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Typically, models with a heterogeneous property are considerably
harder to analyze than the corresponding homogeneous models, in
which the heterogeneous property is replaced with its average value.
In this study we show that any outcome of a heterogeneous model
that satisfies the two properties of differentiability and interchangi-
bility, is O(ε2) equivalent to the outcome of the corresponding ho-
mogeneous model, where ε is the level of heterogeneity. We then
use this averaging principle to obtain new results in queueing theory,
game theory (auctions), and social networks (marketing).
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Mathematical modeling is a powerful tool in scientific re-
search. Typically, the mathematical model is merely an ap-
proximation of the actual problem. Therefore, when choosing
the model to work with, one has to strike a balance between
complex models that are more realistic, and simpler models
that are more amenable to analysis and simulations. This
dilemma arises, for example, when the model contains a het-
erogeneous quantity. In such cases, a huge simplification is
usually achieved by replacing the heterogeneous quantity with
its average value. The natural question that arises is whether
this approximation is “legitimate”, i.e., whether the error that
is introduced by this approximation is sufficiently small.

Let us illustrate this with the following example, which
will be discussed in details later on. Consider a queue
with k heterogeneous servers, whose expected service times
are {µ1, . . . , µk}. We would like to calculate analytically
the expected number of customers in the system, which
we denote by F (µ1, . . . , µk).1 While an explicit expression
for F (µ1, . . . , µk) is not available, there is a well-known ex-
plicit expression in the case of k homogeneous servers, which
we denote by Fhomog.(µ) := F (µ, . . . , µ

| {z }

×k

). A natural approxi-

mation for the expected number of customers in the system
is

F (µ1, . . . , µk) ≈ Fhomog.(µ̄), [1]

where µ̄ is the average of {µ1, . . . , µk}.
More generally, let F (µ1, . . . , µk) denote an “outcome” of

a heterogeneous model, let

ε =
max1≤i≤k |µi − µ̄|

|µ̄|
, [2]

denote the level of heterogeneity of {µ1, . . . , µk}, and let
Fhomog.(µ) denote the outcome of the corresponding homo-
geneous model. If the function F (µ1, . . . , µk) is differentiable,
then it immediately follows that

F (µ1, . . . , µk) = Fhomog.(µ̄) + O(ε).

Therefore, roughly speaking, for a 10% heterogeneity level,
the error of approximating F (µ1, . . . , µk) with Fhomog.(µ̄)
is O(10%). In many studies in different fields, however, re-
searchers have noted that the error of this approximation is
considerably smaller than O(ε). Moreover, this observation
seems to hold even when the level of heterogeneity is not small.

In this study we show that these observations follow from
a general principle, which we call the Averaging Principle.
Specifically, we show that any outcome of a heterogeneous

model that satisfies the two properties of differentiability and
interchangeability, is O(ε2) asymptotically equivalent to the
outcome of the corresponding homogeneous model, i.e.,

F (µ1, . . . , µk) = Fhomog.(µ̄) + O(ε2).

Thus, if the function F is also interchangeable, the error
of the approximation [1] for a 10% heterogeneity level is
only O(1%).

The Averaging Principle
Let F (µ1, . . . , µk) be an outcome of a model with a hetero-
geneous property, captured by the k parameters {µ1, . . . , µk},
that satisfies the following two properties:

1. Differentiability: F is twice-differentiable at and near
the diagonal µ1 = · · · = µk.

2. Interchangeability: For every (µ1, . . . , µk) ∈ R
k and ev-

ery i 6= j, F (. . . , µi, . . . , µj , . . . ) = F (. . . , µj , . . . , µi, . . . ).
Thus, the outcome F is independent of the identi-
ties/indices of the heterogeneous parameters.2

Then, we have the following result:3

Theorem 1. (The Averaging Principle) Let F satisfy the differ-
entiability and interchangeability properties. Let µ =
(µ1, . . . , µk) be “sufficiently close to the diagonal”, i.e.,

||µ − µ̄A|| < Cµ̄A ,

where µ̄A = (µ̄A, . . . , µ̄A
| {z }

×k

), µ̄A = 1
k

Pk
j=1 µj is the arithmetic

average, || · || is a vector norm on R
k , and Cµ̄A is a positive

constant that only depends on µ̄A (and of course on F ). Then,

F (µ1, . . . , µk) = Fhomog.(µ̄A) + O(||µ − µ̄A||
2), [3]

where Fhomog.(µ) := F (µ, . . . , µ
| {z }

×k

).

Theorem 1 remains valid if {µ1, . . . , µk} are functions and
not scalars, see the Game Theory (auctions) example below.

Reserved for Publication Footnotes

1In order to focus on the heterogeneous property, we suppress the dependence of F on other
parameters.
2For example, in the queueing-system example, switching the identities/locations of two servers
does not affect the expected number of customers in the system.
3 This and all other proofs are given in the Appendix.
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Using the geometric and harmonic averages. In Theorem 1
we averaged the {µi}s using the arithmetic mean. It is well-
known in homogenization theory that in some cases the cor-
rect homogenization is provided by the geometric or the har-
monic mean. To address the question of the “correct” aver-
aging, we recall the following result:

Lemma 1. Let µ > 0, and let {h1, . . . , hk} ∈ R. Then,
as ε → 0, the arithmetic, geometric and harmonic means
of {µ + εh1, . . . , µ + εhk} are O(ε2) asymptotically equivalent.

Proof. We can prove this result using the averaging prin-
ciple. Let µ̄A denote the arithmetic mean of {µ+ εh1, . . . , µ+
εhk}. The geometric mean µG(µ + εh1, . . . , µ + εhk) =
“
Qk

i=1(µ + εhi)
”1/k

satisfies the interchangeability and dif-

ferentiability properties. Therefore, application of Theorem 1
gives

µG(µ+εh1, . . . , µ+εhk) = µG(µ̄A, . . . , µ̄A)+O(ε2) = µ̄A+O(ε2).

The proof for the harmonic mean µ̄H = k/( 1
µ1

+ · · · + 1
µk

) is

similar. �

From Lemma 1 and the differentiability of Fhomog.(µ) it
follows that

Fhomog.(µ̄A) = Fhomog.(µ̄G) + O(ε2)

= Fhomog.(µ̄H) + O(ε2).

Corollary 2. Let µ > 0. Then, the averaging principle (Theo-
rem 1) remains valid if we replace the arithmetic mean with
the geometric or harmonic means.

A natural question is which of the three averages is “op-
timal”, in the sense that it minimizes the constant in the
O(||µ− µ̄||2) error term. The answer to this question is model
specific. It can be pursued by calculating explicitly the O(ε2)
term, as we will do later on.

Weak Interchangeability.To extend the scope of the averaging
principle, we define a weaker interchangeability property.4

2A. Weak interchangeability: For every µ, µ̃ and every
1 ≤ j0 ≤ k, if µj0 = µ̃ and µj = µ for all j 6= j0, then
F (µ1, . . . , µk) is independent of the value of j0.

Thus, F (µ1, · · · , µk) is weakly interchangeable if, whenever
all but one of the parameters are identical, the outcome F is
independent of the identity (coordinate) of the heterogeneous
parameter.

Every interchangeable function F is also weakly inter-
changeable, but not vice versa. Nevertheless, the proof of
Theorem 1 implies that:
Corollary 3. The averaging principle (Theorem 1) remains
valid if we replace the assumption of interchangeability with
the assumption of weak interchangeability.

Queuing theory application: An M/M/k queue with

heterogeneous service rates
Consider a system with k servers. Server i has a random
service time that is distributed according to an exponential
distribution with rate µi. Customers arrive randomly accord-
ing to a Poisson distribution with arrival rate λ. An arriving
customer is randomly allocated to one of the non-busy servers,
if such a server exists. Otherwise, the customer joins a waiting
queue, which is unbounded in length. Once a customer is allo-
cated to a server, he gets the service he needs and then leaves
the system. This setup is known in the Queuing literature

as M/M/k model.5 Examples for such multi-server queuing
systems are call centers, queues in banks, parallel computing,
and communications in ISDN protocols.

Let F (µ1, . . . , µk) denote the expected number of cus-
tomers in the system (i.e., waiting in the queue or receiv-
ing service) in steady state. In the case of two heterogeneous
servers, F (µ1, µ2) can be explicitly calculated (see Appendix):

Lemma 2. Consider an M/M/2 queue with heterogeneous
servers. The expected number of customers in the system is
given by

F (µ1, µ2) =
1

(1 − ρ)2
1

1
ρ

2µ1µ2

(µ1+µ2)2
+ 1

1−ρ

, ρ :=
λ

µ1 + µ2
.

[4]
Finding an explicit solution for F (µ1, . . . , µk) when k ≥ 3

is computationally challenging, because it involves solving a
system of 2k − 1 linear equations. In the homogeneous case
µ1 = · · · = µk = µ, however, it is well-known that

F (µ, . . . , µ
| {z }

×k

) =

(λ/µ)k

k!

λ
kµ

1− λ
kµ

Pk−1
n=0

(λ/µ)n

n! + (λ/µ)k

k!
1

1− λ
kµ

1

1 − λ
kµ

+
λ

µ
. [5]

The function F (µ1, . . . , µk) can be written as a sum of so-
lutions of a system of linear equations with coefficients that
depend smoothly on µ1, . . . , µk (see the appendix). Therefore,
F is differentiable. Since customers are randomly allocated to
the free servers, renaming the servers does not affect the ex-
pected number of customers in the system. Hence, F is also
interchangeable. Therefore, we can use the averaging principle
to obtain an explicit O(ε2) approximation for F (µ1, . . . , µk):
Theorem 4. Consider an M/M/k queue with heterogeneous
servers whose service rates are {µ1, . . . , µk}. The expected
number of customers in the system is given by

F (µ1, . . . , µk) = Fhomog.(µ̄) + O(ε2),

where Fhomog.(µ̄) := F (µ̄, . . . , µ̄
| {z }

×k

) is given by [5], µ̄ :=

1
k

Pk
i=1 µi, and ε is give by [2].

For example, by Theorem 4, the expected number of cus-
tomers with 2 heterogeneous servers is

F (µ1, µ2) = F (µ̄, µ̄) + O
`
ε2
´

=
4λµ̄

4 µ̄2 − λ2
+ O

`
ε2
´
, [6]

where

µ̄ =
µ1 + µ2

2
, ε =

µ2 − µ1

2
.

Indeed, substituting µ1,2 = µ̄ ± ε in the exact expression [4]
and expanding in ε gives [6].

In the case of k = 8 heterogeneous servers, even writing
the system of 28 − 1 = 255 equations for the 255 unknowns is
a formidable task, not to mention solving it explicitly. By the
averaging principle, however,

F (µ1, . . . , µ8) = Fhomog.(µ̄) + O
`
ε2´ ,

where Fhomog.(µ̄) := F (µ̄, . . . , µ̄
| {z }

×8

) is given by [5] with k = 8.

We ran stochastic simulations of an M/M/8 queuing system
with 8 heterogeneous servers using the ARENA simulation

4See the social-networks application below for an example of a weakly-interchangeable outcome
which is not interchangeable.
5For an introduction to queueing theory, see e.g., [6].
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Fig. 1. The relative error of the averaging-principle approximation for the steady-

state number of customers in a system with 8 heterogeneous servers, as a function

of the heterogeneity parameter ε. The solid line is error = 0.594ε2. The crosses

denote the relative error of the improved approximation [15]. The dotted line is

error = 0.074ε3.

software, and used it to calculate the expected number of cus-
tomers in the system. The simulation parameters were

λ =
28

hour
, µ =

5

hour
, µi = µ + εhi, i = 1, . . . 8,

(h1, . . . , h8) = (1, 1.5, 2, 3, 3.5,−2.5,−4,−4.5)
1

hour
,

and ε varies between 0 and 1 in increments of 0.05. BecausePk
i=1 hi = 0, the average service rate is µ̄ = µ = 5. Therefore,

by Theorem 4,

F (µ + εh1, . . . , µ + εh8) = Fhomog.(5) + O
`
ε2´ .

In addition, by Equation [5], Fhomog.(5) = 6.2314.
To illustrate the accuracy of this approximation, we plot

in Fig. 1 the relative error of the averaging-principle approx-

imation
F (µ+εh1 ,...,µ+εh8)−Fhomog.(5)

F (µ+εh1,...,µ+εh8)
. As expected, this error

scales as ε2. Note that even when the heterogeneity is not
small, the averaging-principle approximation is quite accu-
rate. This is because the coefficient (0.594) of the O(ε2) term
is small.6 For example, when ε = 0.5 the relative error is
≈ 2%, and for ε = 1 it is below 10%.
Remark. We can also use the averaging principle to ob-
tain O(ε2) approximations of other quantities of interest that
satisfy the interchangeability property, such as the average
waiting time in the queue, or the probability that there are
exactly m customers in the queue.

Game theory application: Asymmetric Auctions
Consider a sealed-bid first-price auction with k bidders, in
which the bidder who places the highest bid wins the ob-
ject and pays his bid, and all other bidders pay nothing.7 A
common assumption in auction theory is that of independent
private-value auctions, which says that each bidder knows his
own valuation for the object, does not know the valuation of
the other bidders, but does know the cumulative distribution
functions (CDF) of the valuations of the other bidders. Bid-
ders are also characterized by their attitude towards risk: The
literature usually assumes that bidders are risk neutral, since
this simplifies the analysis. More often than not, however,
bidders are risk averse.

A strategy of bidder i is a function bi(·) that assigns a
bid bi(vi) to each possible valuation vi of that bidder. The
bid that a bidder places depends on his valuation vi, and on his
beliefs about the distributions of the valuations of the other
bidders and about their bidding behavior. An equilibrium in
this setup is a vector of k strategies {bi(·)}

k
i=1, such that no

single bidder can profit by deviating from his bidding strat-
egy, whatever his valuation might be, so long that all other
bidders follow their equilibrium bidding strategies.

Most of the auction literature focuses on the symmetric
(homogeneous) case, in which the beliefs of any bidder about
any other bidder (e.g., about his distribution of valuations, his
attitude towards risk, etc.) are the same. In this case, one can
look for a symmetric equilibrium, in which all bidders adopt
the same strategy. In practice, however, bidders are usually
asymmetric (heterogeneous), both in their attitude towards
risk and in the distribution of their valuations. Each bidder
then faces a different competition. As a result, the equilibrium
strategies of the bidders are not the same.

The addition of asymmetry usually leads to a huge com-
plication in the analysis. For example, in the case of a
first-price auction for a single object with risk-neutral bid-
ders that have private values that are independently dis-
tributed in the unit interval [0, 1] according to a common
function F (v), the symmetric Nash equilibrium inverse bid-
ding strategy v(b) = b−1(v) satisfies the ordinary differential
equation (ODE)8

v′(b) =
1

k − 1

F (v(b))

F ′(v(b))

1

v(b) − b
, v(0) = 0.

This equation can be solved explicitly, yielding

b(v) = v −

R v

0
F k−1(s) ds

F k−1(v)
. [7]

Therefore, this case is “completely understood”. From the
seller’s point of view, a key property of an auction is his ex-
pected revenue. In the symmetric case, the expression [7] can
be used to calculate the seller’s expected revenue Rhomog.[F ],
yielding

Rhomog.[F ] = 1+(k−1)

Z 1

0

F k(v) dv−k

Z 1

0

F k−1(v) dv. [8]

In the asymmetric case, where the value of bidder i is inde-
pendently distributed in [0, 1] according to Fi(v), the inverse

equilibrium strategies {vi(·)}
k
i=1 are the solutions of the sys-

tem of ODE’s

v′
i(b) =

Fi(vi(b))

F ′
i (vi(b))

" 

1

k − 1

kX

j=1

1

(vj(b) − b)

!

−
1

(vi(b) − b)

#

,

[9a]
for i = 1, · · · , k, subject to the initial conditions

vi(b = 0) = 0, i = 1, · · · , k, [9b]

and the “end condition” at some unknown b̄

vi(b̄) = 1, i = 1, · · · , k. [9c]

Thus, the addition of asymmetry leads to a huge complica-
tion of the mathematical model: instead of a single ODE that
can be explicitly integrated, the mathematical model consists
of a system of coupled nonlinear ODE’s with a non-standard
boundary condition. As a result, the system [9] cannot be
explicitly solved, and it is poorly understood, compared with
the symmetric case.

In [2], Fibich and Gavious considered the system [9] in the
weakly-asymmetric case Fi = F +εHi, i = 1, . . . , k. After sev-
eral pages of perturbation-analysis calculations, they obtained

6This coefficient will be computed analytically later on from eq. [ 14].
7See [7] for an introduction to auction theory.
8Since we consider the case where all bidders use the same strategy, we omit the subscript i from b
and v.
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O(ε2) asymptotic approximations of the inverse equilibrium

strategies {vi(b; ε)}
k
i=1. Substituting these approximations in

the expression for the seller’s expected revenue, showed that
it is given by

R[F1 = F + εH1, . . . , Fk = F + εHk] = Rhomog.[F ] [10]

−ε(k − 1)

Z 1

0

(1− F (v))F k−2(v)
kX

i=1

Hi(v) dv + O(ε2).

Subsequently, Lebrun [8] proved that the function on the
left-hand-side of [10] is differentiable in ε, and used that to
show that Eq. [10] holds. This is, in fact, a special case
of the averaging principle. Indeed, interchangeability holds
since changing the indices of the bidders does not affect the
revenue, and, as mentioned above, differentiability in ε was
proved in [8]. Therefore, by the averaging principle for func-
tions (see the appendix),

R[F1 = F + εH1, . . . , Fk = F + εHk] = Rhomog.[F̄ ] + O(ε2)
[11]

where F̄ = F + ε
k

Pk
i=1 Hi. Substituting F̄ in [8] and ex-

panding in powers of ε gives

Rhomog.[F̄ ] = Rhomog.[F ]

−ε(k − 1)

Z 1

0

(1 − F (v))F k−2(v)

kX

i=1

Hi(v) dv + O(ε2).

Hence, relation [10] follows.
Numerical calculations ([2, Table 1] and [3, Tables 1-2])

show that the error of the averaging-principle approxima-
tion [11] is small (typically below 1%), even when the asym-
metry level is mild (e.g., ε = 0.4). This provides another il-
lustration that the averaging-principle approximation can be
useful even when ε is not very small.

The averaging principle does not only lead to a simpler
derivation of relation [10], but also enables us to derive a
more general novel result:
Theorem 5. Consider an anonymous auction9 in which all k
bidders have the same attitude towards risk, and all bid-
ders follow the same “rules” when they determine their bid-
ding strategies.10 Let F1, · · · , Fk be the cumulative distri-
bution functions of the valuations of the bidders, and let
R[F1, · · · , Fk] be the expected revenue of the seller. If R is
twice differentiable at and near the diagonal, then

R[F1, · · · , Fk] = Rhomog.[F̄ ] + O(ε2),

where Rhomog. [F̄ ] = R[F̄ , · · · , F̄ ], F̄ is the average
of F1, · · · , Fk, and ε is the level of heterogeneity.

Indeed, the assumptions of the theorem imply that F is
interchangeable. Therefore, if F is also differentiable, the the-
orem follows from the averaging principle.

Social-networks application: Diffusion of new products
Diffusion of new products is a fundamental problem in Mar-
keting, which has been studied in diverse areas such as retail
service, industrial technology, agriculture, and educational,
pharmaceutical and consumer-durables markets [9]. Typi-
cally, the diffusion process begins when the product is first
introduced into the market, and progresses through a series
of adoption events. An individual can adopt the product
due to external influences such as mass-media or commer-
cials, and/or due to internal influences by other individuals
who have already adopted the product (word of mouth). The
internal influences depend on the underlying social-network

structure, since adopters can only influence people that they
“know”. The social network is usually modeled by an undi-
rected graph, where each vertex is an individual, and two
vertices are connected by an edge if they can influence each
other.

The first quantitative analysis of diffusion of new products
was the Bass model [1], which inspired a huge body of theo-
retical and empirical research. In this model and in many of
the subsequent product-diffusion models:

1. A new product is introduced at time t = 0.
2. Once a consumer adopts the product, he remains an

adopter at all later times.
3. If consumer j has not adopted before time t, the probabil-

ity that he adopts the product in the time interval [t, t+s),
given that the product was already adopted by nj(t) peo-
ple that are connected to j, and that no other consumer
adopts the product in the time interval [t, t + s), is

Prob

„

j adopts in [t, t + s)
˛
˛
˛nj(t),

no other consumer
adopts in [t, t + s)

«

=

„

pj +
nj(t)

mj
· qj

«

s + O(s2), [12]

as s → 0, where mj is the total number of individuals
connected to consumer j and the parameters pj and qj de-
scribe the likelihood of individual j to adopt the product
due to external and internal influences, respectively.

We say that a social network is translation invariant, if any
individual sees exactly the same network structure. Therefore,
in particular, mj is independent of j. Examples of translation-
invariant social networks are (see Fig. 2):

A) A complete graph, in which any two individuals are con-
nected.

B) A one-dimensional circle, in which each individual is con-
nected to his two nearest neighbors.

C) A one-dimensional circle, in which each individual is con-
nected to his four nearest neighbors.

D) A 2-dimensional torus, in which each individual is con-
nected to his four nearest neighbors.

We say that all individuals are homogeneous when all
individuals share the same parameters, i.e., pj = p and
qj = q for every individual j. Let N(t) denote the num-
ber of adopters at time t. The expected aggregate adoption
curve Ehomog. [N(t;p, q)] in several translation-invariant social
networks with homogeneous individuals were analytically cal-
culated in [10, 4]. In these studies, the assumption that all
individuals are homogeneous was essential for the analysis.

One of the fundamentals of marketing theory is that
consumers are anything but homogeneous. An ex-
plicit calculation of the expected aggregate adoption curve

A B C D
Fig. 2. Examples of translation-invariant networks.

9 i.e., an auction in which the winner and the amount that each bidder pays depend solely on their
bids, and not on the identity of the bidders.
10 For example, bidders may use bounded rationality [11] when determining their bidding
strategies. Thus, bidders may restrict themselves to a class of simple strategies, such as low-order
polynomial functions of the valuation v. They may even not be aware of the concept of equilibrium.
Nevertheless, as long as all bidders have the “same” bounded rationality, the interchangeability
requirement holds.
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E[N(t; {pj}, {qj})] in the heterogeneous case, however, is
much harder than in the homogeneous case. As a result, the
effect of heterogeneity is not well understood.

The averaging principle allows us to approximate the
heterogeneous model with the corresponding homogeneous
model. Consider a translation-invariant network. Then,
for t ≥ 0 the function F ({pj}, {qj}) := E[N(t; {pj}, {qj})]
is differentiable and weakly-interchangeable (see Appendix).
Therefore, by the averaging principle,
Theorem 6. The expected aggregate adoption curve in a trans-
lation invariant social network with heterogeneous individuals,
can be approximated with

E[N(t; {pj}, {qj})] = Ehomogeneous[N(t; p̄, q̄)] + O(ε2),

where p̄ and q̄ are the averages of {pj} and {qj}, respectively,
and ε is the level of heterogeneity of {pj} and {qj}.

Theorem 6 is consistent with previous numerical findings:

• In [5], simulations of an agent-based model with a complete
graph showed that heterogeneity in p and q had a minor
effect on the expected aggregate adoption curve.

• Simulations of agent-based models with 1D and 2D
translation-invariant networks [4, Figure 18] showed that
when the values of {pj} and {qj} are uniformly distributed
within ±20% of the corresponding values p̄ and q̄ of the
homogeneous individuals, the heterogeneous and homoge-
neous adoption curves are nearly indistinguishable. Even
when the heterogeneity level was increased to ±50%, the
two adoption curves were still very close.

Calculating the O(ε2) term
The averaging principle is based on a two-term Taylor expan-
sion of F . Therefore, the error of this approximation is given,
to leading order, by the quadratic term in this expansion.
When F satisfies the differentiability and interchangeability
properties11 and µ is the arithmetic mean, this error is given
by (see the appendix):

F (µ1, . . . , µk) − F (µ̄A, . . . , µ̄A) ∼ α

kX

i=1

(µi − µ̄A)2, [13a]

where

α :=
1

2

 

∂2F

∂µ1∂µ1

˛
˛
˛
˛
µ̄A

−
∂2F

∂µ1∂µ2

˛
˛
˛
˛
µ̄A

!

. [13b]

Therefore,

1. The magnitude of this error is ∼ |α| ||µ − µ̄A||2.
2. The sign of this error is the same as the sign of α.

A Taylor expansion in h gives

F (µ̄A + 2h, µ̄A, µ̄A, . . . , µ̄A
| {z }

×k−2

) − F (µ̄A + h, µ̄A + h, µ̄A . . . , µ̄A
| {z }

×k−2

)

∼ 2αh2, h � 1.

This shows that in order to determine the sign of α, one can
compare the effect of adding h units to two parameters with
the corresponding effect of adding 2h units to a single param-
eter.

The value of α can be calculated as follows:
Lemma 3. Assume that F (µ1, . . . .µk) satisfies the differentia-
bility and interchangeability properties. Then,

α =
k

2(k − 1)

 

∂2F

∂µ1µ1

˛
˛
˛
˛
µ̄A

−
1

k2
F ′′

homog.(µ̄A)

!

.

Therefore, this calculation only requires the explicit calcula-
tions of F in the homogeneous case µ1 = · · · = µk, and in the
case that the heterogeneity is limited to a single coordinate
(i.e., when µ2 = · · · = µk). In many cases, this is a con-
siderably easier task than the explicit calculation of F in the
fully-heterogeneous case.

To illustrate this, consider again the M/M/k example of
Fig. 1 with k = 8. While the fully-heterogeneous case re-
quires solving 2k − 1 = 255 equations, the single-coordinate
heterogeneous case requires solving only 2 · k = 16 equations.
Solving these 16 equations symbolically and using Lemma 3
yields, see the appendix,

α(k = 8) =
1

2λµ̄

P12
i=0 ci

`
µ̄
λ

´i

“P7
i=0 bi

`
µ̄
λ

´i
”2 , [14]

where the values of {ci, bi} are listed in the following table:

i ci bi

0 1 1
1 45 14
2 999 126
3 14280 840
4 144720 4200
5 1088640 15120
6 6249600 35280
7 27941760 40320
8 97977600
9 263390400

10 514382400
11 653184000
12 406425600

In particular, substituting µ̄ = 5 and λ = 28 yields α ≈
0.00837. This leads to the improved approximation

F (µ1, . . . , µ8) ≈ Fhomog.(µ̄) + α

8X

i=1

(µi − µ̄)2

≈ Fhomog.(5) + 0.594ε2. [15]

The error of this improved approximation scales as 0.074ε3, see
Fig. 1, which is the next term in the Taylor expansion. In par-
ticular, the relative error of [15] is below 1.5% for 0 ≤ ε ≤ 1.

Final remarks
The averaging principle is based on a simple observation: the
leading-order effects of heterogeneity cancel out when the out-
come is interchangeable. Nevertheless, it can lead to a signif-
icant simplification of mathematical models in all branches of
science. The averaging principle is unrelated to averaging that
originates from laws of large numbers in large populations, and
it holds, e.g., when there are few servers in a queuing system,
or a few bidders in an auction.

The interchangeability and the weak interchangeability
properties are usually easy to check. The differentiability of F
is easy to check in some cases, but can be quite a challenge in
others. We note, however, that more often than not, functions
that arise in mathematical models are differentiable, unless

11Here we cannot assume that F is only weakly interchangeable, since we require that ∂2F
∂µi∂µj

=

∂2F
∂µ1∂µ2

for all i, j.
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there is a “very good reason” why they are not. While this is
a very informal statement, we make it in order to point out
that the “generic” case is that the outcome F is differentiable,
rather then the other way around.

An important issue is the “level of heterogeneity” that is
covered by the averaging principle. Strictly speaking, the level
of heterogeneity should be “sufficiently small”. In practice,
however, in many cases the averaging principle provides good
approximations even when ε = 0.5. In other words, the coeffi-

cient of the O(ε2) term is O(1). While this is also an informal
statement, we make it in order to point out that one should
not be “surprised” that the averaging principle holds even
when ε is not very small.
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Fig. 3. Transition diagram of a queue with two heterogeneous servers. State “0”

corresponds to the situation in which no server is busy. States (1,0) corresponds

to the situation in which server 1 is busy and server 2 is not busy. States (0,1)
corresponds to the situation in which server 1 is not busy and server 2 is busy. State

“k” for k ≥ 2 corresponds to the situation in which both servers are busy and k−2
customers wait in the queue.
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Fig. 4. Same as Fig. 3 with three heterogeneous servers. For example, state

(0,1,1) corresponds to the situation in which server 1 is not busy and servers 2

and 3 are busy.

Appendix

Proof of Theorem 1
Because of the differentiability of F , there exists a positive
constant Cµ̄A , such that for all ||µ − µ̄A|| < Cµ̄, we can ex-
pand F (µ) as

F (µ) = F (µ̄A) +

kX

j=1

(µj − µ̄A)
∂F

∂µj

˛
˛
˛
˛
µ̄A

+ O(||µ − µ̄A||
2).

Because F is interchangeable,

∂F

∂µi

˛
˛
˛
˛
µ̄

=
∂F

∂µ1

˛
˛
˛
˛
µ̄A

, j = 1, . . . , k.

Therefore,

F (µ) = F (µ̄A) +
∂F

∂µ1

˛
˛
˛
˛
µ̄A

kX

j=1

(µj − µ̄A) + O(||µ − µ̄A||
2).

Since µ̄A is the arithmetic average,
Pn

j=1(µj − µ̄A) = 0.

Hence, the result follows.

Proof of Lemma 2
We calculate F (µ1, µ2) explicitly using the steady-state

transition diagram that is shown in Fig. 3. We denote by pi

the steady-state probability for the system to be with i cus-

tomers, and by p
(1,0)
1 and p

(0,1)
1 the steady-state probability

for the system to be with 1 customer in server 1 and 2, re-

spectively. In particular, p1 = p
(1,0)
1 + p

(0,1)
1 . Since in steady

state the amount of inflow is equal to the amount of outflow,

the following equalities hold:

λp0 = µ1p
(1,0)
1 + µ2p

(0,1)
1 , [16a]

λ

2
p0 + µ2p2 = (λ + µ1)p

(1,0)
1 , [16b]

λ

2
p0 + µ1p2 = (λ + µ2)p

(0,1)
1 , [16c]

λp
(1,0)
1 + λp

(0,1)
1 + (µ1 + µ2)p3 = (λ + µ1 + µ2)p2, [16d]

λpn + (µ1 + µ2)pn+2

= (λ + µ1 + µ2)pn+1, n = 2, 3, . . . [16e]

We can view [16a]–[16c] as a linear system for the three

unknowns {p0, p
(1,0)
1 , p

(0,1)
1 }. Solving this system for p0 yields

p0 =
2µ1µ2

λ2
p2.

In addition, the solution of [16d]–[16e] is pn =
“

λ
µ1+µ2

”n−2

p2 = ρn−2p2 for n ≥ 1. Substituting the above

in

1 =
∞X

n=0

pn = p0 +
∞X

n=1

ρn−2p2 =

„
2µ1µ2

λ2
+

1

ρ

1

1 − ρ

«

p2,

gives p2 =
“

2µ1µ2

λ2 + 1
ρ

1
1−ρ

”−1

. Therefore,

F (µ1, µ2) =

∞X

n=0

npn =

∞X

n=0

nρn−2p2 =
p2

ρ

∞X

n=0

nρn−1

=
p2

ρ

 
∞X

n=0

ρn

!′

=
p2

ρ

„
1

1 − ρ

«′

=
p2

ρ

1

(1− ρ)2
,

and the result follows.

M/M/3 queue
Consider the case of three heterogeneous servers with aver-

age service times µ1, µ2 and µ3. Denote by p0, p
(1,0,0)
1 , p

(0,1,0)
1 ,

p
(0,0,1)
1 , p

(1,1,0)
2 , p

(1,0,1)
2 , p

(0,1,1)
2 , p3, p4, . . . , the steady-state

probabilities. Thus, for example, p
(1,0,1)
2 is the steady-state

probability that servers 1 and 3 are busy, server 2 is free, and
there are no waiting customers in the queue (we denote by
pn, n ≥ 2 the probability having n customers in the system).
The transition diagram for k = 3 servers is given in Fig. 4.
The steady-state equations are

λp0 = µ1p
(1,0,0)
1 + µ2p

(0,1,0)
1 + µ3p

(0,0,1)
1 ,

λ

3
p0 + µ2p

(1,1,0)
2 + µ3p

(1,0,1)
2 = (µ1 + λ)p

(1,0,0)
1 ,

λ

3
p0 + µ1p

(1,1,0)
2 + µ3p

(0,1,1)
2 = (µ2 + λ)p

(0,1,0)
1 ,

λ

3
p0 + µ1p

(1,0,1)
2 + µ2p

(0,1,1)
2 = (µ3 + λ)p

(0,0,1)
1 ,

λ

2
p
(1,0,0)
1 +

λ

2
p
(0,1,0)
1 + µ3p3 = (λ + µ1 + µ2)p

(1,1,0)
2 ,

λ

2
p
(1,0,0)
1 +

λ

2
p
(0,0,1)
1 + µ2p3 = (λ + µ1 + µ3)p

(1,0,1)
2 ,

λ

2
p
(0,1,0)
1 +

λ

2
p
(0,0,1)
1 + µ1p3 = (λ + µ2 + µ3)p

(0,1,1)
2 ,

= (λ + µ1 + µ2 + µ3)p3,

λpn + (µ1 + µ2 + µ3) pn+2

= (λ + µ1 + µ2 + µ3)pn+1, n ≥ 3,
∞X

n=0

pn = 1.
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The solution of the last two equations is pn =
“

λ
µ1+µ2+µ3

”n−3

p3

for n ≥ 2. The values of {p0, p1, p2} as a function of p3

can be evaluated explicitly with MAPLE, by solving the

first 23 − 1 = 7 linear equations for {p0, p
(1,0,0)
1 , p

(0,1,0)
1 ,

p
(0,0,1)
1 , p

(1,1,0)
2 , p

(1,0,1)
2 , p

(0,1,1)
2 }. The resulting expression

for F (µ1, µ2, µ3), however, is extremely cumbersome and not
informative.

Proof of Theorem 4
Since customers are randomly assigned to the available
servers, F (µ1, . . . , µk) is interchangeable. To see that F is
differentiable in (µ1, . . . , µk), we note that F =

P∞
n=0 npn

where pn is the steady-state probability that there are n cus-
tomers in the system. In addition, {pn}

k
n=1 are the solutions

of a linear system with coefficients that depend smoothly on
(µ1, . . . , µk), and pn = ( λ

µ1+···+µk
)n−kpk for n ≥ k − 1. This

was shown explicitly for the cases k = 2 and k = 3; the proof
for k > 3 is similar.

Averaging principle for functions (proof of eq. [11])
Let (Fj(x)))k

j=1 be functions in the same function space F ,
and let ε ∈ R. Let R : (F1, . . . , Fk) 7→ R[F1, . . . , Fk] ∈ R be a
functional. We say that the functional R is interchangeable,
if R(. . . , Fi, . . . , Fj , . . . ) = R(. . . , Fj , . . . , Fi, . . . ) for all i 6= j.
We say that the functional R is differentiable if the scalar
function R̃(ε) := R[F1 = F + εH1, . . . , Fk = F + εHk] is twice
differentiable at and near ε = 0, for every F ∈ F and every
(Hj(x))k

j=1 ∈ Fk.

Given functions (Fj(x)))k
j=1 in F , denote F̄ = 1

k

Pk
j=1 Fj

and Hj = Fj − F̄ . By Taylor expansion,

R̃(ε) = R̃(0) + ε
kX

j=1

δR

δFj
Hj + O(ε2),

where δR
δFj

is the variational derivative. Because R is inter-

changeable,

R̃(ε) = R̃(0) + ε
δR

δF1

kX

j=1

Hj + O(ε2).

In particular, if F = F̄ , then
Pk

j=1 Hj = 0. Hence, R̃(ε) =

R̃(0) + O(ε2), which is [11].

Proof of Theorem 6
We first prove that F is differentiable. Denote δi,i′ = 1 if indi-
viduals i and i′ influence each other, and δi,i′ = 0 otherwise.
For every k, every set of k consumers {i1, i2, . . . , ik}, and ev-
ery increasing sequence of times 0 ≤ t1 ≤ · · · ≤ tk, denote
by P (i1, t1, i2, t2, . . . , ik, tk) the probability that consumer i1
adopts the product before time t1, consumer i2 adopts the
product between times t1 and t2, etc., and all consumers who
are not in {i1, . . . , ik} do not adopt the process by time tk.
Then,

P (i1, t1) =
`
1− exp(−pi1 t1)

´ Y

j 6=i1

exp(−pjt1).

Similarly,

P (i1, t1, i2, t2, . . . , ik, tk) =

P (i1, t1, i2, t2, . . . , ik−1, tk−1)

×

 

1− exp

 

−
“

pik +
k−1X

m=1

δik,imqim

”

(tk − tk−1)

!!

×
Y

j 6∈{i1,...,ik}

exp

 

−

 

pj +

k−1X

m=1

δj,imqim

!

(tk − tk−1)

!

.

Hence, the function P (i1, t1, i2, t2, . . . , ik, tk) is differentiable
in {pi, qi}. Finally,

E[N(t;{pj}, {qj})] =
1

M

X

π

MX

k=1

k

(M − k!

×

Z t

t1=0

Z t

t2=t1

· · ·

Z t

tk−1=tk−2

P (i1, t1, . . . , ik−1, tk−1, ik, t) dtk−1 . . . dt1,

where π ranges over all permutations on the set of M indi-
viduals. Therefore, the differentiability of E[N(t; {pj}, {qj})]
follows.

Because the network is translation invariant, F is weakly-
interchangeable in {pj} and in {qj}. By this we mean that

• If pm = p̃, pj = p for all j 6= m, and qj = q for all j, then
F is independent of the value of m.

• If qn = q̃, qj = q for all j 6= n, and pj = p for all j, then F
is independent of the value of n.

Therefore, the result follows from a slight modification of the
proof of Theorem 1.

Proof of equation [13]
Since F is interchangeable, the quadratic term in the Tay-
lor expansion of F (µ1, . . . .µk) around the arithmetic mean is
equal to

kX

i,j=1

(µi − µ̄A)(µj − µ̄A)
∂2F

∂µi∂µj

˛
˛
˛
˛
µ̄A

=

∂2F

∂µ1∂µ2

˛
˛
˛
˛
µ̄

kX

i,j=1,i6=j

(µi − µ̄A)(µj − µ̄A) +
∂2F

∂µ1∂µ1

˛
˛
˛
˛
µ̄

kX

i=1

(µi − µ̄A)2.

Since µ̄A is the arithmetic mean,

kX

i,j=1

(µi − µ̄A)(µj − µ̄A) =
kX

i=1

(µi − µ̄A)
kX

j=1

(µj − µ̄A) = 0.

Therefore, the result follows.

Proof of Lemma 3
Consider the case where µi = µ̄ + h for i = 1, . . . , k. By
equation [13],

1

2

kX

i,j=1

(µi − µ̄)(µj − µ̄)
∂2F

∂µi∂µj

˛
˛
˛
˛
µ̄

=
1

2

∂2F

∂µ1∂µ2

˛
˛
˛
˛
µ̄

k(k − 1)h2 +
1

2

∂2F

∂µ1∂µ1

˛
˛
˛
˛
µ̄

kh2.

On the other hand, since

F (µ̄ + h, . . . , µ̄ + h) = Fhomog.(µ̄ + h),

we have

1

2

kX

i,j=1

(µi − µ̄)(µj − µ̄)
∂2F

∂µi∂µj

˛
˛
˛
˛
µ̄

=
h2

2
F ′′

homog.(µ̄).
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Therefore,

1

2

∂2F

∂µ1∂µ2

˛
˛
˛
˛
µ̄

k(k − 1)h2 +
1

2

∂2F

∂µ1∂µ1

˛
˛
˛
˛
µ̄

kh2 =
h2

2
F ′′

homog.(µ̄).

Hence,

∂2F

∂µ1∂µ2

˛
˛
˛
˛
µ̄

=
1

k − 1

 

1

k
F ′′

homog.(µ̄) −
∂2F

∂µ1∂µ1

˛
˛
˛
˛
µ̄

!

.

Calculation of α
We illustrate the computation of the coefficient α for a queue
with 8 servers. Consider then the case of a single server with
service time µ1, and seven servers with service time µ. De-
note by p0,n and p1,n, n = 1, . . . , 6, the steady-state prob-
abilities that n out of the homogeneous servers are busy
and that the single heterogeneous servers is free or busy, re-
spectively. The equations for the 2 · 8 − 1 = 15 variables

{p0, p0,1, p1,0, . . . , p1,6 , p0,7} are

λp0,0 = µp0,1 + µ1p1,0 ,

−p0,0
λ

8
+ p1,0(λ + µ1) − p1,1µ = 0,

p0,n (λ + nµ) = p0,n−1
8 − n

9 − n
λ + p1,nµ1 + p0,n+1(n + 1)µ,

n = 1, . . . , 6,

p1,n (µ1 + λ + nµ) = p1,n−1λ + p1,n+1(n + 1)µ + p0,n
λ

8 − n
,

n = 1, . . . , 5,

p0,7(λ + 7)µ) = p0,6
λ

2
+ p7µ1ρ,

where ρ = λ
7µ+µ1

, pn = ρn−7p7 for n ≥ 8, and
P∞

n=0 pn = 1.

These equations can be solved with Maple 12, and the solu-
tion can be used to calculate F (µ1, µ, . . . , µ

| {z }

×7

) explicitly. Dif-

ferentiating this expression twice with respect to µ1, differ-
entiating Fhomog., see eq. [5], twice with respect to µ, and
using Lemma 3, yields equation [14]. Substituting µ̄ = 5

and λ = 28 gives α ≈ 0.00837. In addition,
P8

i=1(µi − µ̄)2 =

ε2
P8

i=1 h2
i = 71ε2. Therefore, α

P8
i=1(µi − µ̄)2 ≈ 0.594ε2.

12The Maple code is available at www.bgu.ac.il/~ariehg/averagingprinciple.html.
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