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Abstract

We study a leader follower game with two players: a terrorist and a state where the later one installs facilities that
provide support in case of a terrorist attack. While the Terrorist attacks one of the metropolitan areas to maximize his
utility, the State, which acts as a leader, installs the facilities such that the metropolitan area attacked is the one that
minimizes her disutility (i.e., minimizes ‘loss’). We solve the problem efficiently for one facility and we formulate it as a
mathematical programming problem for a general number of facilities. We demonstrate the problem via a case study of
the 20 largest metropolitan areas in the United States.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Since September 11 and the anthrax attack via the US postal office, terror has become a major threat.
The September 11 terrorist attack has proved that there are individuals who are willing to take part in a
mass murder of civilians. The major threat today seems to be attack against nuclear reactors, water reser-
voirs (chemical or biological), bioterror and spreading radioactive materials. Although these attacks are not
the same, they have the potential to kill a huge number of people in a short period of time. According to
Wein et al. (2003), a terrorist attack that spreads one kilogram of anthrax in a major city may cause about
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doi:10.1016/j.ejor.2005.12.022

* Corresponding author. Tel.: +972 8 6472212; fax: +972 8 6472958.
E-mail address: ariehg@bgu.ac.il (A. Gavious).

mailto:ariehg@bgu.ac.il


2 O. Berman, A. Gavious / European Journal of Operational Research xxx (2006) xxx–xxx

ARTICLE IN PRESS
60,000 casualties even if the health care system could react to the attack according to procedures of the Cen-
ter for Disease Control and Prevention (CDC) (the number is obtained from Fig. 4 in their work).

There is a common approach in the literature such as Kaplan et al. (2003) and Kaplan and Wein (2003)
and the response to the latter by Marennikova (2003). This approach is based on similar tools to those used
in Epidemic Theory and Mathematical Biology. However, there is a significant difference between regular
epidemics and the one caused by a terrorist. While diseases seem to spread according to some mathematical
rules, the terrorists are individuals that can behave rationally trying to maximize the damage caused. As we
have learned from the September 11 attack, terrorists indeed behave rationally. They can execute compli-
cated long term plans that involve recruiting many people, training and finding solutions to logistical and
technical problems.

The Chernobyl nuclear disaster, although not a terror attack, demonstrates the potential damage that
can be caused by a terror attack against a nuclear reactor. The nuclear power accident which occurred
at Chernobyl killed 41 people, has increased significantly the number of cancer cases and caused the relo-
cation of more than 150,000 people that resided in the surrounding 20-mile radius of the nuclear reactor.

In this paper we address the problem of locating facilities that contain the resources required to respond
to a terror attack. We present a worse case scenario where the terrorist is sufficiently sophisticated to learn
the location of the facilities and to attack the weak spots of the system. We therefore have a game with two
players: the State and the terrorist. Given this approach, we let the State take into consideration the behav-
ior of the terrorist and plan the facility locations such that the terrorist will cause minimum damage. The
terrorist knows the State’s move in the game and act accordingly. Moreover, in our model the State assume
that the terrorist knows her move in the game.

We note that competitive location models are discussed in the literature in a different context. These
problems arise when we consider where to locate facilities with respect to other competing facilities. Here,
the competitors (e.g., department stores) try to attract as many customers as possible. For more on this type
of competitive location model, readers can refer to Chapter 10 in Mirchandani and Francis (1990).

The paper is organized as follows. In Section 2 we introduce the model. In Section 3 we discuss the model
when the State locates a single facility. In Section 4 we extend the analysis to multiple facilities. In Section 5
we introduce a case study of a terror attack on the US where the State installs up to four facilities. We ana-
lyze in detail two scenarios.
2. The model

2.1. The setting

Consider a network G(N,L) where N (jNj = n) is the set of nodes and L is the set of links. The nodes
represent cities (or metropolitan areas). Each city i is associated with a weight wi which represents the
expected damage (e.g., number of people infected) in case of a terrorist attack on that city.1,2 There exists
a link (i, j) between any i, j 2 N that has a length denoted by d(i, j) (the average shortest travel distance
between i and j) representing the delay of shipment of resources from the facility due to link (i, j).

There are two players in the game, the State and the terrorist. The State acts first and decides where to
locate the facilities that contain the resources required in preparation for a terrorist attack. In addition, the
1 Alternatively, we may assume that wi is the mean of a random variable that represents the distribution of the damage in case of a
terrorist attack on that city.
2 The values of the wis depends on the type of the attack. Different damage would result from different attack and the allocation of

facilities storing vaccines in case of bioterror attack could be different from the allocation of troops or sanitation equipment in case of
polluting water supply.
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State may invest some resources on prevention. The Terrorist plays second, after the facilities are located.
Given the location of the resources in the network, the Terrorist decides where he is going to strike. We
assume a worse case scenario that the Terrorist knows the location of the resources.

2.1.1. Strategies
A Terrorist’s strategy t in the game is simple. He chooses a node (city) i.e., the set of Terrorist’s strategies

is actually N (t 2 N). We let the Terrorist use a mixed strategy i.e., randomize over the cities. In this case a
Terrorist strategy is a vector of probabilities t = (p1,p2, . . . ,pN) where pi is the probability that the Terrorist
will attack city i. Obviously, for all i, pi P 0 and

PN
i¼1pi ¼ 1. We assume that there is no dependency

between the cities so that a strike on one city has no effect on other cities.3 This assumption may not be
always valid. In the case of an anthrax attack, for example, this assumption is valid. However, in the case
of an epidemic generated by a terrorist attack, such as smallpox, this assumption implies that the authority
will succeed to seal the infected area before it spreads out to other cities in the network.

The State decision is over the location of the K facilities in the network (nodes or links). Locating a facil-
ity incurs a fixed cost C > 0 which is the setup cost of installing the facility. In addition, the State deter-
mines the level of resources cprev to invest in preventing an attack. These resources are invested outside
the network and are concerned with intelligence and security. The amount of resources spent on prevention
dictates the probability that a terrorist attack will succeed. Namely, once the Terrorist selects the city he is
planning to attack, there is a probability of P(cprev) that the attack will succeed where P is a continuous
decreasing convex function, P(0) > 0 and limcprev!1P ðcprevÞ ¼ 0.4 The State strategy is a K + 1 vector of
the K facilities locations and the level of prevention resources, s = (x1,x2, . . . ,xK, cprev) where xk is the loca-
tion of facility k, k = 1, 2, . . . ,K.

2.1.2. Utilities

Once the Terrorist attacks a city i and the attack succeeds, all the resources in the network may be avail-
able for use by the city. The amount of resources needed at any city i is assumed to be equal to the expected
damage wi.

5 The resources are sent through the network in a shortest travel path from the closest facility to
city i. We assume that the cost for the State (or disutility) is a linear function of the delay in transferring of
resources to the city attacked. This delay is the sum of the average delay at the city attacked d(i) and the
average delay time d(k, i) between city i and the facility. The cost or disutility in case of a successful terrorist
attack on city i is
3 We
4 A s

equal
argum
5 Th

of reso
fi ¼ ðaDðk; iÞ þ gÞwi ¼ ðadðk; iÞ þ giÞwi; ð1Þ

where k is the closest facility to city i, D(k, i) = d(k, i) + d(i) and gi = g + ad(i). The positive parameter a
represent the cost of delaying unit of resource due to a unit of distance. The last component gwi stands
for the disutility of an attack on a city, independently of the lack of resources where g P 0. The State ex-
pected utility is given by
USðt; sÞ ¼ �P ðcprevÞ
Xn
i¼1

pifi � KC � cprev. ð2Þ
may assume that wi includes any damage that occurs to other cities in case of dependency.
implified model that ignores the possibility of prevention may be obtained by assuming that P is a positive constant, possibly
to 1. In this case, there is no reason for the State to spend any resources on prevention and we may omit the prevention
ents as the decision variable cpre will always be set to zero.
e resources needed at node i is a monotone function of wi. For simplicity we assume that for every unit of damage we need a unit
urces. Alternatively, we may say that the damage is the resources required to return the attacked city to normal.
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Notice that the utility is separable with respect to the prevention resources and the number of facilities and
their locations. However, recall that the value of

Pn
i¼1pifi depends on the locations and thus, the decision

with respect to cprev is associated with the decision over the facilities.
In the case of a successful attack, the Terrorist’s benefit is the damage he generates. This damage is a

function of the lack of resources. We assume that he benefits similarly to the way the State suffers, i.e.,
his utility is
6 Ob
7 Ho

can lo
betwee
facility
equilib
techni
single
deviat
n > 0
analys
of this
ei ¼ ðcdðk; iÞ þ diÞwi; ð3Þ
where di = d + ad(i) and the component diwi represents the benefit from attacking a city with expected
damage wi, which is independent of any resources the State allocates for defence against attacks. Obviously,
if d is very large relative to c, then the Terrorist’s dominant strategy is to attack the city with the largest
expected damage wi independently of any decision made by the State. The Terrorist expected utility is given
by P ðcprevÞ

Pn
i¼1piei. However, since P(cprev) is a constant it is irrelevant to the Terrorist decision. Thus, we

redefine the Terrorist utility as
UT ðt; sÞ ¼
Xn
i¼1

piei. ð4Þ
Observe that we have a non-zero-sum game although part of the utilities resembles a zero-sum game.
It is important to note that in our model we assume that the State is informed about the values of the

Terrorist’s parameters c and di. This assumption may be supported by the knowledge we have about the
terrorists’ behavior. However, in practice the State may not be informed about the Terrorist utility since
different types of terrorist may have different utilities. In this case we may modify the model by incorporat-
ing distributions over those parameters. Adding this component to the model will essentially result in a sim-
ilar analysis but with more complex setting.

2.1.3. Equilibrium

When the locations of facilities are known, we have a leader-follower game in the sense of Stackelberg
competition (on Stackelberg equilibrium see for example Rasmusen, 2001, p. 83). Since the State acts first
and plays her strategy s and the Terrorist plays after he becomes aware of the State actions, his strategy t(s)
is a function of the State action. An equilibrium in this game is a pair (t*(Æ), s*) such that for every s,
US(t*(Æ), s) 6 US(t*(Æ), s*) and for every function t(Æ), UT(t(Æ), s*) 6 UT(t*(Æ), s*).

6,7

Before we begin the analysis of the model we prove the following useful result.

Lemma 1. For every decision made by the State there is always a pure strategy that is the best response of the

terrorist.
viously, this solution is a subgame perfect Nash equilibrium.
wever, there may be technical problems with immediate usage of the equilibrium concept. The difficulty arises when the State
cate facilities at any point in the network. As we will show later, for some locations, say point x, the Terrorist is indifferent
n attacking two cities while the State prefers that the Terrorist will attack a specific one of the two cities and thus, she locates the
at either x � n or x + n for n > 0 arbitrarily small. Since n > 0, by reducing n, the State will increase her utility. In this case, an
rium does not exist and we need to use the terminology of e equilibrium or e sub game perfect Nash equilibrium. We avoid this
cal issue and use the notation x� and x+ for, respectively, x � n and x + n. Therefore, when we talk about equilibrium in the
facility problem (where we allow a continuous decision space for the State), we mean e equilibrium in the sense that any
ion from the equilibrium will lead to no more than e gain by the State (see Radner, 1980). Thus, for every e > 0 we can define
such that the State cannot gain more than e by deviating from the equilibrium strategy. This problem does not exist in the
is of the problem with multiple facilities since we consider a discrete and finite decision space for the State. For further discussion
problems see Myerson (1991, Section 3.13).



O. Berman, A. Gavious / European Journal of Operational Research xxx (2006) xxx–xxx 5

ARTICLE IN PRESS
Proof. The Terrorist problem is
max
06pi61

UT ðt; sÞ

s.t.
Xn
i¼1

pi ¼ 1.
This is a linear programming problem with one constraint. We can rewrite the Terrorist utility function (4)
as
UT ðt; sÞ ¼
Xn
i¼1

pi½cdðkðiÞ; iÞ þ di�wi;
where k(i) is the closest facility to node i. An optimal solution for the problem is pe� ¼ 1 and pj = 0 for
j 5 e* where
e� ¼ argmax
i

½cdðkðiÞ; iÞ þ di�wi. � ð5Þ
3. A single facility

Assume that the State is planning to install only one facility. The location of the facility is not limited
and any point on G is a possible location.

The State utility is USðt; sÞ ¼ �P ðcprevÞð
Pn

i¼1pi½adðx; iÞ þ gi�wiÞ � C � cprev. We ignore the installation
cost C since it is a fixed cost. In this case, we can separate the location problem from the problem of pre-
vention and redefine the State problem as
min
x2G

USðt; xÞ ¼
Xn
i¼1

pi½adðx; iÞ þ gi�wi
whereas the Terrorist problem given the location at x is
max
06pi61

UT ðt; xÞ ¼
Xn
i¼1

pi½cdðx; iÞ þ di�wi.
Assume that x is a point on link [a,b] at a distance of x from node a. Observe that for any node v
dðx; vÞ ¼def minfxþ dða; vÞ; l� xþ dðb; vÞg.
Let e*(x) be the Terrorist’s best response strategy against any x on (a,b). From Lemma 1,
e�ðxÞ ¼ argmax
v

fcdðx; vÞ þ dvgwv.
The function UE(x) = maxv{cd(x, v) + dv}wv is the upper envelope of linear and piecewise linear concave
functions and obviously, it is neither concave nor convex function of x. Define cij as a local center of
UE(x) if
max
v

fcdðcij; vÞ þ dvgwv ¼ fcdðcij; iÞ þ digwi ¼ fcdðcij; jÞ þ djgwj.
We note that the concept of a local center we use is similar to the concept of a local center in the context of
the minimax problem (Chapter 7 in Mirchandani and Francis (1990)). Obviously at cij, (cd(cij, i) + di)-
wi = (cd(cij, j) + dj)wj. Let Cða; bÞ be the set of all local centers on link [a,b] including the points 0 and l

which correspond to nodes a and b, respectively. We assume that the local centers are ordered such that
Cða; bÞ ¼ fx1; x2; . . . ; xtg where x1 = 0 < x2 <� � �< xt = l. The next two lemmas are straightforward.
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Lemma 2. If for some r such that xr, xrþ1 2 Cða; bÞ, xr = cij and xr+1 = cjk for some i, j, k then, for any

x 2 (xr, xr+1), e*(x) = j; e*(xr) = i or j and e*(xr+1) = j or k.

Lemma 3. An optimal solution to the State problem on link [a,b] is included in Cða; bÞ.

Consider the segment [xr,xr+1] where xr = cij and xr+1 = cjk. If the Terrorist attacks city j, the State con-
siders the problem
min
x2½xr ;xrþ1�

adðx; jÞwj þ gjwj.
Since d(x, j) = min{x + d(a, j), l � x + d(b, j)}, the minimum is achieved at either xr or at xr+1. Suppose that
it is attained at xr. From Lemma 2, e�ðx�r Þ ¼ i and e�ðxþr Þ ¼ j. Therefore, in [xr,xr+1] the optimal solution is
argminfadðx�r ; iÞwi þ giwi; adðxþr ; jÞwj þ gjwjg.
Denote by v�r and vþr the two nodes that define the local center xr (i.e., if xr = cij then, v�r ¼ i and vþr ¼ j).
Let vþ1 be the node whose distance from xþ1 is a linear piece of UE(x) and let v�t be the node whose distance
from x�t is a linear piece of UE(x). The optimal solution on link [a,b] is
argmin

�
adðxþ1 ; vþ1 Þ þ gvþ

1

h i
wvþ

1
; adðx�t ; v�t Þ þ gv�

1

h i
wv�t

;

min
r¼2;...;t�1

adðx�r ; v�r Þ þ gv�r

h i
wv�r ; adðxþr ; vþr Þ þ gvþr

h i
wvþr

� ��
. ð6Þ
The optimal solution on the entire network is the best solution obtained when applying (6) to all links.

Example 1. Consider the following 3-node network in Fig. 1 where the numbers near the links are lengths
and the numbers next to the nodes are weights. Suppose a = 5, c = 1,d(i) = 0, gi = di = 1 so that gi = g and
di = d i = 1, 2, 3.

Let link [a,b] = [2, 3] and x 2 (2, 3). Then,
ðcdðx; 1Þ þ dÞw1 ¼ ½minfxþ 3; 9� xg þ 1�15 ¼
15xþ 60; 0 6 x 6 3;

�15xþ 150; 3 6 x 6 5;

�
ðcdðx; 2Þ þ dÞw2 ¼ 20xþ 20; 0 6 x 6 5;

ðcdðx; 3Þ þ dÞw3 ¼ �11xþ 66; 0 6 x 6 5.
In Fig. 2 we plot (cd(x, i) + d)wi for i = 1, 2, 3 and 0 6 x 6 5.

The function maxi{cd(x, i) + di}wi is the upper envelope (bold). The local centers are c13 = 0.2308 (the
intersection of 15x + 60 and �11x + 66) and c12 = 3.7143 (the intersection of �15x + 150 and 20x + 20).
Fig. 1. The network in Example 1.



Fig. 2. Terrorist’s utility as a function of the location on link [2, 3].
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Therefore, x1 = 0, x2 = 0.2308, x3 = 3.7143 and x4 = 5. Since vþ1 ¼ 3, v�2 ¼ 3, vþ2 ¼ 1, v�3 ¼ 1, vþ3 ¼ 2 and
v�4 ¼ 2, the solution of (6) is at xþ2 ¼ 0:2308 with an objective function value of 257.33.

It is interesting to consider the function that the State is minimizing over the link [2, 3]. Then
ðadðx; 1Þ þ gÞw1 ¼ ½5minfxþ 3; 9� xg þ 1�15 ¼
75xþ 240; 0 6 x 6 3;

�75xþ 690; 3 6 x 6 5;

(
ðadðx; 2Þ þ gÞw2 ¼ 100xþ 20; 0 6 x 6 5;

ðadðx; 3Þ þ gÞw3 ¼ �55xþ 286; 3 6 x 6 5.
In Fig. 3 we plot (ad(x, i) + g)wi for i = 1, 2, 3 and 0 6 x 6 5.
Recall that the Terrorist’s best response strategy over link [2, 3] is
e�ðxÞ ¼
3; 0 6 x 6 0:2308;

1; 0:2308 6 x 6 3:7145;

2; 3:7143 6 x 6 5.

8><>:

The function the State minimizes is the bold curve. It has discontinuity at the two local centers of the Ter-
rorist x = 0.2308 and x = 3.7143. From the figure, the best solution for the State on link [2, 3] is at
xþ2 ¼ 0:2308 with utility value of 257.33 (as obtained by (6) earlier).

For link [1, 3], Cð1; 3Þ ¼ f0; 4g, x1 = 0, x2 = 4, vþ1 ¼ v�2 ¼ 2 and the solution of (6) is at x1 = 0 with util-
ity value of 320.

For link [1, 2], Cð1; 2Þ ¼ f0; 0:806; 3g, x1 = 0, x2 = 0.806, x3 = 3, vþ1 ¼ v�2 ¼ 2, vþ2 ¼ v�3 ¼ 3. The solu-
tion of (6) is x�2 ¼ 0:806 with an objective function value of 239.14 and therefore it is the solution over
the entire network.



Fig. 3. Then State’s disutility as a function of the location on link [2, 3].
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3.1. Facility on nodes

Assume that the State is limited to install facilities only at a finite set of potential locations. Without any
loss of generality we can assume that it is the set of nodes of the network. Following Lemma 1, the Terrorist
best response against any node k chosen by the State is
e�ðkÞ ¼ max
i2N

ðcdðk; iÞ þ diÞwi.
The State problem is
k� ¼ argmin
k2N

USðe�ðkÞ; kÞ ¼ ðadðk; e�ðkÞÞ þ ge�ðkÞÞwe�ðkÞ

n o
. ð7Þ
For the example above we have
e�ðkÞ ¼
2 k ¼ 1;

3 k ¼ 2;

2 k ¼ 3.

8><>:

Therefore, according to (7), k* = 2.

3.2. Prevention cost

When the equilibrium solution with respect to the facility location by the State and the Terrorist location
is determined, we can solve the problem of determining prevention resources. Let the location of the facility
chosen by the State in equilibrium be denoted by x* and the city attacked in equilibrium be denoted by i*.
The State utility in equilibrium is
USðx�; i�Þ ¼ �P ðcprevÞ½adðx�; i�Þ þ gi� �wi� � C � cprev.
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By differentiation with respect to cprev, the optimal prevention resources is the solution of
8 Fo
�P 0ðcprevÞ½adðx�; i�Þ þ gi� �wi� ¼ 1.
Namely, the optimal level of resources is when the change in the expected utility due to additional unit of
resource is equal to the cost of a unit of resources.
4. Multiple facilities

4.1. Introduction to multiple facilities

When the number of possible facilities is not restricted to one, the problem becomes more complex and
mathematically demanding and the computation of the equilibrium becomes more time consuming. How-
ever, as we will show later, the complexity can still be managed if the number of facilities is relatively small
(which is probably the case in many practical problems). The inclusion of prevention cost becomes more
crucial here since, as we explained in the previous section, the optimal number of facilities is not separable
from the problem of how many resources the State should invest in prevention. We start with solving the
problem when the number of facilities is fixed. Afterwards, we will address the problem of finding also the
optimal number of facilities taking into consideration the prevention cost. In this section, we will use the
notation sK = (x1,x2, . . . ,xK) for the strategy of the State where xk, k = 1, 2, . . . ,K is the location of facility
k. We assume again that N is the candidate set of potential locations for the facilities (namely, facilities on
nodes).

4.2. Fixed number of facilities

We assume that the number of facilities is fixed. From Lemma 1, the Terrorist solution when the State
chooses sK is given by
e�ðsKÞ ¼ arg max
i¼1;2;...;n

cdðsK ; iÞ þ di½ �wi; ð8Þ
where d(sK, i) is the shortest distance between the closest facility in sK to city i. The State problem is
s�K ¼ argmin
sK�N

ðadðsK ; e�ðsKÞÞ þ ge�ðsK ÞÞwe�ðsK Þ. ð9Þ
When di = gi = 0 the problem is very easy to solve as shown in the following proposition.

Proposition 1. When di = gi = 0, for every values of a and c, the State equilibrium solution is the (nodal)

solution of the minimax problem and the Terrorist equilibrium solution is the node that determines the minimax

solution for the State.8

Proof. When di = gi = 0, from (8) and (9) a and c are irrelevant and for every sK chosen by the State
the Terrorist chooses e*(sK) = arg maxi=1,2,. . .,n[d(sK, i)wi] and therefore, from (9) s�K ¼ argminsK�N

ðmaxi¼1;2;...;ndðsK ; iÞwiÞ which is the minimax nodal solution. h
r discussion of the minimax problem see Chapter 7 of Mirchandani and Francis (1990).
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The problem can be formulated as an integer program. We start by defining the decision variables. Let
yij ¼
1 if city i is assigned to facility j;

0 otherwise,

�
i; j ¼ 1; 2; . . . ; n;

xj ¼
1 if a facility is located in city j;

0 otherwise,

�
j ¼ 1; 2; . . . ; n;

zi ¼
1 if the Terrorist attacks city i;

0 otherwise,

�
i ¼ 1; 2; . . . ; n.
Define v to be the Terrorist utility in equilibrium. Obviously, in equilibrium we expect that
½cdði; jÞ þ di�wiyij 6 v; i; j ¼ 1; 2; . . . ; n ð10Þ
and since
Pn

j¼1yij ¼ 1 and from Lemma 1,
Pn

i¼1zi ¼ 1, then" #
Xn
i¼1

c
Xn
j¼1

yijdði; jÞ þ di ziwi 6 v. ð11Þ
In fact, the inequality in (11) can be replaced by an equality since v will be minimized in the State’s objective
function as we will see next.

From (11) we can extract the delay between the city under attack and its supporting facility in terms of v
namely,
Xn

i¼1

Xn
j¼1

yijdði; jÞ
 !

ziwi ¼
v�

Pn
i¼1ziwidi
c

.

Thus, we can write the State utility as
Xn
i¼1

a
Xn
j¼1

yijdði; jÞ þ gi

 !
ziwi ¼ a

Xn
i¼1

Xn
j¼1

yijdði; jÞ
 !

ziwi þ
Xn
i¼1

ziwigi ð12Þ

¼ a
c
vþ

Xn
i¼1

ziwi gi �
adi
c

� �
. ð13Þ
We can now formulate the problem
min
a
c
vþ

Xn
i¼1

ziwi gi �
adi
c

� �
ð14Þ

s.t.
Xn
j¼1

xj ¼ K; ð15Þ

Xn
i¼1

zi ¼ 1; ð16Þ

Xn
j¼1

yij ¼ 1; i ¼ 1; 2; . . . ; n; ð17Þ

yij 6 xj; i; j ¼ 1; 2; . . . ; n; ð18ÞXn
k¼1

yikdði; kÞ þ ðM � dði; jÞÞxj 6 M ; i; j ¼ 1; 2; . . . ; n; ð19Þ

½cdði; jÞ þ di�wiyij 6 v; i; j ¼ 1; 2; . . . ; n; ð20Þ
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Xn
i¼1

c
Xn
j¼1

yijdði; jÞ þ di

" #
ziwi ¼ v. ð21Þ

ðadði; jÞ þ giÞwiyij 6
a
c
vþ

Xn
i¼1

ziwi gi �
adi
c

� �
; i; j ¼ 1; 2; . . . ; n; ð22Þ

xj ¼ 0; 1; zi ¼ 0; 1; yij ¼ 0; 1; i; j ¼ 1; 2; . . . ; n; ð23Þ
where M is a sufficiently large number (M P maxi,j2Nd(i, j)). In (15) we impose the location of K facilities.
In (17) we ensure that each city is assigned to only one facility and in (18) we forbid an assignment of a city
to a node that is not a location of a facility. In (16), (20) and (21) we make sure that the Terrorist objective
is taken into account. Constraints (19) verify that for every configuration of facilities, the city under attack
will be assigned to the closest facility in the sense of shortest path. In (22) we guarantee that the State objec-
tive is taken into consideration. Binary requirements are specified in (23).

4.2.1. Linearization

The problem is a non-linear programming since we have multiplications of the variables zi and yij in con-
straint (21). We can linearize this constraint as follows. Let us define a new binary decision variable uij such
that
uij ¼ ziyij; i; j ¼ 1; 2; . . . ; n;
where uij should satisfy the following constraints
zi þ yij � uij 6 1; i; j ¼ 1; 2; . . . ; n;

zi þ yij P 2uij; i; j ¼ 1; 2; . . . ; n.
In this case, constraint (21) becomes
c
Xn
i¼1

Xn
j¼1

uijdði; jÞwi þ
Xn
i¼1

ziwidi ¼ v
which is linear.
To demonstrate the problem with more than one facility we consider the following example.

Example 2. Consider again Example 1. Now we let the State install two facilities. Thus, the State strategies
set is S = {(1, 2), (2, 3), (1, 3)}. Using (8) the Terrorist best response to any strategy chosen by the State is
given by
e�ð1; 2Þ ¼ argmaxfð0þ 1Þ15; ð0þ 1Þ20; ð4þ 1Þ11g ¼ 3;

e�ð2; 3Þ ¼ argmaxfð3þ 1Þ15; ð0þ 1Þ20; ð0þ 1Þ11g ¼ 1;

e�ð1; 3Þ ¼ argmaxfð0þ 1Þ15; ð3þ 1Þ20; ð0þ 1Þ11g ¼ 2.
Using (9) the State chooses
s�2 ¼ argminfUSðð1; 2Þ; e�ð1; 2ÞÞ;USðð2; 3Þ; e�ð2; 3ÞÞ;USðð1; 3Þ; e�ð1; 3ÞÞg
¼ argminfUSðð1; 2Þ; 3Þ;USðð2; 3Þ; 1Þ;USðð1; 3Þ; 2Þg ¼ argminf231; 240; 320g ¼ ð1; 2Þ.
Thus, in equilibrium, the State will install facilities in cities 1 and 2 while the Terrorist will attack city 3.
Observe that when the State installs the facilities, she already knows that the Terrorist is going to attack
a city without a facility. The ‘‘catch’’ in non-cooperative games here is that in equilibrium the State installs
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the facilities such that it forces the Terrorist to attack a city that minimizes her expected damage (in this
example, it is also an ’unprotected’ city).
4.3. Prevention cost and fixed number of facilities

When K > 1 is given, the optimal level of prevention cost is found in a similar way to that of a single
facility. The equilibrium utility for the State is now given by
bU Sðe�ðs�KÞ; s�KÞ ¼ �P ðcprevÞ½adðs�K ; e�ðs�KÞÞ þ ge�ðs�K Þ�we�ðs�K Þ � cprev;
where ðe�ðsKÞ; s�KÞ are the equilibrium strategies. By differentiation with respect to cprev, the optimal preven-
tion resources is the solution of
�P 0ðcprevÞ½adðs�K ; e�ðsKÞÞ þ ge�ðs�K Þ�we�ðs�K Þ ¼ 1.
As before, the optimal level of resources is achieved when the change in the expected utility due to addi-
tional unit of resource is equal to the cost of a unit of resources. Observe that since the calculation is done
after the equilibrium has already been found, the prevention cost does not add any complexity to the
calculations.

4.4. Variable number of facilities

If K is a decision variable then, the problem incurs another level of complexity. We should consider all
possible values of K and for every value calculate the equilibrium including the optimal prevention
resources. Obviously if C = 0, then an optimal solution is K = n, namely, install a facility at every node.
However, when C is sufficiently large we expect the optimal number of facilities to be below n. Denote
by c�prevðKÞ the optimal prevention resources invested by the State given a fixed number of facilities K.
To show that the optimal number of facilities K* is unique, we assume that the State can discard a facility
if it does not increase her utility. Namely, the State can always use less facilities than K where discarding
facility is with no cost. This assumption is not crucial as we will see later on.

Lemma 4. The State utility in equilibrium without installment cost bUSðe�ðs�KÞ; ðs�K ; c�prevðKÞÞÞ ¼
�P ðc�prevðKÞÞ½adðs�K ; e�ðs�KÞÞ þ gi�we�ðs�K Þ � c�prevðKÞ is a monotonic increasing function in the number of

facilities K.

Proof. By the assumption ½adðs�K ; e�ðs�KÞÞ þ gi�we�ðs�K Þ is a decreasing function of K (since we can always use
less facilities than given) and thus, we have
bU Sðe�ðs�KÞ; ðs�K ; c�prevðKÞÞÞ < bUSðe�ðs�Kþ1Þ; ðs�Kþ1; c

�
prevðKÞÞÞ < bUSðe�ðs�Kþ1Þ; ðs�Kþ1; c

�
prevðK þ 1ÞÞÞ. �
Thus, we immediately have the following result.

Proposition 2. There is a unique optimal number of facilities K*.

Proof. Since the State utility function including installation cost is US ¼ bUS � KC and since bUS is increas-
ing with K we have a single solution to the problem
max
K¼1;2;...;n

bUSðe�ðs�KÞ; ðs�K ; c�prevðKÞÞÞ. �
The assumption of the possibility of discarding facilities in Lemma 4 is not crucial to our analysis since
the number of possible facilities is bounded by n. The use of this Lemma is just for simplifying the compu-
tation by looking for a single K.
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5. Case study

We solve the problem of multiple facilities introduced in the previous section with a case study of cities in
the US. We selected the largest 20 metropolitan areas (by size of population) according to the US Census
Bureau for 2000. The only change we made is omitting San Juan from the list (number 20) and adding
Tampa (number 21). The damages are assumed to be proportional to the sizes of the metropolitan areas.
Thus, the ratio between metropolitan area sizes are important and not the absolute sizes. The 20 metropol-
itan areas and their population sizes are given in Table A.1. Notice that the metropolitan areas (nodes) are
numbered according to their sizes starting with the largest. The shortest distance matrix between the cities is
included in Table A.2 and we assume that travel speed is one so that distance can replace travel times. We
also assume that d(i) = 0 so that gi = g and di = d "i = 1, . . . ,n. We fixed the value of c to c = 1 and let a
vary in {0.5, 1, 2, 3, 4, 5}. We chose g = 2d (assuming that the State cares much more about avoiding dam-
age than the Terrorist about causing damage) where d varies in {0, 50, 125, 250, 500, 1000}. The number of
facilities considered is between 1 and 4. For every combination of a, d and g, we solved the problem for
K = 1, 2, 3, 4. We did not optimize over K since there is no information available about the cost of facility
installation.

The results of our study are summarized in Table 1 where for each combination of (recall that c = 1) K,
a, g and d (first four columns) we report in the fifth column the equilibrium location of the facilities by the
Table 1
Equilibrium solutions for different combinations of the parameters

K a g d Optimal locations City attacked State disutility Terrorist utility

1 0.5 0 0 15 2 1,250,946 2,501,893
1 0.5 100 50 15 2 1,414,683 2,583,761
1 0.5 250 125 15 2 1,660,288 2,706,564
1 1 0 0 15 2 2,501,893 2,501,893
1 1 100 50 15 2 2,665,629 2,583,761
1 1 250 125 15 2 2,911,234 2,706,564
1 2 0 0 15 2 5,003,786 2,501,893
1 2 100 50 15 2 5,167,522 2,583,761
1 2 250 125 15 2 5,413,127 2,706,564
1 3 0 0 15 2 7,505,679 2,501,893
1 3 100 50 15 2 7,669,415 2,583,761
1 3 250 125 15 2 7,915,020 2,706,564
1 4 0 0 15 2 10,007,572 2,501,893
1 4 100 50 15 2 10,171,308 2,583,761
1 4 250 125 15 2 10,416,913 2,706,564
1 5 0 0 15 2 12,509,465 2,501,893
1 5 100 50 15 2 12,673,201 2,583,761
1 5 250 125 15 2 12,918,806 2,706,564
2 0.5 0 0 4 14 2 300,456 600,913
2 0.5 100 50 6 17 3 397,437 657,511
2 0.5 250 125 1 17 3 558,152 772,896
2 1 0 0 4 14 2 600,913 600,913
2 1 100 50 2 4 9 669,957 643,848
2 1 250 125 6 17 3 840,662 726,193
2 2 0 0 4 14 2 1,201,826 600,913
2 2 100 50 2 4 9 1,287,696 643,848
2 2 250 125 2 4 1 1,394,951 697,476
2 3 0 0 4 14 2 1,802,738 600,913
2 3 100 50 4 17 9 1,905,435 643,848

(continued on next page)



Table 1 (continued)

K a g d Optimal locations City attacked State disutility Terrorist utility

2 3 250 125 6 17 3 2,064,110 726,193
2 4 0 0 4 14 2 2,403,651 600,913
2 4 100 50 2 4 9 2,523,174 643,848
2 4 250 125 4 5 2 2,662,355 767,924
2 5 0 0 4 14 2 3,004,564 600,913
2 5 100 50 4 17 9 3,140,913 643,848
2 5 250 125 4 5 2 3,225,608 767,924
3 0.5 0 0 6 17 18 12 198,471 396,941
3 0.5 100 50 1 2 18 12 244,600 431,053
3 0.5 250 125 1 6 17 3 534,800 726,193
3 1 0 0 2 6 18 12 396,941 396,941
3 1 100 50 2 6 18 12 435,705 416,323
3 1 250 125 1 2 3 10 554,278 495,908
3 2 0 0 2 6 18 12 793,883 396,941
3 2 100 50 2 6 18 12 832,646 416,323
3 2 250 125 6 17 18 12 890,792 445,396
3 3 0 0 6 17 18 12 1,190,824 396,941
3 3 100 50 2 6 18 12 1,229,588 416,323
3 3 250 125 2 6 18 12 1,287,733 445,396
3 4 0 0 6 17 18 12 1,587,765 396,941
3 4 100 50 6 17 18 12 1,626,529 416,323
3 4 250 125 2 6 18 12 1,684,675 445,396
3 5 0 0 2 6 18 12 1,984,707 396,941
3 5 100 50 2 6 18 12 2,023,470 416,323
3 5 250 125 6 17 18 12 2,081,616 445,396
4 0.5 0 0 1 2 11 18 13 169,562 339,124
4 0.5 100 50 1 2 4 18 12 217,853 377,559
4 0.5 250 125 1 6 7 17 3 534,800 726,193
4 1 0 0 2 6 18 20 13 339,124 339,124
4 1 100 50 1 2 18 20 13 374,672 356,898
4 1 250 125 1 2 3 20 9 547,245 481,972
4 2 0 0 2 6 11 18 13 678,248 339,124
4 2 100 50 1 2 12 18 13 713,796 356,898
4 2 250 125 1 2 11 18 13 767,117 383,559
4 3 0 0 1 2 12 18 13 1,017,372 339,124
4 3 100 50 1 2 11 18 13 1,052,920 356,898
4 3 250 125 1 2 12 18 13 1,106,241 383,559
4 4 0 0 1 2 18 20 13 1,356,496 339,124
4 4 100 50 1 2 11 18 13 1,392,044 356,898
4 4 250 125 1 2 12 18 13 1,445,365 383,559
4 5 0 0 1 2 11 18 13 1,695,621 339,124
4 5 100 50 2 6 12 18 13 1,731,168 356,898
4 5 250 125 1 2 18 20 13 1,784,490 383,559
1 0.5 500 250 18 2 2,124,480 3,020,938
1 0.5 1000 500 3 2 3,069,240 3,682,433
1 0.5 2000 1000 8 2 4,901,451 4,890,808
1 1 500 250 15 2 3,320,575 2,911,234
1 1 1000 500 18 2 4,248,961 3,430,279
1 1 2000 1000 3 2 6,138,480 4,501,115
1 2 500 250 15 2 5,822,468 2,911,234
1 2 1000 500 15 2 6,641,150 3,320,575
1 2 2000 1000 18 2 8,497,922 4,248,961
1 3 500 250 15 2 8,324,361 2,911,234
1 3 1000 500 15 2 9,143,043 3,320,575

(continued on next page)
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Table 1 (continued)

K a g d Optimal locations City attacked State disutility Terrorist utility

1 3 2000 1000 18 2 11,109,518 4,248,961
1 4 500 250 15 2 10,826,254 2,911,234
1 4 1000 500 15 2 11,644,936 3,320,575
1 4 2000 1000 18 2 13,721,115 4,248,961
1 5 500 250 15 2 13,328,147 2,911,234
1 5 1000 500 15 2 14,146,829 3,320,575
1 5 2000 1000 18 2 16,332,711 4,248,961
2 0.5 500 250 1 5 2 1,100,309 972,595
2 0.5 1000 500 6 17 1 2,202,666 1,225,352
2 0.5 2000 1000 1 17 1 4,239,973 2,119,987
2 1 500 250 1 2 3 1,116,304 887,366
2 1 1000 500 1 5 2 2,200,618 1,381,936
2 1 2000 1000 1 17 1 4,239,973 2,119,987
2 2 500 250 6 17 3 1,681,324 840,662
2 2 1000 500 1 17 3 2,232,608 1,116,304
2 2 2000 1000 1 2 1 4,239,973 2,119,987
2 3 500 250 2 6 3 2,293,048 840,662
2 3 1000 500 1 17 3 2,891,035 1,116,304
2 3 2000 1000 1 17 1 4,239,973 2,119,987
2 4 500 250 4 17 1 2,789,902 962,474
2 4 1000 500 1 2 3 3,549,463 1,116,304
2 4 2000 1000 6 7 1 4,901,409 2,285,345
2 5 500 250 6 17 3 3,516,495 840,662
2 5 1000 500 1 2 3 4,207,890 1,116,304
2 5 2000 1000 2 6 1 5,066,768 2,285,345
3 0.5 500 250 1 2 18 1 1,059,993 529,997
3 0.5 1000 500 1 11 17 1 2,119,987 1,059,993
3 0.5 2000 1000 1 6 17 1 4,239,973 2,119,987
3 1 500 250 1 2 18 1 1,059,993 529,997
3 1 1000 500 1 2 4 1 2,119,987 1,059,993
3 1 2000 1000 1 5 17 1 4,239,973 2,119,987
3 2 500 250 1 2 18 1 1,059,993 529,997
3 2 1000 500 1 4 17 1 2,119,987 1,059,993
3 2 2000 1000 1 15 17 1 4,239,973 2,119,987
3 3 500 250 1 2 3 10 1,546,095 554,278
3 3 1000 500 1 2 3 1 2,119,987 1,059,993
3 3 2000 1000 1 2 17 1 4,239,973 2,119,987
3 4 500 250 1 2 3 10 1,983,634 554,278
3 4 1000 500 1 2 18 1 2,119,987 1,059,993
3 4 2000 1000 1 15 17 1 4,239,973 2,119,987
3 5 500 250 1 2 3 10 2,421,173 554,278
3 5 1000 500 2 6 18 1 2,946,781 1,225,352
3 5 2000 1000 1 2 3 1 4,239,973 2,119,987
4 0.5 500 250 1 2 3 19 1 1,059,993 529,997
4 0.5 1000 500 1 8 17 20 1 2,119,987 1,059,993
4 0.5 2000 1000 1 2 5 17 1 4,239,973 2,119,987
4 1 500 250 1 2 5 18 1 1,059,993 529,997
4 1 1000 500 1 4 15 17 1 2,119,987 1,059,993
4 1 2000 1000 1 2 5 8 1 4,239,973 2,119,987
4 2 500 250 1 2 18 20 1 1,059,993 529,997
4 2 1000 500 1 2 4 9 1 2,119,987 1,059,993
4 2 2000 1000 1 5 6 17 1 4,239,973 2,119,987
4 3 500 250 1 4 17 18 2 1,388,485 599,275

(continued on next page)
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Table 1 (continued)

K a g d Optimal locations City attacked State disutility Terrorist utility

4 3 1000 500 1 2 6 8 1 2,119,987 1,059,993
4 3 2000 1000 1 3 10 17 1 4,239,973 2,119,987
4 4 500 250 2 4 6 18 1 1,721,429 695,356
4 4 1000 500 1 2 18 20 1 2,119,987 1,059,993
4 4 2000 1000 1 2 3 4 1 4,239,973 2,119,987
4 5 500 250 2 6 18 20 1 1,886,788 695,356
4 5 1000 500 1 2 11 18 1 2,119,987 1,059,993
4 5 2000 1000 1 2 3 8 1 4,239,973 2,119,987

16 O. Berman, A. Gavious / European Journal of Operational Research xxx (2006) xxx–xxx

ARTICLE IN PRESS
State, in the sixth column the city the Terrorist chooses to attack and in the last two columns the disutility
of the State and the utility of the Terrorist. For example, when K = 3, a = 2, g = 500 and d = 250 the equi-
librium States facilities are at New York, Los Angeles and St. Louis. The Terrorist will attack New York.
The disutility of the State is 1.06 millions and the utility of the terrorist is 0.53 millions. There are many
scenarios that can be analyzed from Table 1. As an example we analyze two scenarios depicted in Figs.
4 and 5. In Fig. 6 we demonstrate the decline of the State’s disutility as a function of the number of facilities
K. The numbers are taken from Table 1. As can be seen from Fig. 6 the decline from K to K + 1 is much
larger than from K + 1 to K + 2.

In Fig. 4 we depict the equilibrium location of facilities and city attacked for K = 1, 2, 3, 4, d = g = 0.
Recall that when d = g = 0 the equilibrium decision of the State is to locate the facilities at the K—nodal
Fig. 4. The facilities location ‘‘F’’ and the city attached ‘‘A’’ in equilibrium for c = 1, g = d = 0 and K = 1, 2, 3, 4.



Fig. 5. The facilities location ‘‘F’’ and the city attached ‘‘A’’ in equilibrium for a = 2, c = 1, g = 500, d = 250 and K = 1, 2, 3, 4.

Fig. 6. State’s disutility as function of K. The disutility axis is in millions. The lower curve is for a = 0.5, g = 0, d = 0. The second
curve is for a = 3, g = 100, d = 50 and the upper curve is for a = 5, g = 250, d = 125.
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minimax solution and the city that determines the minimax solution is the city attacked regardless of the
specific value of a. Also, the State disutility = a (Terrorist utility). When K = 1 the State locates the facility
at Minneapolis and the city attacked is Los Angeles. By locating at Minneapolis the State deters the Ter-
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rorist from attacking New York, the largest city. Notice that a second facility does not change the location
of the city attacked but by locating the two facilities at Washington DC and Phoenix the State reduces its
disutility by 76%. With three facilities located at Los Angeles, Philadelphia and St. Louis, the Terrorist pre-
fers to attack Miami instead of Los Angeles and thus, by locating 3 instead of 2 facilities the State reduces
its disutility by 34%. With four facilities located at New York, Los Angeles, Atlanta and St. Louis, the
Terrorist prefers to attack Seattle and consequently the State reduces its disutility due to locating 4 instead
of 3 facilities by 14.6%.

In Fig. 5 we depict the equilibrium location of facilities and city attacked for K = 1, 2, 3, 4 when a = 2,
g = 500 and d = 250. When K = 1, the solution is identical to that of the case when d = g = 0 i.e., the State
locates the facility at Minneapolis and the Terrorist attacks Los Angeles. When K = 2, the State locates the
two facilities at Philadelphia and San Diego which are very close to the two largest cities—New York and
Los Angeles, respectively, and the city attacked is Chicago which is the third largest city. Notice that the
change of the solution compared to the case of g = d = 0 is due to the large values of g and d which are the
coefficients of the damage wi (which is proportional to the size of the city). When K = 3, the State locates its
facilities in New York, Los Angeles and St. Louis forcing the Terrorist to attack New York where a facility
with all resources is located. When K = 4, the solution is identical to the case when K = 3 except for an
additional facility located at Tampa. It is interesting to note that the State disutility and the Terrorist utility
are the same when K = 3 and K = 4. The conclusion is that an additional facility is not required. In
contrast, the disutility of the State decreases by 71% when K = 2 instead of K = 1 and by 37% if K = 3
instead of K = 2.
Fig. 7. Constant weights across cities with high, medium and low weights.
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To check the sensitivity of the equilibrium solution to the variations of the cities’ weights, we consider a
version of the case study with identical weights across cities. We deviate from the original weights by choos-
ing three scenarios. In the first scenario we take the cities’ weight to be identical and equal to the weight of
the largest city in Table A.1 namely, New York. In the second scenario all the cities have weights equal to
10th city, Houston. The third scenario consider all the weights identical to Tampa, the last city in the list.
All the other parameters are similar to the last scenario considered above namely, K = 4, a = 2, g = 500
and d = 250.

As we can see from Fig. 7, in equilibrium, Seattle is always the city under attack while the location of the
facilities is similar. Changing the weights from high to medium shift the location of only one facility from
Detroit to Cleveland. This change is insignificant since both cities are very close. Changing the weights from
medium to low, shift the location of one facility from Atlanta to Miami. It follows that the equilibrium is
not too sensitive to changes in the weights.
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Appendix

See Tables A.1 and A.2.
Table A.1
Metropolitans (source: US Census Bureau—April 2, 2001)

Node Metropolitan Population size

1 New York–Northern New Jersey–Long Island, NY–NJ–CT–PA 21,199,865
2 Los Angeles–Riverside–Orange County, CA CMSA 16,373,645
3 Chicago–Gary–Kenosha, IL–IN–WI CMSA 9,157,540
4 Washington–Baltimore, DC–MD–VA–WV CMSA 7,608,070
5 San Francisco–Oakland–San Jose, CA CMSA 7,039,362
6 Philadelphia–Wilmington–Atlantic City, PA–NJ–DE–MD CMS 6,188,463
7 Boston–Worcester–Lawrence, MA–NH–ME–CT CMSA 5,819,100
8 Detroit–Ann Arbor–Flint, MI CMSA 5,456,428
9 Dallas–Fort Worth, TX CMSA 5,221,801

10 Houston–Galveston–Brazoria, TX CMSA 4,669,571
11 Atlanta, GA MSA 4,112,198
12 Miami–Fort Lauderdale, FL CMSA 3,876,380
13 Seattle–Tacoma–Bremerton, WA CMSA 3,554,760
14 Phoenix–Mesa, AZ MSA 3,251,876
15 Minneapolis–St. Paul, MN–WI MSA 2,968,806
16 Cleveland–Akron, OH CMSA 2,945,831
17 San Diego, CA MSA 2,813,833
18 St. Louis, MO–IL MSA 2,603,607
19 Denver–Boulder–Greeley, CO CMSA 2,581,506
20 Tampa–St. Petersburg–Clearwater, FL MSA 2,395,997



T
ab

le
A
.2

D
is
ta
n
ce

b
et
w
ee
n
ci
ti
es

C
it
ie
s

N
ew

Y
o
rk

L
o
s

A
n
ge
le
s

C
h
ic
ag
o

W
as
h
in
gt
o
n

S
an

F
ra
n
ci
sc
o

P
h
il
ad

el
p
h
ia

B
o
st
o
n

D
et
ro
it

D
al
la
s

H
o
u
st
o
n

A
tl
an

ta
M
ia
m
i

S
ea
tt
le

P
h
o
en
ix

M
in
n
ea
p
o
li
s

C
le
ve
la
n
d

S
an

D
ie
go

S
t.

L
o
u
is

D
en
ve
r

T
am

p
a

N
ew

Y
o
rk

0
24
62

71
9

20
4

25
82

78
19
0

48
9

13
73

14
21

74
8

10
88

24
13

21
45

10
23

40
8

24
32

87
9

16
29

10
02

L
o
s
A
n
ge
le
s

24
62

0
17
49

23
08

24
02

26
05

19
87

12
51

13
82

19
44

23
48

95
4

36
7

15
28

20
57

11
6

15
95

84
4

21
62

C
h
ic
ag
o

71
9

17
49

0
59
8

18
63

66
8

85
6

23
8

79
8

93
7

58
5

11
86

17
37

14
47

35
4

31
2

17
27

25
9

91
1

10
01

W
as
h
in
gt
o
n

20
4

23
08

59
8

0
24
49

12
6

39
4

40
0

11
83

12
21

54
4

92
4

23
29

19
80

93
4

30
4

22
72

71
4

14
87

81
7

S
an

F
ra
n
ci
sc
o

25
82

34
4

18
63

24
49

0
25
30

27
08

20
95

14
93

16
51

21
45

26
01

67
9

65
8

15
91

21
75

46
0

17
50

96
3

24
07

P
h
il
ad

el
p
h
ia

78
24
02

66
8

12
6

25
30

0
26
8

44
6

13
00

13
45

67
0

10
24

23
80

20
81

98
5

35
8

23
70

81
4

15
73

93
1

B
o
st
o
n

19
0

26
05

85
6

39
4

27
08

26
8

0
61
8

15
51

16
07

93
8

12
55

24
96

22
99

11
26

55
2

25
82

10
42

17
66

11
82

D
et
ro
it

48
9

19
87

23
8

40
0

20
95

44
6

61
8

0
99
7

11
06

59
9

11
56

19
35

16
85

53
9

96
19
65

45
6

11
48

99
5

D
al
la
s

13
73

12
51

79
8

11
83

14
93

13
00

15
51

99
7

0
22
4

71
7

11
08

16
83

88
8

86
0

10
23

11
84

54
4

66
0

91
5

H
o
u
st
o
n

14
21

13
82

93
7

12
21

16
51

13
45

16
07

11
06

22
4

0
70
1

96
8

18
91

10
16

10
54

11
14

13
01

67
8

87
4

79
2

A
tl
an

ta
74
8

19
44

58
5

54
4

21
45

67
0

93
8

59
9

71
7

70
1

0
60
5

21
81

15
89

90
5

55
3

18
87

46
7

12
04

41
6

M
ia
m
i

10
88

23
48

11
86

92
4

26
01

10
24

12
55

11
56

11
08

96
8

60
5

0
27
34

19
81

15
10

10
86

22
69

10
62

17
20

20
6

S
ea
tt
le

24
13

95
4

17
37

23
29

67
9

23
80

24
96

19
35

16
83

18
91

21
81

27
34

0
11
10

13
96

20
28

10
58

17
23

10
26

25
29

P
h
o
en
ix

21
45

36
7

14
47

19
80

65
8

20
81

22
99

16
85

88
8

10
16

15
89

19
81

11
10

0
12
74

17
47

29
8

12
67

58
6

17
96

M
in
n
ea
p
o
li
s

10
23

15
28

35
4

93
4

15
91

98
5

11
26

53
9

86
0

10
54

90
5

15
10

13
96

12
74

0
63
2

15
26

46
4

69
3

13
15

C
le
ve
la
n
d

40
8

20
57

31
2

30
4

21
75

35
8

55
2

96
10
23

11
14

55
3

10
86

20
28

17
47

63
2

0
20
30

49
4

12
21

93
3

S
an

D
ie
go

24
32

11
6

17
27

22
72

46
0

23
70

25
82

19
65

11
84

13
01

18
87

22
69

10
58

29
8

15
26

20
30

0
15
58

83
4

20
87

S
t.
L
o
u
is

87
9

15
95

25
9

71
4

17
50

81
4

10
42

45
6

54
4

67
8

46
7

10
62

17
23

12
67

46
4

49
4

15
58

0
78
8

86
1

D
en
ve
r

16
29

84
4

91
1

14
87

96
3

15
73

17
66

11
48

66
0

87
4

12
04

17
20

10
26

58
6

69
3

12
21

83
4

78
8

0
15
16

T
am

p
a

10
02

21
62

10
01

81
7

24
07

93
1

11
82

99
5

91
5

79
2

41
6

20
6

25
29

17
96

13
15

93
3

20
87

86
1

15
16

0

20 O. Berman, A. Gavious / European Journal of Operational Research xxx (2006) xxx–xxx

ARTICLE IN PRESS



O. Berman, A. Gavious / European Journal of Operational Research xxx (2006) xxx–xxx 21

ARTICLE IN PRESS
References

Kaplan, E.H., Wein, L.M., 2003. Smallpox eradication in West and Central Africa: Surveillance-containment or herd immunity?.
Epidemiology 14 (1) 90–92.

Kaplan, E.H., Craft, D.L., Wein, L.M., 2003. Analyzing bioterror response logistics: The case of smallpox. Mathematical Biosciences
185, 33–72.

Marennikova, S.S., 2003. Commentary: Perspectives on smallpox eradication. Epidemiology 14 (1), 93–94.
Mirchandani, P.B., Francis, R.L., 1990. Discrete Location Theory. John Wiley and Sons, Inc., NY.
Myerson, R.G., 1991. Game Theory—Analysis of Conflict, fifth ed. Harvard University Press, Cambridge, Massachusetts, London,

England.
Radner, R., 1980. Collusive behavior in oligopolies with long but finite lives. Journal of Economic Theory 22, 136–156.
Rasmusen, E., 2001. Games and Information: An Introduction to Game Theory, third ed. Blackwell Publishing, UK.
Wein, L.M., Craft, D.L., Kaplan, E.H., 2003. Emergency response to an anthrax attack. Proceeding of The National Academy of

Science 100 (7), 4346–4351.


	Location of terror response facilities: A game between state and terrorist
	Introduction
	The model
	The setting
	Strategies
	Utilities
	Equilibrium


	A single facility
	Facility on nodes
	Prevention cost

	Multiple facilities
	Introduction to multiple facilities
	Fixed number of facilities
	Linearization

	Prevention cost and fixed number of facilities
	Variable number of facilities

	Case study
	Acknowledgment
	Appendix
	References


