (Positive definiteness of K) Let K € R?*? be a frictional

contact stiffness matrixz. Then for
12(2 — t —
B (2—-v) _ 9" _ 12(2 —v)
(1—-v) on (1—-v)

Proof: Since K is not a symmetric matrix, we express K as sum of symmetric matrix,

(K)s is positive definite

(K)s and a skew-symmetric matrix (K),s. Tr((K)s) is the sum of (K)’s eigenvalues
and it is positive for all 6" > 0. Thus if the multiplication of K,’s eigenvalues is
positive then all the eigenvalues are positive. The multiplication of (K),’s eigenvalues

is simply det((K)s), and the condition for (K),’s positive definiteness is

GVRé™ GRg* n
5T e | 16RGR(12(07)(2 — v) — (6)*(1 — v))

AG RS 16GV/RE™ 9"(2 —v)?(1 —v)
3VRI™(2—V) 3(2—v)

> 0.

Since the denominator is positive we demand positive nominator. It follow that
12(6")%(2 — v) > (6")*(1 —v).

Finally, the condition for (K), to be positive definite is given by
12(2 — ot 12(2 —
_ 12—y ot 122 -v)
(1—-v) o (1—-v)

Finally, note that the contact forces stiffness matrix is given in the contact refer-

O

ence frame (with respect to the definitions of " and ¢*). A simple transformation of
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the form

R"(7)KR(v)

enables us to express K in a reference frame rotated by angle ~ relative to the contact

reference frame. In this formula R(7) is a rotation matrix of angle ~.

4.3 Control Law

We first describe the dynamics of spider robots, then present the control laws, and
finally analyze their stability. The spider’s configuration parameters are denoted
as follows. The base configuration (position and orientation) is denoted gy € IR®.
Each limb possesses n actuated joints, and the joints associated with the i* limb are
denoted ¢; € IR™. The joint vector of the entire spider is denoted § € IR*", and the
configuration of the entire spider (i.e. central-base configuration and joint values) is

denoted ¢ = (go, q) € IR "3,

4.3.1 The Dynamics of k-Limbed Spider Robot

Our first task is to compute the inertia matrix of a k-limbed spider robot. Since
the limbs are attached to a common central base, the position of the i** limb is
determined by the configuration parameters (qo,¢;). Hence the total kinetic energy

of the mechanism, denoted T'(q, ¢), is given by

k .
. . . . 4o
T(q,4) = 566 Mo(ao)do + ) 5(dos ds) " Milao, @) [ | (4.9)
i1 g;
where My(po) is the central-base 3 x 3 inertia matrix, and M;(qo,¢;) is the i** limb

n + 3) x (n + 3) inertia matrix. However, in general T(q, ¢) = 2¢* M(q)d, where
2



CHAPTER 4. CONTROL OF SPIDER-LIKE ROBOT 108

M(q) is the spider’s total inertia matriz. Equation (4.9) thus implies that M(q) is

the symmetric positive-definite matrix:

My Mo Mo - Moy
MLy My 0 - 0
M(g)=| ML 0 My -~ 0
ML - M
L "0k 0 0 Kk (kn+3)x(kn+3)
where
0 My
Mi:
M& M,

The inertia matrix has a special structure which reflects the spider’s kinematics.
The non-zero entries in the first row and column correspond to the kinematic coupling
between the central-base and each limb, and the zero entries correspond to the lack
of any coupling between the spider’s limbs.

Next we describe the external forces and torques that act on the spider mecha-
nism. First, the spider’s actuators apply joint torques. These torques are denoted
(0,7), where 0 € IR® represents the absence of central-base actuation, and 7 € IR
represents the nk joint torques. Second, the tunnel walls apply reaction forces on the
spider’s holding footpads. Denote 2 < m < k the number of limbs that brace against
the tunnel. Without loss of generality we assume the indices of the bracing limbs are
in the range 0...m. Note that the k —m limbs whose indices are m ... k are free and
does not contact the environment. The net wrench due to these forces is given by
S JIF;, where Fj is the i contact force and J; = Dx;(q) is the Jacobian matrix of
this contact. Finally, the spider’s motion as a single rigid body incurs damping. This

damping has three major sources. The first source for this damping is due to plastic
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deformations and hysteresis at the contacts. Kumar et. al. [36, 35] first modelled
the contact forces hysteresis as equivalent damping. The second source is viscoelastic
losses due to material compression at the contacts [17]. The third source for this
damping is caused since in our experimental apparatus the spider is supported by
planar air bearings against a horizontal plane, and frictional losses in these bear-
ings is an additional source of damping. Since only the central-base configuration g
varies when the spider moves as a single rigid body, we write these damping effects
as (—Dyqy, 0), where Dy is a 3x3 positive-definite matrix and 0 € R™. Summarizing

all the external influences, the spider’s dynamics is given by

. . 0 Doqq “
M(q)j+ Blg,q) = - +Y J'F, (4.10)

—

T 0 i=1

where B(q,q) = M(q)g — 247 (£ M (q))¢ contains Coriolis and centrifugal forces.

4.3.2 The Control Law

We now present a control law for k-limbed spider robots. In order to bring all parts of
a spider robot to a desired configuration, we induce forces and torque on the spider’s
unactuated central-base as follows. Consider for example the three-legged spider robot
depicted in Figure 3.1. The spider brace against the tunnel walls using two limbs,
and it has to bring its third limb to a new position specified by a higher-level motion
planner. During this motion, all parts of the spider are free to move, provided that the
two footpads contacting the environment remain stationary with respect to each other.
The latter condition ensures that from the perspective of the tunnel walls, the spider
remains grasped as a single rigid body throughout its motion. Since the spider hold

itself in a stable frictional grasp the two footpads will settle at their original position
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once the moving parts reach their destination. In order to realize this behavior, the
motion planner specifies a sequence of target configurations to the robot controller,
such that each target configuration is stable frictional grasp. The motion planner
is not discussed in this paper. However, quasistatic motion paradigms for 3-legged
spider robot is described in chapter 3. We now proceed with the description of the
control law.

Let ¢* = (¢35, ¢") denote the spider’s desired configuration. Then the control law
is the PD rule:

7(t) = —P(q(t) — ") — Dq(t), (4.11)

where P and D are nkxnk positive-definite matrices of proportional gains and damp-
ing coefficients. Note that the PD rule (4.11) requires no cancellation of the spider’s
nonlinear dynamics, and as such is simple to implement. Note, too, that in the case
where P and D are diagonal matrices, (4.11) becomes a decentralized control law,
where each joint needs only measure its own angular state. This approach allows

straightforward implementation of (4.11) using standard controller boards.

4.3.3 Equilibrium Point of the Spider-Robot System

Substituting the control law in the dynamical equation (4.10) gives the closed-loop

system:

M(q)i+ B(q,4) = —Plg— ") + >_ J'Fi = Qq, (4.12)

where Q = diag(Dy, D) is a positive-definite damping matrix, and P = diag(0sx3, P)
is symmetric positive semi definite gain matrix. Our first task is to identify the
static equilibrium point of (4.12). Substituting ¢ = 0 in (4.12) gives the equilibrium

condition:
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zk: (—x, %, q) )TE —0 and i:; ((%:Bi(qo,q))TE = —P(q(t) — 7). (4.13)

=1

By construction, the motion planner specifies an equilibrium posture for the spider,
at which the footpads penetrate the tunnel walls by a small amount. This posture
determines the desired spider configuration ¢* which appears in the control laws.
The equilibrium point of the closed-loop system is achieved by pressing the footpads
against the tunnel walls at the specified contacts, until the equilibrium condition
(4.13) is satisfied. The loading process is done by gradually increasing the penetra-

g—;i constant. This loading path meet the

k3

tions 07 and ¢! while holding the ratio ¢; =
requirement for walton path. Moreover, This loading path enables to increase the
contact force magnitude while maintaining the same line of action for the force, as

we have

SRy

)

(4.14)

The first part of (4.13) requires that the net wrench on the central-base due to the
tunnel’s reaction forces be zero. The second part of (4.13) requires that the closed-
loop joint actuators balance the joint torques induced by the tunnel’s reaction forces.

The following lemma establishes that such a balance can be achieved.

Lemma 4.3.1 [Equilibrium point] Let ¢* be a spider configuration at which m limbs
(2 < m < k) press against the environment in an equilibrium posture. Let P =
diag(03x3, P), and let R(v;) be a rotation matriz by the i*" tunnel segment angle ;.
Then first order approximation for an equilibrium configuration of the entire robot, q,

18 given by

L=pY
||

<P+ > IR (1) KR (v:) ) ZJTF (67).

=1
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Provided that ¢ is sufficiently close to q* to allow the approximation.

Proof: The conditions for equilibrium as shown in (4.13) are:

m

Plg—q") =Y _JIF(5), (4.15)
i=1
where §; = (07, 0%). In the vicinity of ¢* we can use first order approximation to the

107

contact forces as follows,
Fi(6;) = F;(67) — RT (%) Ki R(:) (8 = 67),

where 0} is the vector of footpad penetrations corresponding to ¢*. the multiplication
by R(~;) and RT(v;) are used to convert the contact force and penetrations from the
contact local frame to the global frame. Denote the i** contact point correspond to
zero penetration z?¥. Therefore we can write 6; = z; — 2 and §F = a7 — 2?0, where z}
is the " footpad position corresponding to ¢*. Thus &; — d7 becomes x; — x}, and if
x; is close to z} then x; — o} ~ Ji(¢; — ¢;). substituting these results back to (4.15)

yields

m

Plg—q") =Y _JI'F(6;) = JIRY (%) KiR(i) Ji(a: — ¢7).

i=1

Rearranging this equation gives the equilibrium configuration

i=q +<P+ZJTRT%>KR% ) ZJTF 5).

=1

Finally, note that the matrix (P + Y. | JZ R"(v;) K;R(7;)J;) is invertible since P has

=11

full rank with respect to g and Y ;" JI' RT(v;) K;R(v;).J; has full rank with respect

to qo. L]
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4.3.4 Linearization of Spider-Robot System About Equilib-
rium

Nonlinear system has equivalent stability property as the linearized system. There-
fore For further analysis of the nonlinear system stability property we will analyze
the stability property of the linearized system. Next we develop the terms for the
linearized system. The nonlinear system as in (4.12) can be written in reduced order

as:

P1 = p2
P2 = M_l(pl) (—B(phm) — P(p —p(f) — Qp2 + Z:il JiT(pl)Fi(pl)) .

(4.16)

For system of the form p = f(p) the linearized system about an equilibrium point, p,
defined as

op op,

dp p=p
where dp = p — p. The equilibrium point p satisfies f(p) = 0. p can be divided to two
parts p = (p1, p2). Note that in mechanical systems ps is the generalized velocities and

therefore py = 0. In (4.16) all the terms in B(p, p2) are quadratic in the generalized

velocities and vanish in the linearization. Thus the linearized system is

op1 = Op2
0ps = M7'(py) [P+ X0, (=T (p1)RT (%) KiR(v:) Ji(p1) + Dai(p1) Fi(p1)) ] 0ps
— M~ (p1)Qpo,

where D?z;(p;) is a third order tensor and by multiplying it by the contact force

F;(p1) we get a nk x nk matrix. rewriting the above system in matrix format yields

0 I
0p = op.
M [-P =", (JIRTKRiJi — D2xi(p) Fy)] —M™'Q
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Another option to write this linear system is as follows

Mo+ QoG+ | P+ (JFRIKRJ; — D*x;(Q)F,) | dq =0, (4.17)
i=1

- s

he
K

where dqg = ¢ — q.

General results [34, 33, 11, 49] of the stability of such systems consider the case
where M, Q and K are symmetric matrices. In this case if Q and K are positive def-
inite then the system is asymptotically stable. However in our case K; is asymmetric
and that cause the entire proportional gain, K , to be asymmetric, so the general
result cannot be applied here. Other results on asymmetric systems [74, 28, 29, 1]
analyze the system stability using symmetrization of the asymmetric matrix. Note
that this symmetrization process is numeric and therefore can not give us any insight
on the general conditions for the stability of the system. In the next section stability

analysis of our linearized system will be considered.

4.4 Stability Analysis

In this section we analyze the equilibrium stability of the spider-robot closed loop
system. Since the compliant contacts produce asymmetric stiffens matrix we first
develop the condition for asymmetric linear system to be asymptotically stable. Then

we apply these condition to our closed-loop system.

4.4.1 Stability of 2"*-Order Asymmetric Linear Systems

Consider the following second order linear asymmetric dynamic system

B+ Kop+ Kp =0, (4.18)
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where K, € IR"™" is symmetric positive definite matrix and K, € IR"™" is asym-
metric matrix, while it’s symmetric part (K,)s; € IR"™" is positive definite. The
following Theorem states that if the skew-symmetric part of K, is small enough and
the symmetric part of K, is positive definite then the system (4.18) is asymptotically

stable.

Theorem 7 (Stability of asymmetric system) Consider the system of (4.18). Let
B € IR be the minimal eigenvalue of K, € IR™™". Let a € IR be the minimal eigen-
value of the symmetric part of K, € IR™", and let w € IR be the matriz norm ? of

the skew-symmetric part of K,. Then if
w| < vap
the system is asymptotically stable.

Proof: System (4.18) can be written as a first-order linear system:

For asymptotic stability it suffice to show the conditions for which the real part of
each of the eigenvalues of A is negative. Let A € C be an eigenvalue of A with

corresponding eigenvector v = (vy,v;) € C*", v # 0. Then,

(%1 0 I (%1 (%)

A _ _
(%) —Kp _Kv (%) —KpU1 — vag

It follows that if A\ = 0 then v = 0, and hence A = 0 is not an eigenvalue of A.

Further, if A # 0, then v, = 0 implies that v; = 0 >. Thus, vy, vs # 0 and we may

2 The matriz norm is defined as ||E|| = maz{||Eul|} over all vectors |lu| <1 [26, p. 293].
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assume without loss of generality that ||v,|| = 1. Using this we write
N = 0i A2 = vi vy = vf (= Kyup — Kyve) = —vi Kyu1 — MKy, (4.19)

where * denotes the complex conjugate transpose. Since K, is symmetric positive
definite matrix we can write § = viK,v1 > 0. Next K, will be written as K, =
(K,)s + (Kp)as- Then & = vj(K,)sv1 > 0, and iw = v} (K,)asv1, where i = /—1.

Substituting these results to (4.19) yields
N4 B+ a+io=0. (4.20)

Note that every eigenvalue of A satisfies this equation. Therefore if we demand
negative real part of the solutions of (4.20) then we assure the stability of the system

(4.18). The solutions for (4.20) are:

Aig =13 (—B + \/52 — 4(a + z’@)) . (4.21)

The second term here is square root of a complex number. Consider for instance
the complex number z = a + ib. The absolute of z is v/a? 4+ b? and it’s argument is

0 = arctan (b) Then /z = +(a® + bQ)iAQ and in cartesian representation /z =

a 27

+(a® + b?)a (cos (%) +isin(£)). Additionally we have cos(d) = —=—> and the
trigonometric identity cos (%) = 1+C;S(9). Therefore

Re{y/z} = %(a® + 1)’ (% n ;L)% |

where in our case a = 3% — 4a and b = 4. Utilizing this result to (4.21) implies that

1 22 Ax
—4a)? + 16w
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In order to have Re{A; 2} < 0 we need

(6% —4a)
\/(52 — 4@)% + 1602
Taking the square of both sides and then multiply the inequality by 2 gives

N =

B> ((3°—1ap+ 16&)2)% Ly

(8% —4a)
\/(52 — 4@)% + 1602

1
25 > ((62 —4a)? + 16@2) 21+
Rearranging this inequality results in
1
25 > ((52 —4a)? + 16&2> 2 4 B - 4a.
Next we add 4a — 32 to both sides and then take the square of both sides to have
N2 - 2
(4@ + ﬁ2> > (52 . 4@) + 1602,
Opening the brackets gives
1662 + ' +8a3% > B* + 1682 — 8a3* + 160>
Rearranging this and dividing by 16 results in
ap? > o,
or simply
Vaps > o).
Recall that 3 = viK,v; > 0, @ = v} (K,)sv; > 0, and i = v}(K,)asv1. Next we
wish this inequality hold for every &, B , and ¢w. In other words this inequality should

be true for every eigenvalue A and the associated eigenvector v. Therefore we may

bound & and B by their minimal values o and 3 respectively. Note that

0 < o= Anin (Kp)s) = Amin (53)s) [01]]* < 0] (K)s01 = &,
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and

0< 5 = )\min (Kv) = Amzn (Kv) ||U1||2 S UTval = B

Additionally we bound @ by it’s maximal value w as follows
Wl = (KD )asll = [[07 (KD )as o1l = |07 (Kp)asvr| = Jiw] = [@]

Finally we have that if w < y/a then for every &, 3, and i@ the inequality Va3 > =]
holds true. This causes Re{A} < 0 for every eigenvalue, A, of A. That results with
an asymptotically stable system (4.18). O

Next we discuss the expansion of theorem 7 to the case where inertia matrix exists.
Consider the system

Mp+ Kyp+ Kpp =0, (4.22)

where all the parameters are as before except for the existence of positive definite
symmetric matrix M € IR"™". In that case the following corollary establish the

condition for the stability of (4.22).

Corollary 4.4.1 Consider the system of (4.22). Let 3 > 0 be the minimal eigenvalue
of M~Y2K,M~Y2. Let a > 0 be the minimal eigenvalue of M~Y?(K,),M~Y/? and
let w € IR be the matriz norm of M~Y2(K,),sM~2. Then if

w| < Vap
the system is asymptotically stable.
Proof: = We define a coordinate transformation as:
p=M"porp=M1?p

This transformation is based on similar transformation found in [29, p. 87]. Note that

the matrices M2 and M~/? are unique, symmetric, and positive definite. Moreover,
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we have M = MY2MY2 and M~t = M~Y2M~1/2, Substitute the new coordination
back to (4.22) results in
MY2p + K,M ™25+ K,M~"?p = 0.

—-1/2

Now we multiply this equation by M and have

p+MPEM V2 p 4+ MK M2 =0,

K, Ky
This system is exactly of the form used for theorem 7, but instead K, and K, we
have now K, and Kp respectively. Note that if the latter system is asymptotically
stable it implies that (4.22) is asymptotically stable since they differ only by unique
coordinate transformation. The rest of the proof is straight forward implementation

of theorem 7. ]

4.4.2 Equilibrium Stability of k-Limbed Spider-Robot

The following theorem establishes a sufficient conditions for the local asymptotic
stability of ¢ under the PD control law. This stability result is a key contribution of

this thesis.

Theorem 8 (Spider-robot stability) Let a k-limbed spider mechanism brace against
the environment with 2 < m < k limbs in an equilibrium configuration q € R™+3,
Thus under PD control law (4.11), if the following three conditions,

B = A (MY2QM12) > 0

@ = Ain (M—1/2(K)5M—1/2) >0

w=MTK)eM 2| < Vap
are satisfied then the zero-velocity state (q,0) of the closed loop system (4.12) is lo-

cally asymptotically stable.
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Proof:  We show that the linearized system about the equilibrium is asymptotically
stable and conclude that the non-linear system is locally asymptotically stable. Recall

from equation (4.17) the linearized system about the equilibrium as follows:
Mé§+ Qg+ Kdog = 0. (4.23)

This system falls exactly to the form of systems considered in corollary 4.4.1. Accord-
ing to the corollary the conditions for such system to be asymptotically stable are
as follows. First we need 8 = Apin (M~2QM~1/2) to be positive. Second we need
a = Amin <M_1/2(K)SM_1/2) to be positive. And the third condition for stability is
w=||M7Y2(K) e M7V2|| < \Jap. O

Next we show how and if these conditions can be satisfied by a k-limbed spider
robot.

To satisfy the first condition we need A, (M~12QM~/2) > 0. As defined
in subsection 4.3.3 @ is symmetric positive definite matrix. The following lemma

assert that the transformation M ~Y2QM /2 does not change the positive definiteness

property of Q).

Lemma 4.4.2 Let M € IR™" be a symmetric positive definite matriz, and let A €
R™" be a symmetric matriz. Thus if A is positive definite M~ AM~1/? is positive
definite.

Proof: If A is positive definite then
vl Av > 0 Vi £ 0. (4.24)
And we need to show that

oI MTY2AM Y2y > 0 Vi # 0. (4.25)
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Note that since M2 is unique it is also symmetric. Therefore we can assign @ =
M=%y and rewrite (4.25) as

u? Au,

but from (4.24) we know this term is positive for u, v # 0. O

To satisfy the second condition we need M~1/2(K),M~'/2 to be positive definite.

Applying lemma 4.4.2 enables us to prove that (K), is positive definite while positive

definiteness of M~'/2(K),M~'/? is approved by the lemma. Recall from (4.17) that

=1

K; can be decomposed as follows,

Thus the term JI R (K;),R;J; is symmetric since
(JIRI(K)oRiJi) " = JERY (K))o)" Ridi = JERY (K)o Ry,
and JI RT(K;)asR:iJ; is skew-symmetric since
(JERT(K)asRii) = J'RY (K:)o)" Ridi = —JF RY(K)as RiJ:.

The term D2x;(¢,)F; is symmetric because of the following. D%x;(q;)F; is the deriva-

tive of J! F; with respect to ¢, while holding F; constant. Now we specifically write

Oz1  Omy 3 Ow; £
g1 Oq f dq1 7
T . . 1 . .
Ji E - : . - : 3
f2

o) 0 Ox;
Ban Oan 2 gan i
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where for simplicity we denote here x; = (x1,22) and F; = (f1, f2). Next we take this

term’s derivative as follows,

8:):1 0%x; . 8212
9 Z 8111 Z dq3 J? 5q18q

dq

8:31 32% &%x;
Z 8‘171 Bqn&n Z g2 )

It is easy to see that this matrix is symmetric. so we can conclude that
(K)o =P+ (JIRI(K:)RiJ; — D*i(1) F) -
i=1

Next we discuss the positive definiteness of (K),. As in the frictionless contacts
case [64, 69, 65] we show that if the grasp of the mechanism as solid body by the
compliant tunnel is stable then for controller stiffness above lower bound the entire
system stiffness matrix will be positive definite. Since coupling exists between each
limb and the central-base but not between the limbs themselves, the term for (K),

takes the form of

KOO KOl K02 KOk

KL Ky +P 0 0

(K)s=| K, 0  Kup+P2 0
| KL 0 0 o K+ P |

Note that the 3 x3 submatrix Ko represents the stiffness of the equilibrium posture
when the mechanism is considered as a single rigid body and the tunnel represent
k fingers of stiffness (K;)s which grasp the mechanism as rigid body. The general
formula for Ky, was discussed in chapter 2 can be found in lemma 2.3.1. Let us

assume for simplicity that P; = 0,1, fort =1, ..., k, where o; is a positive parameter.
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In order to establish lower bounds on the o;’s which guarantee that (K), is positive
definite. Let v = (v, vy, ..., v;) be a vector in IR™ 3, such that vy € R* and v; € R"

for i = 1,....k; and let ¢ = (04,...,0%). Then the quadratic form v*(K),v can be

written as:

k k
UT(f()Sv = vgf(ogvo +2 Z vgkol-vi + Z vZT(f(u + o, 1)v;.
Note that v7(K),v = v Kgyve when ;:1: 0 for i :iil..., k. Hence the positive defi-
niteness of f(og is necessary for the positive definiteness of (f( )s- Since the mechanism
hold itself as a single rigid body, Lemma 2.3.1 implies that Ky, has to be positive
definite in order to have stable holing posture. Thus the tunnel should stably grasp the
mechanism as a single rigid body. Let oo > 0 denote the minimal eigenvalue of Koo

and, for a given matrix F, let || E|| denote the matrix norm induced by the Euclidean

norm®. Then v7(K),v can be bounded as follows

k k
(K)o = aollvoll* =2 Y 1 Koillllvoll lluill + (o — | Kl il (4.26)
i=1 i=1
The first two summands in (4.26) can be written as follows

2 k o k 2
oollvoll” = 23 iy 1 Koillllwollllvill = a0 Xy (lvoll” = 2¢sllvoll[lvill)
k 2
=002 i1 { (Jvoll — cllvil])? = Elvi||*}

where ¢; = || Ko;||/0o. Substituting this expression in the quadratic form (4.26) gives:
i 1 2
- ~ - 2
o (B)sw > 3 oolllooll = eilfod)? + (o = 1 Kall = 1 Koel el (127)
i=1

Since ¢y > 0, the right side of (4.27) is positive if the coefficient of ||v;||* is positive.

Thus we obtain the lower bound on the controller’s stiffness parameters:

- 1 -
o > | Kl + —| Kol fori=1,....k (4.28)
0o

3The matrix norm is defined as || E|| = max{| Eul|} over all vectors |jul| < 1.
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Any value of the o,’s above these lower bounds guarantees that the matrix (K), is
positive definite, and consequently that M~/ z(f( ) M~1/2 is positive definite.

To satisfy the third condition we need w = ||M~Y2(K),M~'/?|| < \/af. Specif-
ically we have

(K)as = Y JI R (K)as Rii,
=1

and recall that
4G /RéT
1—v O
8GR51? 16G+/ Ro}

3y/Rém(2—v)  3(2-v)

K; =

Substituting Walton loading path ¢; = gfz yields

4
— 0
K, =G+/Ro"| "
8¢; 16
3(2—v) 3(2-v)

Which it’s skew-symmetric part is

0 8¢
(K;)as = G\/ROT 3(2=)
8¢; O

32-v)

Note that the maximum eigenvalue of (K;),s depends on the value of |¢;|. Small |¢;|
correspond to penetrations which are more in the normal direction and consequently
forces that are more normal than tangential. Moreover, small |¢;| introduces small
asymmetric part of K; and help satisfy the third condition of the theorem. Thus
the third condition introduce an upper bound to the sum of the |¢;[s. However this
is not the only condition on the |¢;|s. From proposition 4.2.1 we have the following
condition for (K;)s to be positive definite:

12(2 — v)
1-v)

|Ci‘ <
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From (4.14) we have an upper bound on |¢;| which guarantees that the contact force

is within it’s friction cone as follows:

f_F;t_ 2(1—V>

TRy

Finally, the third upper bound on |¢;| is form the third condition of theorem 8
IMV2(K) oM™ < Vag

as discussed before. The selection of |¢;|s value is such that it satisfies all these three
upper bounds. This together with the selection of stable holding posture for the
mechanism as single rigid body, and together with high enough proportional gain in
the joint’s controllers, are sufficient conditions for the equilibrium of the mechanism

to be locally asymptotically stable.

4.5 Conclusion

We described a control method for spider-like robots that move quasi-statically in fric-
tional tunnel environments. That completes previous results on the control of spider-
like robots that move quasi-statically in frictionless tunnel environments [64, 65, 69].
To induce forces and torques on the spider’s unactuated central-base, we used grasp
theory, that determines the conditions under which the mechanism is stably grasped
by the tunnel as single rigid-body. When compliance at the contacts is taken into
account, stable grasp yields passive stabilization of the mechanism as a single rigid
body. In addition compliant frictional contact model introduce asymmetric stiffness
matrix. New results presented here show that if the symmetric part of the system
is asymptotically stable and if the asymmetric part is "small” enough compering to

the symmetric part then the asymmetric system will be asymptotically stable. Using
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these two results we presented a PD control law for general k-limbed spider robots.
We presented an approximation for the equilibrium point of the mechanism as func-
tion of the PD target point ¢*. In other words specific selection of ¢* determines the
equilibrium penetrations 5= (A{L, 5{, cee AQ, 32) Then we introduced three inequali-
ties in &,P, and |¢;| = |6!/67|. We showed that P should be selected stiff enough, and
|c;| should be selected small enough. The bounds for P and |¢;| has been computed
analytically. Moreover, we showed that the amount of normal penetration ¢! does
not change the stability property of the system, but it does affects the convergence
path. Note that this result is consistent with previous results on spider robot control
in frictionless environments. Here as there we showed the existence of a lower bound
on the controller proportional gain, and in both cases we need the mechanism to be

stably grasped by the tunnel as a single rigid body.



Chapter 5

Experimental Results

In this chapter we describe the experimental setup and summarize the results of the
spider robot motion in a tunnel built in our laboratory. The experiments where
conducted using our 12 DOF spider-robot. The main goal of these experiments is to

verify the PCG, the control algorithms, and the related simulation results.

5.1 Experiments Setup

Kinematic analysis of the robot motion shows that three links and three joints for
each limb are required [59]. However, when operating in a congested environment,
additional degree of freedom is required in order to increase maneuverability while
retaining a manageable mechanism complexity. The spider robot therefore consists
of four links and four joints for each limb.

Two key dimensions of the robot affect the PCG algorithm: the central body
and the total limbs’ length. The central body is a thick block that contains three

driving motors and some electronics. The robot radius denoted as R is the length

127
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of a fully stretched limb measured from the center of the base to the limb’s footpad.
The choice of R affects the ability of the robot to reach desired footholds along the
tunnel walls. Based on the tunnel dimension the robot radius chose to be 77.2cm
with a base dimension of 14cm (from the center of the base to the limb’s first joint).

To minimize inter-link interference, the robot limbs work in two distinct planes,
upper plane and lower plane. The upper plane limbs never interfere with the lower
plane limbs (except for a possible interference of the passive supports, discussed be-
low). The resulting design allows simultaneous motion of the three limbs with minimal
inter-link interference. The robot moves in a horizontal two dimensional tunnel. How-
ever, vertical gravitational forces may generate a torque that can tip the robot out
of the horizontal plane. To prevent tilting during locomotion, the central body and
each limb are equipped with a supporting mechanism consists of a planar air bear-
ing. While preventing possible tilt, the planar bearings generate only small undesired
friction forces between the robot and the horizontal plan on which is operates.

Each limb is actuated by 4 different motors proportional to the required torque.
The first joint (closest to the central body) is equipped with the biggest motor and
the footpad joint is equipped with the smallest motor. Optical encoders are attached
to each joint, providing accurate angle measurements regardless of any backlash.
Motion is controlled using MEI controllers that enable synchronized motion of all
limbs. Figure 3.1 shows the spider-robot.

The experimental setup includes the spider robot, a planar tunnel with piecewise
linear walls constructed of 5 linear segments. The configuration of the walls is such
that it provides various geometric features for different types of motion such as parallel
walls, diverging walls and converging walls. The walls are made of transparent stiff

plastic (Plexiglas) coated with medium rough sand paper. A lower bound on the
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friction coefficient between the robot’s footpads and the walls is 0.5. As mention in
the previous section, the robot is travelling on a horizontal plan using air bearing
supports, reducing the friction between the robot and that plan to low values. All
walls are perpendicular to the plan and can produce large enough reaction forces

required for the robot motion.

5.2 Experimental Results

The PCG algorithm is applied off-line before motion starts and trajectories for all
12 actuators are being constructed and stored in the controller. The output of the
PCG algorithm is a series of foothold positions. These foothold positions are marked
and numbered on the tunnel walls in Figure 5.1. The is series robot’s steps along the
tunnel is presented in Figure 5.2 as a path in the contact c-space. Before starting the
experiments the tunnel walls were marked according to the desired foothold positions.
The experiment starts with the calibration process outside the tunnel, followed
by controlled motion in which the robot positions itself at the starting point. When
motion starts, all actuators are synchronized frame-by-frame while actual position of
each joint is continuously recorded. This data is then used for motion analysis.
Although cameras are being used during the experiments, the visual data is not
incorporated into the motion control. Not using feedback on the central base position
and orientation requires a close match between the planned trajectory and the actual
motion. In that case the system is open-loop with respect to the central base config-
uration, and deviation from the desired trajectory may result in contact loss between
one or more of the footpads and the walls. However, the system is locally robust to er-

rors in the central base configuration. This robustness is due to the fact that footpads
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finéi step

‘ 20 40 60 80 100

Figure 5.1: The tunnel environment used for the experiment, and the sequence of
foothold positions generated by the PCG algorithm numbered from 1 to 10.
PCG OmImON "y NN AUN DONRD TMITPI DT 1027 DYIWY NINNIN
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(9,10,8)

Figure 5.2: The shortest path from S to T along the edges of the sub-cube graph in
contact c-space. In every node (step) along the path it is marked the foothold point
on the tunnel of (limb 1, limb 2, limb 3).
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are aimed to points inside the tunnel walls to apply positive contact forces. Foothold
location is locally robust because the nominal contact point is the center of contact
independent cube. Without visual or other absolute feedback mechanism the robot
cannot converge to the nominal trajectory, similar to odometric errors of wheeled
vehicles that increase unboundedly. But if the robot do not diverge far enough from
the nominal trajectory then motion can still be conducted due to the local robustness
property.

To bound the contact forces between the robot and tunnel walls, and to reduce

electromagnetic interferences, current of all actuators is limited to 3A. Speed and

deg
sec?

acceleration of all actuators is also limited to 4.5% and 4.5 respectively. This
is required in order to prevent large inertial forces that may interrupt our motion.
Low speed and low acceleration motion is more accurate. This accuracy is needed
to prevent the central-base of the robot from diverging far from the predesigned

trajectory. Moreover, high accelerations of the center of mass of the robot demands

large contact forces. For example if we wish to accelerate the robot’s center of mass by

0.01 ;2% we need a net forward force of 24x0.01 = 0.24 N, where the robot mass is 24

Kg. Consider the case where the robot hold itself between two parallel walls (Figure
5.3) such that the line connecting the two foothold positions form a 25° angle with the
horizontal line. The coefficient of friction is 0.5 and o = Arctan(0.5) = 26.565°. A
given contact forces f; and fs are initially antipodal to form an equilibrium grasp. The
force can rotate not more than 1.565° without braking the friction cone constraint.
By rotating both contact forces by that angle we produce 2f; sin(1.565°) net forward
force. So, to produce 0.24 N net forward force we need initial contact force of 4.4

N. And if we wish to increase the acceleration to 0.05 o We need initial contact

force of at least 22 N which is relatively high. Note that this computation does not
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Figure 5.3: Illustration that shows how net forward force is produced by the contact
forces.
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take into account the friction forces in the planar bearing that demands additional
forward force.

In our experiments no force or torque feedback is being used, and motion is con-
trolled entirely by decentralized PD controllers with feedback on the joints angles.

Figure 5.4 shows a full motion of the robot from one end of the tunnel to the
other end. This figure presents the entire robot configuration history during motion
from S to T. In the first raw of graphs in the figure the z,y and 6 coordinates of
the central-base are presented, in every other raw the joints angles of every limb is
presented. The leftmost graph shows the angle of the inner joint while the rightmost
graph shows the angle of the distal joint. Total trajectory length measured as the
y coordinate of the central base is 1.5m and total motion time is 33 minutes. This
low speed results from the overall current limit which reduced the voltage to the DC
motors. However, the low speed enabled very accurate motion along the pre-designed
path without any feedback on the central base position and orientation. This accuracy
of the motion can be seen in the motion graphs as very small deviations between the

desired and the actual paths. A considerable large deviation from the predesigned
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Figure 5.4: Measurements of the spider configuration parameters during the
experiment. The desired path for every joint is indicated by dashed lines and the
solid lines are the actual measurements.
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path happened during the few last minutes of motion in the distal link of the second
limb. This can be explained as follows, the distal joint did not succussed to reach
it’s desired angle before contacting the tunnel’s wall. After contacting the tunnel and
applying force on the tunnel the distal motor, which is the smallest motor, did not
have enough torque to reach it’s desired angle. This angle was corrected only when
the limb brake contact with the wall and move the the next foothold position. Last,
Figure 5.5 presents snapshots from the video of the robot motion. The full video is

also available to download from our website at http://www.technion.ac.il/~robots/ .
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target

Figure 5.5: Snapshots from the video showing the spider robot motion in the tunnel.
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Chapter 6

Conclusion

This work deals with the navigation and control of a planar spider robot in 2D-
tunnel environments. The spider-robot moves quasi-statically by bracing with two
limbs against the environment while moving it’s free limb to a new foothold position.
Note that during this motion the spider is free to change it’s internal configuration
as long as the holding footpads will not change their relative configuration. In this
case under the conditions of theorem 8 local asymptotic stability of the spider is
guaranteed. A necessary condition for the stability of the mechanism is that tunnel
stably grasp the spider as a single rigid body. Therefore in chapter 2 we investigate
the case of rigid body grasped by compliant fingers. In this case we analyzed the
condition for asymptotic stability of the rigid body; we found the basin of attraction
of the object’s equilibrium; and we characterized the set of external wrenches that
can be applied on the object without destruct it’s stability. These results has been
verified experimentally.

In chapter 3 we presented an algorithm, named PCG, to select the sequence of

foothold positions along the tunnel. The PCG algorithm approximates the collection
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of feasible 3-limb postures by maximal cubes. The algorithm next partitions the
cubes into sub-cubes and defines a graph whose nodes are sub-cubes and whose edges
represent feasible motion of a limb between any 3-limb postures. A shortest path
search on the resulting graph generates a 3-2-3 gait sequence that moves the robot
from start to target using minimum number of foothold exchanges.

In chapter 4 we introduced a decentralized PD controller for the robot. we devel-
oped the robot’s dynamic equations. In order to express the contact forces in theses
equation a compliant contact model has been used. From the contact forces model
we derived the contact stiffness matrix. We showed that this matrix is asymmetric.
Since the overall linearized system is asymmetric a general new result on the stability
of asymmetric second order linear systems has been developed. This result is based
on the idea of considering a stable symmetric system and then adding the asymmetric
part. If the asymmetric part is small enough it will not destruct the stability of the
system. This result was implemented on the spider-robot system to give the stability
conditions. It was shown the following three conditions for the asymptotic stability
of the mechanism. First, the entire mechanism should be stably grasped as a single
rigid body by the tunnel. Second, the proportional gain of the controller must be
above a certain lower bound. Third, each contact force should be inside it’s friction
cone and close enough to the normal direction.

Experimental results demonstrate motion of the spider along the tunnel, while
selecting it’s foothold positions by the PCG algorithm. The controller’s gain was
tuned high enough to meet the requirements of theorem 8. The significance of these
experiments is to first verify the theoretical results developed here, and second to
show that these results are applicable to a real walking machine.

Future extensions of this research may take the following directions. First,
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current work (by E. Rimon and Y. OR) is concerned with the inclusion of gravity.
Especially we would like to rotate the horizontal table supporting the robot and take
off the upper part of the tunnel. This will give us a two dimensional walker over one
dimensional terrain.

Second, an on-line navigation algorithm may be developed to overcome errors
during the motion. This algorithm has to use localization system such as a visual
system mounted on top of the tunnel or a laser scanner mounted on the central base
of the robot.

Third, an additional work may be done in handling the case of reconstructing
stable holding posture after loosing necessary contact with the tunnel. As for now
if a necessary contact is lost the spider is hanging in the tunnel unable to continue
walking. This work can be combined with an on-line navigation algorithm.

Fifth, In the future we may want to extend this work to a three-dimensional spider
robot moving in three dimensional tunnels. It seems that most of our theoretic work
can be straight forward implement on 3D-spiders.

Sixth, one may want to develop spider-robot in various size scales. Sizes of spider-
robots may be from few millimeters for motion within blood vessels in a human body
to few meters for motion in large tunnels or piping systems.

Seventh, a major extension of this work or even a new research should be in the
field of dynamic walk. In this field the robots exploit the inertial forces caused by it’s

own motion to help him conduct the full desired motion.



Appendix A

Additions for Force Closure Grasps

A.1 Conditions for Force Closure with Compliant
Contacts

Proof sketch of Proposition 2.2.1: Let A be a small neighborhood of config-
urations about ¢g. As B’s configuration varies in N, the contact forces vary in a
neighborhood about the contact forces of the initial grasp. Since the initial grasp is
non-marginal, by a continuity argument all contact forces generated by varying B’s
configuration in A still lie in their respective friction cones. (This statement holds
true even when the location of some contact points changes due to local rolling of B.)

Next we establish that any external wrench in a neighborhood about the origin
can be balanced by feasible contact forces. When B is at a configuration ¢ € N,
the net wrench generated by the contacts is given by the negated gradient —VU(q).
Consider now the gradient VU(q) as a mapping from configuration space to wrench
space. By assumption VU(qp) = 0. According to the Inverse Function Theorem, VU

maps an open neighborhood about ¢y to an open neighborhood about the zero wrench
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if the derivative of VU at gy, D*U(qp), is non-singular. Since qq is a non-degenerate
local minimum of U, D?U(qq) is non-singular as required.

Finally we establish that B would automatically settle at a configuration where
the contact forces balance the external wrench acting on B. Let w,,; denote a fixed
external wrench acting on 5. The dynamics of B is governed by the equation: M (q)d+
B(q,q) = =VU(q) + Wez- (The contacts also apply damping forces which we ignore
for simplicity.) The external influences on B can be written as the negated gradient
of a composite potential function: ®(q) = U(q) — Weqt - q- A general result concerning
the dynamics of mechanical systems states that the flow of a damped mechanical
system governed by a potential function @ is attracted to the local minima of ® [34].
We have already shown that for every w.,; in a neighborhood about the origin there
exists a configuration ¢; such that V®(q;) = 0. The equilibrium point ¢, is a stable
attractor if it is a local minimum of @ i.e., if D?®(q;) > 0. But D*®(q) = D?*U(q),
and the entries of D?U(q) vary continuously with ¢. Since the eigenvalues of a matrix
vary continuously with its entries, D?U(q) remains positive definite in a neighborhood
of qo. By shrinking N if necessary, we conclude that ¢; is a local minimum of ®, and

B would automatically settle at q;. 0

A.2 Computation of the Grasp Stiffness Matrix

In this appendix we compute the two formulas for D?U(q) which appear in Lemma
2.3.1. To begin with, U(q) = Zle Ui(q) where U;(q) is the elastic energy induced by

the " active-compliance contact. Using the linear compliance law (2.4), the elastic
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energy induced by the i** contact is:

U(q) = 1(X:(r?,q) — 29)" Ki(Xi(r?, q) — 29)

2
_Fio ) (Xl(rga Q) - x?)?
where 7; = X;(r?, q) = R(0)r)+d. The first derivative of U; is: DU;(q) = —DX,.(¢)" Fi(q),

where Fj(q) = F? — K;(z;(q) — 2%). The second derivative of U; is:

(2

D*Ui(q) = DX (q)KiDX,.,(q) — D*X,.,(¢)" Fi(q)- (A1)
Recall that [ux] is the 3x 3 skew-symmetric matrix satisfying [ux]v = u x v for all
v € IR*. Then DX, (q) = [I,(—p;)x]. The second derivative, D>X,. (q), is a vector-
valued symmetric bilinear function. To obtain a formula for D?X,,(q), we compute
the derivative of DX, (q) along a configuration-space trajectory ¢(t). The velocity of
B along ¢(t) is denoted ¢ = (v,w), where v and w are B’s linear and angular veloc-
ities. Since p; = R(0)r%, DX, (q(t)) = [0,(=Rr?)x] = [0, (p; xw)x]. The action

i dt

0
of this derivative on the force F; is: (%DX”. (q(t)))TFi = . Using

(pi x w) x F;
a triple cross-product identity, we obtain that (p;, x w) X F; = [(p; - F5) — p,F¥|w =

—[F;x][p;x]w. On the other hand, the chain rule implies that £DX,, (q(t)) =

(D*X,.(q))g. Hence the action of D*X,.(q) on F; is given by the following matrix:

0 0

0 —([Fx]lpix])s

DQXT’i (Q)Tﬂ =

Substituting for DX, (¢q) and D?X,,(¢)T F; in (A.1) and summation D*U(q) = S+, D2U;(q)
gives formula (2.5) for 3D grasps. In the 2D case, we evaluate each D?U;(q) along a
velocity vector ¢ = (v,w) such that v = (v,,v,,0) and w = (0,0,w,). In particular,

0 1
[p;X|w = w,Jp; where J = [ ], and [F;x]|[p;X|w = (p; - F;)w,. When these
-1 0
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terms are substituted into D2U;(q) and the sum D?U(q) = Y&, D?Ui(q) is taken,

formula (2.6) is obtained.



Appendix B

Details of the PCG Algorithm

This appendix contains two details of the PCG algorithm. First we describe the
necessary modification to the algorithm when a cell contains two or three possibly
overlapping convex sets of feasible 3-limb postures. Since each convex set is ap-
proximated individually by p maximal cubes, it is possible that two maximal cubes
originating from different convex sets would overlap. However, each cube still has its
own unique orientation vector. The partitioning of the maximal cubes into sub-cubes
proceeds as before. The edges between sub-cubes are assigned a weight of unity or
zero according to the following two cases. If the two sub-cubes connected by the edge
are disjoint, the edge is assigned a unit weight as before. In the second case the edge
connects two copies of the same sub-cube. We represent the two sub-cubes as distinct
nodes, and assign zero weight to the edge connecting the two sub-cubes. Note that
zero-weight edges provide important pathways in the sub-cube graph. Rather than
representing a physical limb lifting and re-placement, these edges represent a freedom
of the algorithm to select among more than one limb for its next step.

The following lemma asserts that motion of a limb between two reachable 3-limb
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postures along an edge satisfies the reachability constraint.

Lemma B.0.1 Consider two reachable 3-limb postures. If two limbs and their footpad
positions are common to both postures, there exists a path that takes the third limb
between the two postures such that the three footpads are continuously reachable along

the path.

The lemma generalizes as follows. If two k-limb postures share at least two limbs
and their contacts, there exist a path for the remaining k—2 limbs between the two

postures such that all £ footpads are continuously reachable along the path.

Proof:  The minimum-radius discs containing the two triplets of foothold positions
necessarily overlap, since two foothold positions are common to both postures. The
radius of the two discs is bounded by R, since the two triplets of foothold positions
are reachable. It follows that any motion of the third limb between its two footholds
such that its footpad lies in the union of the two discs guarantees that the three

footpads, one moving and two stationary, are continuously reachable along the path.

O
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