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ABSTRACT

This technical correspondence presents a surprisingly simple analytical criterion for the stability of general second-order
asymmetric linear systems. The criterion is based on the fact that if a symmetric system is stable, adding a small amount
of asymmetry would not cause instability. We compute analytically an upper bound on the allowed asymmetry such that the
overall linear system is stable. This stability criterion is then applied to robot grasping arrangements which, due to physical
effects at the contacts, are asymmetric mechanical systems. We present an application of the stability criterion to a 2Dgrasp
arrangement.

INTRODUCTION
This technical correspondence is concerned with the stability of second-order linear systems that have an asymmetric stiffness matrix.
Our goal is to provide an analytical criterion for the stability of systems of the form:

Mp̈+Kd ṗ+Kpp= 0; (1)

whereM 2 IRn�n andKd 2 IRn�n are symmetric positive definite, andKp 2 IRn�n is asymmetric. Such systems arise in the linearized
dynamics of robot grasping arrangements [9], and in other applications such as feedback control. See, for instance, [7]and [5, p. 36].

Researchers have taken the following approach to the investigation of general asymmetric systems, whereM, Kd, and Kp are
asymmetric. Their approach is based on transforming the asymmetric system into a symmetric one. The subclass of asymmetric
systems that can be transformed into symmetric systems is called symmetrizable systems. Inman has introduced necessary and sufficient
conditions for a subclass of such systems to be symmetrizable via similarity transformation [4]. Ahmadian and Chou havedeveloped
a systematic technique for computing the coordinate systemin which the symmetrizable system is symmetric [2]. Coghey and Ma
have given a condition for transforming the system into a decoupled diagonal system [3]. Utilizing equivalence transformation rather
than similarity transformation enables the subclass of symmetrizable systems to be enlarged [1, 8]. All these results are exact and give
conditions for the stability of the original asymmetric system. However, only subclasses of asymmetric systems can be treated in these
ways, and the application of stability criteria based on transformation to symmetric systems is cumbersome.

In this technical correspondence we develop a simple criterion for the stability of asymmetric systems of the form (1). In the context
of robot grasping applications, this stability criterion leads to a synthesis rule that indicates which contact pointsand what preloading
profile guarantee stable grasp.

We make the following two assumptions, which are motivated by consideration of the grasping application. First, as in many
mechanical systems, we assume that the inertia and damping matrices,M andKd, are symmetric positive definite matrices. Second, we
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assume that the symmetric part of the stiffness matrix,(Kp)s= 1
2(Kp+KT

p ), is positive definite. This assumption has been shown to hold
true for almost every robot grasping application [9].

The stability criterion is based on the idea that if the symmetric system is asymptotically stable, one can add a bounded amount of
asymmetry and the system will remain stable. In our solutionwe compute an upper bound on the norm of(Kp)as= 1

2(Kp�KT
p ) such that

the eigenvalues of the first-order equation recast from equation (1) are located in the open left half plane. After establishing the stability
criterion for such systems, we illustrate the applicability of the result for analyzing the stability of robot graspingarrangements.

STABILITY OF 2nd-ORDER ASYMMETRIC SYSTEMS
For simplicity we begin with the following system:

p̈+Kd ṗ+Kpp= 0; (2)

which is identical to (1), except that hereM is the identity matrix. The following theorem states that ifthe skew-symmetric part ofKp,(Kp)as, is sufficiently small, the system (2) is globally asymptotically stable.

Theorem 1 (global asymptotic stability). Consider the system (2). Letβ 2 IR be the minimal eigenvalue of Kd. Let α 2 IR be the
minimal eigenvalue of(Kp)s, and letγ 2 IR be the matrix norm1 of the skew-symmetric part of Kp. Ifjγj<p

αβ;
the system (2) is globally asymptotically stable.

Proof. The system (2) can be written as

d
dt

�
p
ṗ

�= � 0 I�Kp �Kd

�| {z }
A

�
p
ṗ

�
For global asymptotic stability, it suffices to show that thereal part of the eigenvalues ofA is negative. Letλ 2 C be an eigenvalue ofA
with corresponding non-zero eigenvectorv= (v1;v2) 2 C 2n. Note that eachvi is a complex vector inC n. Then�

0 I�Kp �Kd

��
v1

v2

�=� v2�Kpv1�Kdv2

�= λ
�

v1

v2

� :
Since(Kp)s > 0 Kp is non-singular. This implies thatλ= 0 cannot be an eigenvalue ofA. Sinceλ 6= 0, it follows thatv1 6=~0 and
v2 6=~0. Hence, we may assume without loss of generality thatv�1 � v1 = 1, where� denotes complex conjugate transpose. Based on
this choice, we can writeλ2 = v�1λ2v1 = v�1λv2 = v�1(�Kpv1�Kdv2) =�v�1Kpv1�λv�1Kdv1, where we used the relationsλv1 = v2 and
λv2 = �Kpv1�Kdv2. SinceKd > 0, the scalar̃β = v�1Kdv1 is positive real. Similarly, the scalar̃α = v�1(Kp)sv1 is also positive real.
Since(Kp)as is skew-symmetric, we can writej γ̃= v�1(Kp)asv1, wherej =p�1 andγ̃ is real. Substituting these scalars into the quadratic
equation inλ gives

λ2+ β̃λ+ α̃+ j γ̃ = 0: (3)

Note that every eigenvalue ofA satisfies this equation. The solution of (3) is:

λ1;2 = 1
2

��β̃�qβ̃2�4(α̃+ j γ̃)� : (4)

1The matrix norm is defined askEk=maxfkEukg over all vectorskuk � 1.
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Let us pause to recall how one computes the square root of a complex number. Consider a complex numberz= a+ jb with a normjzj=p
a2+b2 and argumentθ= arctan(b=a). Then

p
z=�(a2+b2) 1

4\ θ
2, and in cartesian coordinates

p
z=�(a2+b2) 1

4
�

cos
� θ

2

�+ j sin
� θ

2

��
.

Since cos(θ) = ap
a2+b2

, we use the trigonometric identity cos
� θ

2

�=q1+cos(θ)
2 to obtain

Refpzg=� (a2+b2) 1
4p

2

�
1+ ap

a2+b2

�1
2 :

In our casea= β̃2�4α̃ andb=�4γ̃, and (4) implies that

Refλ1;2g=� β̃
2� �(β̃2�4α̃)2+16γ̃2

� 1
4

2
p

2

 
1+ (β̃2�4α̃)q(β̃2�4α̃)2+16γ̃2

!1
2

The requirementRefλ1;2g < 0 introduces an inequality iñα, β̃, and γ̃. Rearranging terms in this inequality gives the equivalent
inequality, �

4α̃+ β̃2
�2 > �β̃2�4α̃

�2+16γ̃2:
Cancelling similar terms yields the inequality jγ̃j<p

α̃β̃: (5)

For stability we must ensure that (5) holds for everyα̃, β̃, and γ̃. In other words, (5) must hold for every eigenvalueλ and every
associated eigenvectorv of A. Therefore we bound̃α, β̃, and γ̃ as follows. First, 0< α = λmin((Kp)s) � v�1(Kp)sv1 = α̃. Second,
0< β= λmin(Kd)� v�1Kdv1 = β̃. Third, jγj= k(Kp)ask� jv�1(Kp)asv1j= j j γ̃j= jγ̃j. Using these bounds,γ <p

αβ implies thatjγ̃j<p
α̃β̃

for everyα̃, β̃, andγ̃. �
Note that the theorem gives only sufficient stability condition, and the proof does not indicate what should be the necessary condition

for global asymptotic stability. Next, we present a corollary that adapts the theorem to a global asymptotic stability criterion for systems
that contain a non-unit inertia matrix.

Corollary 2.1. Consider the following system

Mp̈+Kd ṗ+Kpp= 0; (6)

where all parameters are as above, except for the matrix M which is symmetric positive definite. Letβ > 0 be the minimal eigenvalue of
M�1=2KdM�1=2. Letα > 0 be the minimal eigenvalue of M�1=2(Kp)sM�1=2, and letγ 2 IR be the matrix norm of M�1=2(Kp)asM�1=2. Ifjγj<p

αβ

the system (6) is globally asymptotically stable.

Proof. We define the coordinate transformation ˜p= M1=2p or p= M�1=2p̃. (A similar transformation appeared in [5, p. 87].) Note
that the matricesM1=2 andM�1=2 are symmetric positive definite. Moreover, we have thatM = M1=2M1=2 andM�1 = M�1=2M�1=2.
Substituting the new coordinates into (1) and premultiplying byM�1=2 gives

¨̃p+M�1=2KdM�1=2| {z }
K̃d

˙̃p+M�1=2KpM�1=2| {z }
K̃p

p̃= 0:
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This system is exactly of the form used for theorem 1, but instead ofKd andKp we now haveK̃d andK̃p, respectively. If the latter system
is asymptotically stable, it entails that (1) is asymptotically stable, since the two systems differ only by coordinatetransformation. The
global asymptotic stability of (6) therefore follows from theorem 1. �

We conclude this section with a simple numerical example that shows the applicability of the stability criterion.
Example: Consider the dynamical system �

10 0
0 11

�
p̈+�4 1

1 5

�
ṗ+� 8 s�s 9

�
p= 0; (7)

wheres is a free parameter. The matricesM, Kd, and the symmetric part ofKp are all symmetric positive definite. Hence, whens= 0
the system is symmetric and asymptotically stable. Qualitatively, increasing the value ofs increases the asymmetric part of the stiffness
matrix. Calculation ofα, β, andγ yieldsα= 4

5, β = 0:328, andγ = sp
110

. Therefore, the stability condition of corollary 2.1 becomes the

conditionjsj< 3:078. For comparison we numerically calculated the eigenvalues of the 4�4 matrixA. It turns out that for 0� s< 3:920
the system (7) is asymptotically stable (A’s eigenvalues are in the left half plane). We can see that apart from being conservative, our
stability condition correctly predicts the system’s global asymptotic stability.

APPLICATION TO GRASP SYNTHESIS
In this section our objective is to determine the stability of frictional grasps or fixtures. We consider a grasp, or fixture, arrangement
where a 2D objectB is held by stationary 2D bodiesA1; : : : ;Ak that represent fingertips or fixturing elements. We assume frictional
contacts between the stationary bodiesA1; : : : ;Ak and B . The usual assumption made in the solid mechanics literature is that the
contacting bodies arequasi-rigid, which means that their deformations due to compliance effects are localized to the vicinity of the
contacts [6]. This assumption is always valid for all bodiesthat are not made of exceptionally soft material and do not contain slender
substructures [10]. The quasi-rigidity assumption allowsus to describe the overall motion ofB relative to the stationary bodiesA1; :::;Ak

using rigid body kinematics. Since the grasping bodies are stationary, we focus onB ’s configuration space(c-space). The c-space of a
planar object is parametrized byq= (d;θ) 2 IR2� IR, whered is B ’s position andθ is a parametrization ofB ’s orientation.

We have derived the following linearized dynamics of a quasi-rigid objectB held in equilibrium grasp by stationary quasi-rigid
bodiesA1; : : : ;Ak [9]:

M(q0)∆q̈+Kd(q0)∆q̇+Kp(q0)∆q= 0; (8)

whereq0 is the grasped object equilibrium configuration and∆q is the deviation of the actual configuration from the equilibrium.
In grasping applicationsM(q0) is the inertia matrix, andKd(q0) is the damping matrix. Both matrices are symmetric and positive

definite. The matrixKp(q0) is the grasp stiffness matrix associated with the mechanicsof quasi-rigid frictional contacts. This matrix is
composed of the individual contact stiffness matrices, which are asymmetric. See [9] for more details.

The asymmetry ofKp strongly depends on the direction of the contact forces, which in some cases can be selected during grasp
synthesis. The magnitude of the matrix norm of(Kp)as increases as the angle between the contact force and the normal at the contacts
increases.

For example, consider the two-finger frictional grasp shownin figure 1. The example shows a grasp of a wedge-like object, which
has a head angleφ and base angle 90Æ�φ as shown in the figure. Hence, the example is actually a grasp of a family of wedge-like objects
with different head angles. In this example we assume that the friction is sufficiently large that the fingers do not slide.Of course, the
two-finger grasp forms an equilibrium grasp. However, the stiffness matrixKp is asymmetric and local deformations at the contacts can
cause instability. In the example, if the contact forcesF1 andF2 are collinear with the normals at the contactsn1 andn2, thenKp is
symmetric. When the contact forces rotate away from the normal directions the matrix normk(Kp)ask increases. The rotation of the
contact forces with respect to the normal is due to the grasping of different objects with varyingφ angles. The stability condition of
corollary 2.1 places a limit on the amount of asymmetry allowed. Consequently, it bounds the value of the allowed angleφ. Computation
of the maximalφ angle reveals that the grasp is stable forφ<12:68Æ.
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Figure 1. A two-finger grasp of a family of wedge-like objects.

CONCLUSION
Adding an asymmetric matrix to a stable symmetric second-order system has the potential to cause instability. In order to avoid such
instability, we establish an analytic bound on the amount ofasymmetry that is guaranteed to keep the asymmetric system globally
asymptotically stable.

Recent results show that a frictional contact stiffness matrix is asymmetric. As a result, the grasp stiffness matrix ofthe entire grasp
is asymmetric. We obtained a concise condition for the global asymptotic stability of the grasp linearized dynamics, and therefore a
local asymptotic stability for the nonlinear system.
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