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Abstract. The paper offers a complex and systematic model of the bandwagon
effect in collective action using continuous time equations. The model treats
the bandwagon effect as a process influenced by ratio between the mobiliza-
tion efforts of social activists and the resources invested by the government to
counteract this activity. The complex modeling approach makes it possible to
identify the conditions for specific types of the bandwagon effect, and deter-
mines the scope of that effect. Relying on certain behavioral assumptions,
these conditions are only indirectly connected to individual beliefs, so that a
given bandwagon effect can be explained and planned without knowing the
exact preferences of the players’ preferences.

1 Introduction

Analyses of collective action dynamics often distinguish between spontaneous
and non-spontaneous evolution of collective action (Taylor 1987; Sened 1991;
Knight 1992). The second type is characterized by involvement of social
activists who mobilize large numbers of people. While purely spontaneous
collective action is rare, there are mechanisms that closely fit this characteri-
zation. One such mechanism is the “bandwagon” effect, also termed the
“domino” or “snowball” effect, where individuals’ decisions about whether or
not to participate in collective action are influenced by the number of people
currently involved in those efforts. Assuming that individuals recognize the
need to protest, it follows that larger number of participants reduce the costs
of action and increase the chances of success (Schelling 1978; Granovetter
1978; Karklins and Petersen 1993). When the government observes a large-
scale movement it is less likely to take violent measures to counteract the
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movement but, rather, will tend to be sensitive to public demands. Thus,
players join protest efforts when the number of participants reaches a certain
subjective threshold meaning that the probability of a non-protester joining
protest is proportional to the number of protesters. This creates an accumu-
lation effect that may lead to mass mobilization.

Individuals have different subjective thresholds for participation depending
on their beliefs and structural conditions. Given a certain distribution of
thresholds, the accumulation effect may drag an entire society into mass pro-
test or cease at a certain point. Granovetter (1978) and Kuran (1995) argue,
for example, that since minor changes in individual thresholds may signifi-
cantly affect the behavior of an entire society, models based solely on a simple
aggregation of “beliefs” or “thresholds” have limited explanatory or pre-
dictive power. Indeed, the literature on the bandwagon effect focuses on
explaining its basic rationale (Schelling 1960, 1978; Taylor 1987; Karklins and
Petersen 1993; Colomer 1995) or its disadvantages and limitations (Gran-
ovetter 1978; Kuran 1995). Other studies explain the ways in which social or
institutional changes evolve through informational cascades (Bikhchandani et
al. 1992; Lohmann 1994) or belief cascades (Zeeman 1974; Denzau and North
1994). Nevertheless, these explanations refer to beliefs or thresholds that gen-
erate a kind of spontaneous bandwagon effect, but they do not analyze the
bandwagon effect on the basis of specific structural parameters that influence
these beliefs.

The paper offers a more complex and systematic model of the bandwagon
effect, using continuous time equations as well as rationales derived from epi-
demic theory. Unlike most approaches, this model does not treat the band-
wagon effect as a purely spontaneous process. Rather, it views the bandwagon
effect as a process influenced by ratio between mobilization efforts of social
activists and the resources invested by the government to counteract this
activity. Furthermore, it is taken into account that while some people with-
draw from collective action, others may join in. This complex modeling
approach makes it possible to identify the conditions for specific types of the
bandwagon effect. In keeping with the approach, a mathematical model for
calculating the time that elapses until the dynamic reaches equilibrium is
proposed. Since these conditions are only implicitly linked with individual
preferences and beliefs, it is suggested that a given bandwagon effect can be
explained and planned without knowing the exact preferences of the players.
In other words, by aggregating individual beliefs and actions we are able to
analyze the outcome of a certain bandwagon effect depending on a few struc-
tural variables rather than measuring individual beliefs and preferences in a
given society.

Section 2 presents a model in which the population is divided into two
groups — one consisting of citizens who participate in protest activities, and
the other consisting of passive citizens — where there is movement to and from
each group. Section 3 adds a third group to the model, consisting of citizens
who die or are jailed during the protest activity or, alternatively, of those who
start supporting the government. Based on epidemic theory, the conditions for
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two possible types of bandwagon effect are explained. Section 4 concludes the
analysis.

2 A basic continuous time model of the bandwagon effect

The basic continuous time model developed here assumes that at time 1 =0
there are Py protesters who participate in a mass protest activity, and Cy
passive citizens who do not protest but constitute potential participants.
Denote by N the total population in a given country, such that at 1 =0,
Py + Cy = N. Let the functions P(¢) and C(¢) represent the number of pro-
testers and passive citizens, respectively, at a certain time, . It is assumed
that the size of the population is constant, such that for any 7> 0,
P(t)+ C(r) = N.

Let us assume that for every point in time “#”, the number of passive citi-
zens who join the collective action and become protesters during the next time
interval, [t,1 + A1), is proportional to both the interval length, 4z, the number
of protesters P(¢) and the number of citizens C(¢). That is, during the time
interval [t,7+ A7], the number of new protesters can be expressed as:
pP(1)C(t)At, where the parameter § represents the rate of new protesters
joining the collective activity. This rate is influenced by the preferences of
passive citizens, and is also strongly affected by the mobilization efforts of
social activists. Following Bikhchandani et. al. (1992), it is assumed that only
a small number of individuals initiate an informational cascade, while the
others in the society follow the choices of these decision leaders, free riding on
their efforts. At the end of the time interval, the number of protesters is
expressed by: P(t+ At) = P(t) + fP(t)C(¢)4t; and the number of passive
citizens is expressed by: C(z+ 4t) = C(t) — fP(t)C(¢)4t. It should also be
noted that the participation rate increases as C(¢) increases, since the partici-
pation rate is expected to rise as the number of potential protesters increases.
Similarly, the participation rate is expected to increase as P(¢) increases, i.e.,
based on the bandwagon mechanism, it is assumed that people who do not
protest will do so when the number of participants reaches a certain subjective
threshold.

However, in collective action dynamics people may not only join protest
activities but also withdraw from them. This parameter is added to the model
as follows: For every time interval, the number of people who leave the pro-
test activity and become passive citizens is represented by rP(¢)A¢t, where the
parameter r represents the rate of withdrawal from the collective action. This
rate is significantly influenced by the government resources invested to coun-
teract social protest. At the end of this time interval, the number of protesters
is expressed by: P(¢ + 4t) = P(t) — rP(t)4t; and, the number of citizens who
do not participate is expressed by C(¢ + 4¢) = C(¢) + rP(t)4t.

Combining the movement from and to each group, the dynamic can be
expressed as follows:
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P(t+ 4t) = P(t) + pP(t)C(t) At — rP(t) At (1)

C(t+ A1) = C(t) — pP(t)C(1) At + rP(1) At (2)
Note that the sum of Egs. (1) and (2) yields P(z + Ar) + C(t + At) = P(¢) +
C(#) = N, which is consistent with the assumption that the size of the popu-
lation remains constant over time. To find the instantaneous changing rate in
P(¢) and C(¢), P() is subtracted from (1) and C(z) is subtracted from (2). To
understand the trend of the system at a certain point in time, let 4z — 0,
which yields the following population dynamic equations:

dp
o = PP()C(0) = rP(1) 3)
‘fi_f — _BP(1)C(1) + rP(1) )

In order to determine whether this dynamic converges and what the limit
is, we find the equilibrium in this system. In this type of dynamic equation,
equilibrium is a point (B, C,) in the P-C plane such that after the functions
P(¢) and C(¢) have reached this point for some #, they stay there for ¢ > fy. It

follows that if (P, C,) is an equilibrium, then i’l_}t) = 6;—(; =0 at this point.
Thus, to find the equilibrium, we should solve for P and C satisfying
BPC —rP =0 (5)
—BPC+rP =0 (6)

Equations (5) and (6) produce two equilibria. When (P, C) = (0,N), ie.,
when the number of protesters is zero, the system stays at this point forever.
This conforms with the assumption underlying the bandwagon effect, accord-
ing to which the rate of joining the protest depends on the number of people
already protesting. This actually means that no player has a threshold of zero,
r

B

. It follows that the number of passive

such that no one initiates collective action. If — < N, then the second equilib-

r r
—and P=N ——
B B

citizens will stabilize at the ratio between the rate of leaving the protest and

rium is reached at C =

the rate of joining the protest. For % > N, the protest asymptotically

approaches zero where C = N, resulting in a unique equilibrium. The dy-
namic leading to this equilibrium is demonstrated in Fig. 1, where it is
assumed that Py =1, Cy =99, f=0.02, r =1.5. As can be seen in Fig. 1,

C(t) starts from 99 and decreases to %z 75, while P(f) starts from 1 and
increases to 25.

The stability of equilibria are determined as follows: In a dynamic system,
an equilibrium is asymptotically stable if there is a minor deviation from the
equilibrium point and the functions P(7) and C(r) converge back to that point.
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Fig. 1. The development of P(f) and C(¢) over time

Proposition 1.

1. If % < N, then the equilibrium [C = N, P = 0] is not asymptotically stable,
whereas the equilibrium |C = % ,P=N — % is asymptotically stable.

2. If% > N, then the unique equilibrium [C = N, P = 0] is asymptotically
stable.
Proof. see Appendix.

This equilibrium analysis identifies two parameters that can explain the
bandwagon dynamic and the number of participants, i.e. the efforts of social
activists to mobilize collective action, and the resources spent by the govern-
ment to counteract this activity. Since these parameters strongly influence the
participation and leaving rate respectively, they are also central parameters in
determining the scope of the bandwagon effect. In other words, based on cer-
tain behavioral assumptions, we suggest a model that does not require speci-
fication of individual preferences and beliefs in order to explain the band-
wagon effect. In this way, the methodological weakness of threshold models,
as proposed by Granovetter (1978) and Kuran (1995), is partially solved.

More specifically, Proposition 1 shows that as the mobilization efforts of
social activists increase, while the amount of resources invested by the gov-
ernment to counteract protest decreases and the target population increases,
then there are greater chances that in equilibrium mass mobilization will suc-
ceed. However, as the amount of resources invested by the government
increases, while the mobilization efforts of social activists and the size of the
target population decrease, the chances are greater of reaching the second
stable equilibrium in which there are no participants. Proposition 1 proves this
intuitive rationale.
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Furthermore, the continuous time model makes it possible to determine
how long it takes the dynamic to converge to equilibrium. The system of
equations (3) and (4) can be explicitly solved to obtain the solution presented
in Proposition 2.

Proposition 2.

1. If% # N, then

C(t):%+ <N—1> X Ll ()

2. If% = N then
C NPyt
C(f) = %
where P(t) = N — C(1).
Proof. See Appendix.
r ¥
p ]

equilibrium at which the dynamic converges if ’% < N, as presented in Propo-

1
Py
+7
Co—r/p

The solution for — # N, includes two components. The first one, —, is the

sition 1. The second component, (N —%) X , declines
1

e(ﬂNﬂ‘)t

r r..r .
— < N and converges to N —— if — > N. This second component

B BF

dictates the converging rate to the equilibrium. As we can see by developing
1 ) .
the term in Taylor’s series, we have the first two lead-
14 P ev-n
C() —r / ﬂ
1

to zero if

~1- _ P elPN=r
14— Po wen Co—r/B
C() — r/ﬂ

ing terms )" when ¢ is large enough

r
B

the first leading term is

. . . . r
and — > N. From that time, the converging rate is exponential. When B <N

1 — . .
e ~ Co—r/B e PN and again,
1 0 (BN=1)t Py

+7C0—r/ﬁe

for a large enough ¢, the converging rate is exponential. When % = N, we find

C NPyt 1 . 1
Co+ NPy ~ N — —. Thus, the converging rate is T

that when ¢ is large then Tt fPor m
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Fig. 2. The development of C(¢) over time for constant r and different f8

Figure 2 shows the development of C(¢) over time for a constant r and
different f. Starting from N = 100, Cy = 70, Py = 30 and r = 2, the upper

curve represents the dynamic when f = 0.01, meaning that L~ N.Then C (1)

B

converges to N, which means that after five time units collective action stops.
r
When B = N, C(¢) converges to N as well. The other five curves represent the

dynamics for = 0.025,0.03,0.05,0.1,0.2 (from top to bottom) where% < N.

As the participation rate increases, the ratio between the leaving rate and the
participation rate decreases. This causes the group of potential participants
represented by C(¢), to shrink. Furthermore, as the participation rate
increases, the mobilization graph converges more rapidly. This intuitive ra-
tionale is mathematically proven by Proposition 2, that also offers a practical
tool for explaining and planning a specific bandwagon effect.

To complete this framework, let us find the point in time z, such that for
every t > ty,

<o )

where 7, is the point after which the proportional distance between the num-
ber of potential participants and the number of passive citizens in equilibrium
is less than a certain value, o. Substituting C(¢) into (9) and rearranging yields
r

B

that the distance between C(¢) and the limit — is less than « after a period of

time expressed in Proposition 3.
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Proposition 3.

r
1. If E # N, then

i—l—cx

_ 1 r/B
ta—ﬁN_rln ) 7P, (10)

BCo—r

r
2. If == N, then

B
N(l —O()—C()

t, =
” OCﬁP()

(1)
where time is measured by time units.

Proof. See Appendix.

As can be seen in (10), the period of time until the dynamic converges
depends on all of the parameters in the system, including the size of the entire
population, N, and the starting points Py and Cy. Returning to the numerical
example presented in Fig. 1, if o = 0.01 let us find how long does it take the
level of protest to converge to the limit 25. If the parameters of the situation
are substituted into (9), it is found that after 13.26 time units, the distance
between the protest level and the equilibrium is less than 1%.

Thus far, the model only considers two groups that are influenced by
moves from and to them. The following considers a third population group.

3 Two types of bandwagon effect

The model introduced in the previous section shows that the dynamic of pro-
test converges to a certain level of activity. However, as social history has
shown, a protest movement may have a life cycle that ends with the decline of
the movement. To explain this dynamic and make the model more realistic, a
third group is added to the two discussed above. This group consists of people
who leave the protest cycle permanently or begin supporting the government.
The number of people in this group at a given time is represented by S(z). In
this new model, each person who quits the protest moves to this group and
never returns to participate in the protest. As in the previous model, it is
assumed that the number of protestors who leave the movement is expressed
by rP(t), but here they switch to the group S(¢) rather than C(7). The system
of equations is as follows:

dpP
o = PP()C(0) = rP(1) (12)
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dc
= —BP(OC() (13)
ds
i rP(t) (14)

In line with the previous assumption, the system should preserve the total
size of the population, such that P(7) + C(¢) + S(¢) = N. This system, devel-
oped by Kermach and McKendrick (1927), is well known in epidemic theory
where there are three groups (Bailey 1976). The first consists of people with a
contagious disease, which may spread to the second group, consisting of peo-
ple who have not yet been infected with the disease. The third group consists
of people who have either died of the disease or recovered from it, and can no
longer be infected. The fundamental threshold theorem of epidemic can be
applied to the problem at hand, because it is based on the same system. This

. r
theorem states that if Cp < 7 then the number of protesters P(¢) monoto-

nically declines to zero from ¢ > 0. This means that if the size of the potential
protest population is less than the ratio between the rate of leaving the protest
and the rate of participation, then the level of protest begins to decline right

from the beginning of the activity. If Cp > %, then P(¢) increases during the

first period until it reaches a certain maximal level and then declines to zero.
The threshold theorem reveals that C(z) converges to the solution, x, by the
equation

Coe—(/f/")(N—X) = x (15)

(For proof of this limit, see Eisen 1988).
;

Figure 3 demonstrates the dynamic of this model for Cj < 7 where
B0
¢
50 ®
40
S(t)
204
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Fig. 3. The development of P(f), C(¢) and S(¢) over time when Cy < %
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Fig. 4. The development of P(z), C(¢) and S(¢) over time when Cy > %

Py =10, Cp =90, Sy =0, f =0.02, r = 2. The upper line in Fig. 3 represents
the number of people who have not yet joined the protest. This number
decreases with time and converges to a certain limit. The middle line repre-
sents the number of protesters, which begins at a certain level and declines
from the very beginning. The third line represents the number of citizens who
began participating and withdrew or started supporting the government. Fig-
ure 3 shows that C(¢) converges to a certain limit while S(¢) increases.

r
B
Co =90, Sy =0, p=0.02, r=0.8. It differs from the dynamic in Fig. 3 in
that the middle line, which represents the number of protesters, increases
during the first period and then declines to zero.

Thus, according to the fundamental threshold theorem of epidemic, for
any starting conditions where Py > 0, the P(¢) converges to zero, such that
this is the unique stable equilibrium for this system. There is another equilib-
rium — when Py = 0 — but it is not stable. As explained in the previous section,
in this case no one initiates the protest dynamic and the system remains at the
initial state. However, for any deviation that increases Py, the dynamic moves
to the second equilibrium where the number of protesters declines to zero
while the number of citizens who do not take part in the protest is indicated in
(15).

It follows that when there are people who withdraw from the mass move-
ment and do not return under any circumstances, two types of a bandwagon
effect are evident. One is more likely to develop as the group of potential
protesters diminishes while the rate of leaving the movement increases and the
rate of joining decreases. Then the movement can be expected to decline right
from the beginning. If the protest starts with very few participants, it will seem
as if no real protest activity took place. The second type of a bandwagon effect
is more likely to develop as the group of potential protestors increases while

Figure 4 portrays the dynamic of this model for Cy > —, where Py = 10,
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the rate of leaving the movement declines and the rate of joining increases. In
this case, the movement can be expected to grow gradually until it reaches a
certain maximal level from which it will begin to decline reaching a partici-
pation level of zero at the end of the cycle. It is also easy to verify that if some
of the people who discontinue their participation in the collective action effort
return to the group of potential participants, i.e., moving from S(¢) to C(¢),
the system will behave according to the same rationale. Although the rate of
convergence may differ numerically from the situation analyzed above, the
dynamic develops in the same way.

It should be emphasized again that the rates of joining and leaving the
protest activity are strongly influenced, respectively, by the efforts of social
activists and by the resources invested by the government to counteract the
protest activity. In comparison, Chong (1991: 191-220) proposes a discrete
model which portrays the rise and decline of mass movements but does not
explicitly consider those who leave the movement. The model explains the
possible decline of collective action, and attributes it mainly to the fact that
participants’ demands are responded to by the government, so that govern-
ment opposition to collective action is not too strong. Although this rationale
is similar to ours, Chong’s model includes numerous parameters which are
difficult to estimate. The model proposed here only requires an estimate of the
ratio between the resources invested by the government to counteract protest
activity and the efforts of social activists to mobilize collective action. This is a
simple model of a complex dynamic.

4 Conclusion

The bandwagon effect is central in most dynamics of collective action — espe-
cially in explaining the rise and decline of mass movements. Any such dynamic
is influenced by the efforts and resources invested by social activists and the
government for and against collective action, respectively. This basic rationale
guides many analyses of collective action, yet none of them have attempted to
systematically explain these parameters by continuous time models.

The model developed in this paper highlights the central parameters in
determining the rate and nature of the bandwagon effect, and suggests math-
ematical tools for calculating the resources required to achieve a certain level
of collective action at a certain point in time. The model has characteristics
similar to those of epidemic models, which counteract the process of exposure
to and spread of infectious diseases. According to the same rationale, the
bandwagon effect develops when people are exposed to others who are willing
to take action and risk the consequences of their participation.

The main contribution of the model lies in the tools it proposes for
explaining or actually planning a certain bandwagon effect without direct
knowledge of the players’ beliefs and preferences. All that has to be known is
the size of the population, the number of participants at the starting point,
and the approximate ratio between the resources invested by the government
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and those invested by social activists. The estimation process involves varying
interpretations, but it is easier than precise identification of individual prefer-
ences and beliefs in society at large.

Furthermore, the theoretical framework enables to draw several testable
implications. First, both in the simple model, presented in Sect. 2, and in
the complex one, presented in Sect. 3, the final size of the movement, i.e., the
equilibrium, P(c0), does not depend on the number of participants at the
starting point, Py. Proposition 2 and the analysis that follows it show that in
the simple model the final size of the movement depends on the parameters r,
S and N, but not on the initial size of the movement. Figures 3 and 4 show
that in the complex model the final size of the movement converges to zero so
it does not depend on the initial number of participants. The time it takes the
dynamic to converge to zero depends on the parameters r, § and C, but not on
the initial size of the movement. This conclusion means that the number of
activists who initiate a mass movement does not influence the final results of
their activity. The efforts invested by that group and the resources invested by
the government to counteract this activity are the key factors in predicting the
outcome of this activity.

Second, Proposition 3 shows that in the simple model the time it takes for
the movement to reach approximately its equilibrium size, ¢,, depends on all
of the parameters in the system, including the size of the entire population, N,
and the initial starting points, Py and Cy. Thus, although a very small group
of activists can successfully initiate a mass movement, it may take much more
time to reach the maximal size as compared to initiation by a large group of
activists. This conclusion can explain the strategy of creating informal net-
works of social activists before making a protest movement visible.

Third, Proposition 2 shows that in the simple model the number of par-
ticipants in the movement, P(¢), is maximized either at the starting point,
when ¢ = 0, or at infinity depending on whether the expression fN — r is neg-
ative or positive, respectively. Regarding the complex model, Eq. (12)
r
B

mental theorem of epidemic shows that given Cy >

shows that given Cy < —, P(¢) is maximized when C = %, while the funda-

r
B
t=0. Yet, in the complex model the size of the movement at this point
depends on the initial number of participants, Py, while in the simple model it
does not. Again, this conclusion has practical implications for planning a
certain bandwagon effect.

Fourth, the complex model shows that the ratio between the initial number
of potential protesters, Cy, the leaving and joining rate, » and f respectively,
determines whether the movement will decline from the very beginning or will
grow up to a certain maximal level and then will decline to zero.

Finally, we should emphasize that ‘real-world’ applications of this theo-
retical framework do not require empirical measurement of individual prefer-
ences and beliefs. Therefore, such applications may improve our understand-

P(t) is maximized at
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ing of the shared mental models guiding individual behavior discussed by
Denzau and North (1994).

Appendix
Proof of Proposition 1

It is simple to verify by a conventional linearization method that if B < N, the

equilibrium [C = N, P = 0] is not stable, since for any deviation that increases

P to more than zero, the dynamic moves away from this point. However, the

system of differential Eqs. (3) and (4) is highly dependent, based on the ex-

pression N = P+ C. Substitution of this expression into (3) yields the dif-
. . dP ...

ferential equation i P(PN —r — pP). For a positive P, we find that when

r

B

is not asymptotically stable. When

< N, the derivative of P is positive. Thus, P increases with time and P =0

dP .\
% >N, i < 0 for any positive P, and

P =0 is the unique equilibrium and, in this case, it is asymptotically stable.

When /L); < N, the second equilibrium |P =N — 5, c="|is asymptotically

p B
stable, since if P > N — 1, then d—P <0Oandif P<N —1, then Q > 0. We
p dt B dt

conclude that P converges with the equilibrium and is thus asymptotically
stable.

Proof of Proposition 2

1. Refer to the system of differential equations (3) and (4). The variable P can
be eliminated from the first equation by substituting P = N — C in (4). This
r

yields, for 7 # N, the differential equation
dc
o = PN = C(@0)C() + r(N = C(1)). (AT
Separating variables, yields
1
dC = dt. A2
N = C)r=FO) (A2

We can rewrite the fraction and have

1 1 i -
r—ﬁN<N—c_r—ﬁc)dC_d’ (A3)
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Integrating (A3) gives

— /1>’N In(N —C) + —ll)’N In(r = fC) = t + constant (A4

or
r —IBC 1/(r=pN)

In (N — C) = t 4 constant. (AS)

From (A5) we have
—_ gC\//—BN)
f+constant _ A [— r ﬂ A
e ¢ (N -C "o

where A4 is a constant. Rearranging (A6) and extracting for C(¢) yields, after
substituting the initial condition C(0) = Cj, the result.

2. For N = _ the differential equation is

dcC 2
—=pN-C A7
=B -C) (A7)
Again, separating variables yields
1
—— dC = pdt. A8
Nopde=s (AS)

Integrating (A8) and substituting the initial condition C(0) = C), yields the
result.

Proof of Proposition 3

When N # %, the result can be obtained by substituting the function C(7)

from (7) into (9) and rearranging. When N = %, part 2 can be obtained by

C(t)— N

substituting C(¢) from (8) into v

‘ < o and rearranging.
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