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Bid costs and endogenous bid caps
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Benny Moldovanu™
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Aner Sela”

We study contests where several privately informed agents bid for a prize. All bidders bear a cost
of bidding that is an increasing funcrion of their bids, and, moreover, bids may be capped. We
show that regardless of the number of bidders, if bidders have linear or concave cost functions,
then setting a bid cap is not profitable for a designer who wishes to maximize the average bid.
On the other hand, if agents have convex cosl functions (i.e., an increasing marginal cost), then
effectively capping the bids is profitable for a designer facing a sufficiently large number of
bidders. Furthermore, bid caps are effective for any number of bidders if the cost functions’
degree of the convexity is large enough.

1. Introduction

m In many sport competitions, audiences are thrilled most when several teams or individuals
engage in close races. The bodies governing the competition rules in these events are interested in
creating what they call a “competitive balance.” In particular, this means increasing the expected
performance of a league as a whole rather than the performance of the top team or individual.'

Entry in professional competitions is often restricted, and only contestants that have achieved
a certain predefined minimum requirement are allowed to compete. Similarly, reserve prices and
entry fees are often used to exclude players with low valuations from an auction. Such procedures
can be beneficial for the seller in an auction (or for a contest designer) and have been amply
discussed in the literature. On the other hand, commonsense intuition suggests that imposing
upper bounds on bids will have a detrimental effect on the average bid level. Upper bounds will
obviously constrain high-valuation bidders. As a consequence, the prize will not necessarily go
to the agent who values 1t the most. This efficiency loss will, in turn, imply that the seller’s share
of the pie will be smaller.

But, contrary to the conventional wisdom sketched above, in many competitive situations
we often observe severe constraints imposed on contestants. For example, in sports in which
equipment plays a major role (e.g., sailing, motor racing, etc.) there are very strict, explicit or
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implicit technological constraints imposed on the allowed equipment.” Formula 1 racing cars
must be constructed such that they cannot run faster than an absolute limit of 360 kilometers per
hour. In addition, there are many stringent techmeal specihcations whose main goal 1s (o slow
down the cars under various racing conditions.” It is well known that the constraints bind, and
the Formula | competition is sometimes compared to a cat-and-mouse game among organizers
and engineers. Similarly, the mandatory specifications for racing yachts cover pages of arcane
technical detail,

In U.S. professional sports leagues (c.g., NBA, NFL), individual teams face annual caps
on the sum of money they are allowed to spend on salaries.* The usual explanation is that the
salary caps help even the competition between teams in large and small cities, since otherwise the
big-city teams could afford to pay more, would buy the best talent, and destroy any semblance of
competition in the league.” Salary caps® arc clearly binding, and teams are sometimes forced to
trade expensive players to make room for other needed team members.

To take some examples from other fields, consider first the much-discussed imtiatives to
cap both lobbying contributions (affecting the contests among lobbyists such as political action
commiltees) and spending (directly affecting the contest among candidates) in U.S. electoral
campaigns. An interesting question is whether these initiatives will induce the desired outcome,
1.e., a decrease 1n aggregate campaign expenditure.

The various member countries in the Buropean Union spend considerable resources (in the
form of tax rebates, tax exemptions, etc.) to attract capital. This contest 1s the mirror image of
a usual all-pay auction, since the prize goes to the lowest bidder. Various initiatives propose
a harmonization of capital laxation in the European Union. In particular, this may mean the
imposition of a minimum taxation of capital gains in all countries.” How will such a measure, if
introduced, influence the entrepreneurial decisions and the welfare of each country?

In this article we provide a model that explains the effects and use of endogenous bidding
constraints. Several results also have implications for auctions with financially constrained bidders
where the constraints may be exogenous.

In Section 2 we deseribe the model. Several nsk-neutral agents engage in a contest for a
prize. Each bidder is privately informed about her valuation for the prize. The function governing
the distribution of valuations 1s common knowledge, and valuations are drawn independently of
each other. Each contestant makes a bid for the prize, but bids are constrained to be lower than
a commonly known bid cap d that may be controlled by the designer. The contestant with the
highest hid wins the prize,® but all contestants incur a cost that is a strictly increasing function of
their bid (the cost function is common knowledge). This model is strategically equivalent to one in
which the value of the prize 1s known and the same for all contestants, but each bidder is privately
informed about an “ability parameter” influencing the cost functions (see Moldovanu and Sela,
2001a). Lower valuations correspond then to lower abilities, since a player with lower ability has
higher costs Lo provide the same bid (or effort). We differentiate among the cases where the cost
function is, respectively, linear, concave, or convex. There are several possible interpretations for
these features:

1 P . " a . = . ' y
- Antidoping rules play, in a sense, a similar role for sports in which external equipment 1s not crucial.

* Without going into very technical details, consider these rules: the cars have u maximal allowed EngIne capacily
af 3,000 cubic centimeters, at most 10 pistons, at most 5 ventils per piston, and at most 7 gears; they must weigh at least
OO0 kilograms und have maximal size of 435 x 180 x 95 centimeters.

* For example, in the year 2000, NFL teams laced a salary cap of $62,172,000 per club. A club’s top 51 salaried
players count towurd the cup.

7 Others see the cap as a device by which leam owners caplure some of the rents, rather than having all the rents
going to players. Fort and Quirk (1995) present empincul evidence that salary caps are nevertheless effective in restoring
“the competitive balance.”

" Furopean leagues do not have salary caps, but they do impose indirect limitations such as the number of foreign
(ie., expensive) stars. These limitations often lead to curious citizenship awards and legal battles.

T Al present Luxembourg, for example, does not tax capital gains at all.

" If several bidders make the same highest bid (a feature that arises here in equilibrium), then each of the high
bidders has the same chance o get the prize.
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(i) The agents are engaged in a contest where they all spend resources to win a prize. The
cost of a bid is an increasing function of the bid, but it becomes infinite above a certain
level that can be controlled by the designer.

(ii) The agents face an increasing cost of financing and an absolute budget constraint that
cannot be exceeded, but the designer may provide additional financing.

Each contestant chooses his bid to maximize expected utility. The goal of the contest designer
is to maximize the average bid at the contest (in an ex anfe symmetric model this coincides with
maximizing the expected sum of bids).

In Scetion 3 we analyze the case of linear cost functions and display the symmetric bidding
equilibrium for contests with an effective bid cap d. In equilibrium, each bidder makes a bid that
is a (weakly) increasing function of her valuation for the prize. Let b denote the bid function in
the symmetric equilibrium of an unconstrained contest (see Proposition 1), and let b~ (d) denote
the valuation of the agent that makes a bid d in this equilibrium. In Proposition 2 we show that
the equilibrium of the contest with bid cap d is characterized by a critical valuation ¢ = c(d) <
b (d) such that all lower types bid according to b, but all higher types make a bid equal to d.
A bidder with the critical valuation ¢ is exactly indifferent between bidding b(c) and d. Since
¢ < b~ '(d), the equilibrium bidding function is not continuous at the critical valuation.

For all types in the interval [¢, b~'(d)), the equilibrium bid in the constrained contest is
higher than the equilibrium bid in the contest without bid caps! This is the main “hidden™ effect
of bid caps. So to compute the overall effect of bid caps on the designer’s revenue, 1t 1s necessary
to compare this gain with the loss incurred because the constrained bid of all types higher than
b '(d) is lower than their unconstrained bids. A priori, it seems that the comparison depends on
the exact shape of the equilibrium bid function, i.c., on such factors as the distribution of types
and the number of bidders. Proposition 3 shows that with linear cost functions, the average loss
due to bid caps is invariably higher than the average gain, Hence bid caps are disadvantageous
for the designer. While we give a direct proof, this result can also be denved by Myerson’s
(1981) approach, which employs direct-revelation mechanisms. Note that in some cases (where
a regularity condition on the function governing the distribution of valuations’ is not satisfied),
Myerson’s revenue-maximizing auction does involve pooling and thus will also be inefficient.
But as our result suggests, this optimal pooling cannot be of the form induced by bidding caps.
In particular, the optimal auction never displays “distortion at the top.”

In Section 4, Proposition 4, we display the symmetric equilibrium bid function for the case of
strictly increasing (not necessarily linear) cost functions: this equilibrium is obtained by applying
the inverse cost function to the unconstrained part of the bid function and to the criucal value
obtained for the linear case, respectively. Proposition 5 shows that bid caps decrease the designer’s
revenue when she faces bidders with concave cost functions. In contrast, Proposition 6 shows that
for any strictly convex cost function, the introduction of effective bid caps strictly increases the
designer’s revenue if there are sufficiently many bidders or, alternatively, if the degree of the
convexily of the cost functions, measured by the familiar Arrow-Pratt coefficient, is large enough.
A (rough) intuition for this result is as follows: When there are sufficiently many contestants, the
chances of getting the prize are slim, and only a small measure of types will make very high bids.
Thus, the loss induced by capping the bids of high-valuation bidders is not too large.'"” On the
other hand, with increasing marginal costs, a slight increase in bids is relatively less costly for
a lower-valuation type. and more such types will find it optimal to increase their bid up to the
allowed maximum. Hence the measure of types for which the cap leads to gains for the designer
cets larger, and ultimately so large that it can dominate the losses sustained by capping the bids
of high-valuation bidders.

At the end of this section we display an example showing that if bidders have convex cost

? Our analysis does not depend on any regularity assumptions.
" This intuition applies in general, no matter the shape of the cost function,
© RAND 2002
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functions, setting a maximum bid is profitable for the designer even if she is allowed to imposc a
minimum bid."’
Concluding comments are gathered in Section 5. All proofs are relegated to the Appendix.

7 Related literature. The economic literature on contests and all-pay auctions is very large.
All-pay auction models with incomplete information about the prize’s value to different contestants
include Weber (1985), Hillman and Riley (1989), and Krishna and Morgan (1997), Equilibrium
uniqueness in such models with two players is treated in Amann and Leininger (1996) and Lizzeri
and Persico (2000). All these articles study models with linear cost functions and unconstrained
bidders.

Our article 1s closely related to several important contributions in the literature, Laffont and
Robert (1996) show that an all-pay auction with a reserve price is a revenue-maximizing mechau-
nism for selling one object to bidders that face linear costs and a common and common-knowledge
fixed budget constraint. In addition, these authors show that the optimal reserve price for finan-
cially constrained bidders is lower than the one without constraints. Since in their interpretation
the budget constraint is exogenously given, Laffont and Robert do not analyze what happens when
this constraint varies.

Che and Gale (1998a) calculate the bidding equilibrium of a complete-information, all-pay
contest with two bidders having different valuations for a prize and (using our terminology) linear
cost functions. In contrast to our finding with linear cost functions, they show that a bid cap can
imcrease the designer’s revenue. Their result is due to the ex ante asymmetry in valuations. Che
and Gale also make an application to political lobbying.'”

Che and Gale (1998b) study standard auctions for one object where bidders are privately
informed about their valuation and about their ability to pay (type spaces are two-dimensional).
In their model, the symmetric equilibrium bid function depends continuously on the valuation
and on the budget constraint. (Due to the technical complexity, Che and Gale do not analytically
compute equilibria, and their arguments are indirect ones.) Their main intuition is that auction
procedures that generate lower bids perform better because budget constraints will be binding for
fewer types. In particular, an all-pay auction revenue dominates a first-price auction, and a first-
price auction revenue dominates a second-price auction.'* This last result is shown to generalize
to frameworks where the winner incurs a bidding cost that is a convex function of her bid. As in
Laffont and Robert (1996), the budget constraints are taken to be exogenous and not subject to
variation.

Maskin (2000) focuses on the efficiency property of auctions in the presence of budget
constraints. While no mechanism can be fully efficient, in a symmetric setting he shows that an
all-pay auction is constrained efficient (i.e., maximizes expected welfare subject to incentive-
compatibility and budget constraints). This result is also due to the fact that in the all-pay auction
the bids are relatively low, and hence the budget constraint binds for fewer types (when the
constraints bind, the allocation may be random, and hence inetfficient).

Che and Gale (2000) describe the optimal mechanism for selling a good to a budget-
constrained buyer who is privately informed about her valuation and about her ability to pay.
This mechanism involves nontrivial price discrimination (whereas it reduces to a take-it-or-leave-
it offer if the budget constraint is known),

Pitchik and Schotter (1988) study complete-information sequential auctions with two finan-
cially constrained bidders and two independent objects. In particular, they point out that the order
of sale affects revenue. Benoit and Krishna (2001) extend this model to more than two bidders.

' Recall the $62,172,000 unnual sulary cap imposed on NFL teams, Interestingly, there 1s also 4 minimum salary
requirement of $51.561,000,

'“ Baye, Kovenock, and deVries (1993) also study an asymmetric model with complete information and show that
excluding some bidders may be advantugeous for the beneficiary of the lobbying activities.

'* Second-price auctions with two financially constrained bidders having affiliated signals are studied by Fang and
Parreiras (2002). They show how budget constraints may attenuate the winner's curse, making unconstrained bidders
maore ageressive,
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allowing for synergies among the objects and for budgets chosen by the bidders. They note that
the seller may benefit from the budget constraints, and that this feature cannot occur in their
model if only one object is auctioned. In their example, two objects are sold in a sequence of
second-price auctions to two bidders. It is optimal for one of the bidders to force up the price of
the first object because this depletes the budget of the other bidder, and the second object sells
cheaply. The seller's revenue is higher than in the unconstrained auction.

Moldovanu and Sela (2001a, 2001b) study the effects of the bidding cost function in a contest
model where the designer can split a fixed prize sum among several prizes and/or can split the
agents in several subcontests. They show that organizing a grand contest with a unique prize is
optimal if the contestants have linear or concave cost functions, but that organizing several parallel
subcontests with multiple prizes can increase the designer’s revenue if contestants face a convex
cost function.

2. The contest model

m  We consider n agents bidding for an indivisible object. Bidder i’s valuation for the object,
denoted by v;, is private information to i, i = 1, 2,...,n. All bidders other than i perceive v;
as a random selection out of the interval [0, 1], governed by the distribution function [, and
independent of other valuations. We assume that F is continuously differentiable. and we denote
by f the associated density function. We also assume that f(v) = 0 forall v £ [0, I].

Each bidder i submits a bid x; < d, where d & |0, 1] is acommonly known bid cap. The cap
can be exogenous (e.g., due to budget constraints) or controlled by the contest’s designer. Bids
are submitted simultaneously and independently of each other.

A bid x causes a cost g(x), where ¢ : R, — R, is a strictly increasing function, twice
continuously differentiable with g(0) = 0. The bidder with the highest bid wins the object,'
while all bidders incur their respective bidding costs. Thal is, the payoff of bidder i who has
valuation v; and submits a bid x; is either v; — g(x;) if he wins the object, or —g(x;) if i does not
win the object.

3. Linear cost functions
m In this section we assume that the cost functions are linear, 1.e., g(x) = x,

Proposition 1, Consider a contest where n bidders face linear cost functions and a hd cap

d > 1 — [/ F"~'(v)dy. Then the bid cap is not effective, and, in a symmetric equilibrium,' the
bid function of every bidder 1s given by

—

b(v)y=vF" ' (v) f F'1(y)dy, (o], (1)
0

Proof. Well known and therefore ommitted.

Proposition 2. Consider a contest where n bidders face linear cost functions and a bid cap 4 such
that 0 < d <1 — _fﬂl F=1(y)dy. In a symmetric equilibrium the bid function of every agent is
given by

h(v)y if0< v -
d ifc < v <

(L

b(v) =

c
(2
I <)

Ir'l.

'* If more than one bidder submits the highest bid. then the winner is randomly selected among the highest bidders
(each one of them has the same chance to win the abject).

'3 1t can be shown that the symmetric equilibrium is unique.
D RAND 2002
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where the critical value ¢ = ¢(d) is strictly monotonic increasing, and defined by

c(l —F%(¢c)) Py
H Frr :. Il 3
d= (T = Fe) fﬂ (y)d (3)

Proof. See the Appendix.'®

Example 1. Assume that n = 2 and that F'(v) = v (uniform distribution on [0, 1]). Assuming that
d < 1/2, the symmetric equilibrium bid function is given by

,lv? if 0 <v<2d
b(v)=1{ 2

d if 2d < v < 1.

Figure 1 shows the bid functions with and without a bid cap.
It 15 worth mentioning that the standard auction types are not revenue equivalent here. For
example, consider a second-price, sealed-bid auction. For any d <0 1, the equilibrium s given by

v H0<v<d

b(v) = ; -
d fd<wv<I.

In particular, there is no discontinuity in the bidding function, and no type bids more than in the

unconstrained case, It can easily be checked that the all-pay auction dominates here both 1in terms

of revenue and efficiency.

Proposition 3. With lincar cost functions, the expected sum of bids is an increasing [unction of
the bid cap d and of the number of hidders n.

In particular, the last result shows that regardless of the number of bidders, and for all
distribution functions, setting an upper bound on bids 1s not profitable for a designer facing ex
ante symmetric bidders with linear costs. This result should be contrasted with that of Che and
Gale (1998a), who showed that with asymmetric and completely informed bidders, a bid cap
may be advantageous for the designer. Although the effect they identify is clearly present in our
framework for specific reahzations of types, the previous proposition shows that no matter the
distribution of valuations, the average loss associated with handicapping high-valuation agents
dominates the average gain from having more ageressive middle-valuation agents.

4. Nonlinear cost functions

® In this section we allow the cost function g to depend nonlincarly on the bid x. We denote
by ¢! the inverse function of the strictly increasing function g.

Proposition 4. Consider an all-pay auction where n bidders have a cost function g and face a bid

capd suchthat 0 < d < g~ '(1 — ful F"Y(y)dy)." In a symmetric equilibrium, the bid function
of every agent 1s given by

1 ({5 P
fJ(U)=|E (b)) lefL s (4)

d if [l

' Laffont and Robert (1996) use a direct-revelation approach to calculate, for each type, the equilibrium probability
of getting the prize and the payment in a revenue-maximizing mechanism with a fixed budget constraint that is not subject
to variation. Thewr approach (which employs an addinional regularity condition on hazard rates) can be also used to derive
the equilibrium here.

' As in the case of linear cost functions, higher bid caps have no influence on bidding behavior,
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FIGURE 1
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where the critical value ¢ is defined by
1 {e(1 = F(c)) [fﬂq )
= = F Ndv ) . (5)
d=2 (n{]ﬂF(ﬂ}} i ()é:

Proof. Analogous to that of Proposition 2.

We first show that, similar to the linear case, when bidders have concave cost functions,
setting an effective bid cap is not profitable for the seller.

Proposition 5. With concave cost functions, the expected sum of bids is an increasing function
of the bid cap d.

In contrast, the next result shows that capping the bids is optimal for a seller facing a large
enough number of bidders with convex cost functions.

Proposition 6. 1n any contest where the bidders have convex cost functions, an effective bid cap
d increases the designer’s revenue if (1) the number of bidders n is large enough or (2) the cost
functions' degree of convexity (measured by the Arrow-Pratt coefficient) is large enough.'®

Example 2. Assume that F(v) = vand that g(x) =x",m > |l. letd,0 < d < [(n — 1)/n]'m,
be the bid cap. The symmetric equilibrium bid function 1s

{ 1/m
: lv" if0<v=<c
b(v) = { n

| d fe<y<l,

The critical value ¢ as a function of d is given by

dz(ml—whhy”ﬂ
n{l —c)

The average bid of an agent is

i 1 l/m nim i '
Ule.n) = [ blv)dv + (1 —c)d = (” ) i +—— (el =" (1 =" ']}“ :
JO H s + 1 f fm

'8 For this result we assume that density [ is once-differentiable and that the cost function g is three times
continuously ditferentiable,
i RAND 2007
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The optimal critical value ¢ 1s obtained by the equation dU{(c, n)/dc = (). Tt can be veritied
that for large enough n, dU(1, n)/dc < 0, and therefore the optimal value is strictly less than
one. That is, setting an upper bound d > 0 is profitable for the seller. If n 1s large enough. we can
ignore terms that are exponentially small, and it can be verified that the optimal critical value is
¢ = | /m. Inserting this expression for d, we obtain that the optimal bid cap for large n is

] |/
e (u(m l]) '

Let h~'(d) be the type that places a bid of d in the symmeiric equilibrium of the auction

without bid caps. We have
] 1/m
b '(d) ~ .
e (ﬂim - U)
fﬁ (d)

Note that | (d — b(v))dv is the average gain of the seller in the auction with bid cap
d relative to the same auction without a bid cap (where b(v) is the symmetric equilibrium bid
function in the absence of caps). Likewise, f,—}'_ (n(B() — d)dv is the average loss of the seller in
the auction with bid cap d relative to the same auction without a bid cap.

Since the bid function b is convex, the areas of the triangles A BAQ and A TOS in Figure 2
satisly

| . ~ b 'd) X
ABAO = =(b '(d) — e)Xd — b(c)) < [ (a' — bl.’v))du,

P3| — D

I
ATOS = _(b(1) —d)(1 — b~ '(d)) > f (h(v) — d) dv, (6)
h {d)

We proceed to show that for n large enough, ABAO = ATOS. By (6), this shows thal setting
a bid cap is profitable for the seller.
Simple calculations (neglecting exponentially small components) yield

1 | /i
ABAOQ ~ (—) G

tH

I l/n
ATOS ~ |1 — ) Cs,
nim — 1) -
where (', (> are constants.

By L'Hépital’s rule, we obtain that

l=1/m
§

. ABAO i
u!]—{.lf_};: ATOS ” HILHJU C3n

where C5 is a conslant,
Form > 1 (i.e., for convex cost functions), the ratio ABAO/ATOS goes to infinity when n
approaches infinity.

= Minimum bids and optimal mechanism design. For a fixed and binding budget constraint
d, Laffont and Robert (1996) have shown that an all-pay auction with a reserve price r is the
revenue-maximizing mechanism. Note that in this framework, standard auctions do not necessarily
allocate the good Lo the agent with the highest valuation, and they are not any more revenue
equivalent. If the seller can vary d itself, the question arises whether bid caps remain effective
when bidders with lower valuations can be excluded from the auction. The next example shows

o RAND 2002
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FIGURE 2
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that if bidders have convex cost functions, setting a maximum bid may be profitable for the
designer even if she is allowed to impose a minimum bid.

lixample 3. Assume that the seller imposes a minimum bid r > 0, and a bid cap d > r. Bidders
have quadratic cost functions, i.e., g(x) = x?%, and uniformly distributed values over [0, 1], i.e.,
F(v)=v.

Let b = h(r) be the lowest type that makes a bid of at least r, and let ¢ be the lowest type for
whom placing a bid d is a best reply (this is the critical value from above).
The average bid is given by

c | 2] Rt (] — =1 hn
f.r'r{t".h,n}=f \/1 v+ —dv+(1 =¢) c( C ) 1
i n

+ 2
i nil —c) n

A numerical analysis reveals that dU(c, h, n)/dh < 0 for n large enough and for all ¢ < 1.
This implies that for n large enough, the optimal h equals zero, i.e., the optimal r also equals zero.
Hence, the previous analysis applies and bid caps are optimal for sufficiently many bidders.

If the cap d is controlled by the designer, and if the ex ante symmetric contestants have
linear cost functions, our Proposition 3 shows that a binding cap is detrimental for the designer.
Myerson’s (1981) revenue equivalence result and his optimality analysis show then that an all-pay
auction without a bid cap but with a reserve price is revenue maximizing.

The revenue-maximizing mechanism for nonlinear cost functions is yet unknown, and may
not be an all-pay auction.'” Besides the advantage of bid caps displayed in the present article,
Moldovanu and Sela (2001a, 2001b) show that a designer facing contestants with convex cost
functions can improve her payoff by awarding several prizes or by organizing several subcontests.
Even a combination of bid caps, several prizes, and several subcontests may be advantageous in
some cases. The merit of each such procedure depends on the form of the function governing the
distribution of valuations. In general, we conjecture that even with ex ante symmetric bidders,
the precise form of the revenue-maximizing mechanism will depend on the distribution function,
thus reducing the practical applicability of such a scheme. In contrast, in this article we identified
a quite robust role for bid caps in a standard contest whose rules are fixed and do not depend on
features unlikely to be known to the designer.

1¥ For example. a referee suggested thut a first-price auction should do better than an all-pay auction with concave
cost functions (since having one bidder pay a lurge amount is cheaper than having many pay a small amount each).

© RAND 2001
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5. Concluding remarks

m  We have studied a model of all-pay contests where the designer can restrict bids from above.
This feature is often observed in real-life situations. In an ex ante symmetric model, we have related
the effectiveness of bid caps to the form of the bidding costs borne by the contestants. Bid caps
lower the bids of high-valuation (or high-ability) types but increase the bid of middle-valuation
types. Moreover, caps increase the average bid if the contestants face increasing marginal costs, bul
they decrease it if the bidders face constant or decreasing marginal costs. These results also have
several implications for auctions with financially constrained bidders where the seller can provide
financing. A possible extension is the study of the interplay between exogenous constraints (such
as budget limitations, which may be private information) and endogenous constraints, controlled
by the designer.

Appendix

o Proofs of Propositions 2, 3, 5, and 6 follow,

Proof of Propasition 2. Assume that the bid function of every bidder j, j 1, is given by

.J'-:.rhl] =yt 1{1*] o f F"~ l{_"lr",ld"'l.-' f0<pv<c

blv) = U
d fr<u<l,;
where the cntical value ¢ satisfies
¢(l — F'(c) P i
di= & : }—f F"~ ! (y)dy. (Al
nil — Fic)) 0
Note first that ¢ = 1 solves equation (Al) for d = | Jrﬂl F" Y {v)dy, and ¢ = 0 solves that equation for & = 0,
Maoreover, equation (A1) has & unigue solution in the interval [0, 1] foreach d, 0 = d < | — f”' F*1(v)dy, since the
function

{1 — F'(¢)) e | ; :
nu-;n-—(‘ : —f Fr ':ym-)= LH+f'[¢~_}+-.-}='”"[¢]}-.f F'~Y(y)dy
(1l — F(c)) il n 0

s strictly increasing on [0, 1]. For this last point, observe that for ¢ = 0,

] i Ly | ! H—
H(c)= =[flc) 4 (n = DF" ) fle)l + =L+ Fle)+ - K" Ne) — F" (e)
fl n

l
> —[1+ Fle)+-- F"Ye)] - F*l(c) > 0. (A2)
n
The last inequality follows because F"~'(c) < Fkic) forallk =0, ..., n — 2. In particular, this shows that the

critical value ¢ = e{d) is a strictly increasing function of the bid cap d (as long as the cap binds).
We now show that by (v) = b{v) is the best response of bidder i against the other bidders’ strategies. The maximization
problem of bidder i with valuation v < ¢ is given by

=1 =1 S
max (1 Fr73 b~ (x)) ;.) ;
subject tox < d.

Assuming that b;(v) is continuously differentiable for all v < ¢, we obtain the first-order condition

in — N F" ! (1‘: 'I[x]) I (.‘1_1{,\':}) (!'fr_lf_ﬂ:'jll)F —1=0. (A3)

[t can be verified that x = b(v) 15 a solution of the differential equation in (A3).

Consider now v > ¢. Obviously a bid x such that b(¢) < x < d is not a best response for bidder i, since every such
bid is dominated by x — ¢, where £ is a small positive number.
© RAND 2002,
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The expected payoff of bidder i with valuation ¢ that submits the bid b{c) = cF" ') M F'=Yyydyis

ek ) bn:r}:f F=(ywdy. (Ad)
fl

The probability of winning with a bid of d is

L /7 .
Pr(win) = F"'(e) + % ( ) F' =)l — Fie)) + - ( ) F' 2 ed1 — Fle) +

I 2
' | fn—1|
b (" | ) F* 40 — Fen? 40 = ( )u — Fie)"™!
44 3 n\n—|
r o I )
- £ (H )F" Hell — Fey! ™!
J=] J J = l
1 (" J j
- FFr—4{eX1 — F(c))
n(l — Fic)) ; (J)
1= F¢)
T on(l — F(o))

Thus, the expected payoff of bidder i with valuation of ¢ that submits a bid of d 15

et — F' ()

d. (AS)
n(l — Fic))

By setting (A1) in (AS), we obtain that bidder i with valuation v = ¢ is exactly indifferent between submitting
bic)=cF" {c) - f['r P 1(y)dy and submitting the maximum allowed bid . Similarly, all types v > ¢ strictly prefer
a hid b;(v) = d 10 any lower bid.

Finally, we want to show that forany d < 1 J[._: F'='(y)dy, wehavec < b '(d), sothat the constrained equilibrium
bid function displays a discontinuity at the critical value ¢. For this it is enough to show that

bic) = d =
- cll — F'e)) "
I-I.Ffl—“r{.}_ f !_""—I‘-'F:I{I]}, = I. e f Fﬂ I‘_F_}f.fp "’::b'
0 n(l — F(ch) 0

1 4
F*l¢) < - (1 + F() + F2e) + - - F""’(-:,':) |

n

The last inequality clearly holds, since F"~'(¢) < F¥(c)forany c < | and forany k, 0 <k <n -2 Q.ED.

Proof of Proposition 3. Fix the number of hidders n. Given the bid cap d (or, alternatively, the critical value ¢), each
agent's average bid is given by

e I
U[['.H.'I=f h[n]f[ujei;-.l+df flndve
] i
L '3 g
—-f vF""h']fllt‘Idv—f {f F*" Y y)dy)f(udv +d(l -~ Flc))
0 i iy

W E" () | TR S T - -~
— —f F {vydv — (F(w) F'""{yMy [ — Flivydv)y+ dil - Flc))
noodp NSy 0

0
: . n—=1 f*

o --f F" Y uyde + f F" (v,
rl 0 n 0

Differentiating with respect to ¢ gives

—

dl/(c 1
dt/{c, n) - m— P o)+
de n n

n—|

Fl(e). (AG)

Multiplying by n and recalling that 1 — s" = (1 —s)}1 +s+ st 45+ 871 yields

alnli(c, n))

: =(1 = F(e))(1 + F(c)+ FXc) 4+ F" %) = (n = DF"" (D)
r
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= (1 = FleDiln — DF" ()= (n — DF" ey = 0.

That 1s, the designer’s expected revenue, nl/ (e, m), increases in ¢.

We now analyze the dependence of the expected revenue on the number of lndders, For a lixed d, let ¢(n) be the
critical value (we now make the dependence on n explicit). Ohserve that ¢(n) increases in n. Since U(¢, n) increases in
¢, we obtain

(n+ )ietn+1)n+1) =0+ DUcn),n+ 1)

This yields
(n+ 1 {ecin+ 1), n+1) — nlli{cin), n) =
(n+ D)UAcin), n+ 1) ~ nU{c(n), n) =
f nF" vl = Flv)@rde = 0,
0
Thus, nl/(cin), n) increases in the number of bidders n. LD,

Proof of Proposition 5. An agent's average bid as a function of the critical value and the number of bidders is given by

Uie,n) = [ blv) flvyde +die) (1 — Fle)), (A7)
Jo
where
i
biv)=g~! (l:'F"_I{l."F —-f F""{_ﬂd}:)
. 0
and
) d 11 F"ﬂl".‘]:} " .
dicy=g"" ( - —f F”"'1f=)_
()=g (m’l — Fic)) 0 2y
Deline

el = F(e) f ETOUPT-E = J f
m=mic) = — F' vy = — File [ F" v ydy
Hl:l = FfLH i) l . ’ H) ; ¥ J0 “I} g

ell — F™'e))
—

F" e
nil — Flo)) ) W)

s =5(0)=

Then, we can rewrite d(r) and h(c) as
dic) = g_’{m}: bic) = ,q_'lm — 5. (A9)

Expanding ¢ ' (m — 5) to a second-order Taylor’s series near m, we obtain

J'J‘[-!.‘]:,H_i{m}—.b' (,{: I[’J}); +%.2(#_If.ﬁ:}}” . (A10)

r=m Xy

where m — 5 < v == m. Derivating d{c) with respect to ¢ yields

B | — F'() — nef (e)F" Vo) cfledl — F'(¢))
d'(c)= (g (x))a ( ' + = — [ ) :
S _ nil — Fic)) n(l  Fle)? () (AlD)
Differentiating with respect to ¢ in (A7) and substituting (A9), (A10), and (A11), we ubtuin
dl{e, n) .
o (Ble) — die)) fle)+ (1 — Flend'(r) (A12)

= ;; (R_I{I})l_m [l —F%e) ﬂi""“_lf-:.‘l'+nF"1rt.'}] + %ffc‘] (H_I[_IJ)H 52
- 2 =y
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Observe that | — F™(c) = (1 — Fle) (1 + Fle) + FYoe) - FO™ '{c]]. Thus, we have

H”[I',H}___ 1 1 4 -y i F A - pa—=lgn =] e l : i r 3
—an —;(E {rl)mmH—F{:n(HHCHF )+ --F'"7(e)=nF EL1]+2f{f:)(£ l-tj)m.c_

(A13)
Since g is increasing and concave, we have (e~ (x)) > Oand (g~ "(x))" == 0. Thereforc, the averuge bid is an
increasing function of the critical value ¢, and it is never optimal to set an effective bid cap, LED.

L is three times

Proof of Proposition 6, We assume here that [ 1s continuously differentiable at x = 1, and that g
continuously differentiable.

We will show that for any convex cost function g, we have dU(c, n)/de < U near ¢ = | for sufficiently large n.
Hence the designer's revenue is decreasing in ¢ near ¢ = 1, and an effective bid cap (i.e., ¢ < 1) is optimal.

The first equality in (A12) yields that £/'(1, n) = 0. For the second derivative we have

TLleml (@ —dVf+b—df - fd'+(—Fyd"]|, . (Als)

Hl‘.":' ol S
By (A9} we have

|
b’[l}:(g_'f[l —f F" ’{_ﬂdv}[n - 1) f(l), (AlS)
0

and by (AB) and (A9) we have

[ .=
d'(1) = (87 () yomaym (1) = (87 (X)) (E fin I)
1=l

I
|
=(g 1Y (I —f F"_'{yjd,v) Em — 1) F(1). (Al6)
(¥

That is. we obtain that
Hily=2d"(1). (A17)

Define now

) = eF* ) - f Fi=tyidy.
il

Observe that m(1)=t(1) = | — rr’i}l Fr=Y(y)dy. Hence (g~ '(m( ) = (g~ "] }J]f and (g '[m{l])” = (g1l N
Since b(e) =g '(He)) and dic) = g~ 'imic)), we have

! ' f
(1 = (g-lmn (n — lff"fnn(g"mn) ([n () (= Dn =221 +(n — nf’m) (A18)

| W % - B T AP
" _ I 3 _ q5d | 2ot oy
dai(l)= 3 (g tmtll) fe(1)n —1) +(g {m(l}) (2_;‘ (1n — 1)+ - 1'2_“_:{1 I})- (ALD)

Note that F(1) = | and that d”(1) = oc. By (Al4) and (A17), we now obtain that

02U (c. n)

T3 = [(b' - d)Vf+ b —d)f — fd + (1= F)d"]|_, = (p'(1)—2d"(D) f(1)=0.

=

We now show that the third derivative is strictly negative at c = 1. Dy continuity, it must be negative for some ¢ < |
We have that

P U(e, n)

— = b d" v 20 —dV b= — A = 2fd" + (1 = Fyd".

e
It can be verified that d"'(1) is finite. After rewrrunging terms and vsing (A17), we obtain

U, m

e = (b"(1) = 3d"(D)) FD)+d (D (1),

=l
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Recalling that ’;;“l J h=(01/3min  2n - 1) and using (A16). (A18). and (A19), we finally obtain

e n)

= =" () =3d"(Nf+d' (1) (1) =

= 2= 1222 (¢ D) 4 = 1y (27 m1)) £20) =

] it I
b 2 1. | - ~ - n
=(n—1)f {1}[4m H(g (m(1)) +(g {mm)] (A20)

By the convexity of g(x ), we have (g ~'(m(1))" = 0. Hence, for n large enough, we find that (1 /4)(n—1)(g ' (m(1))"+
(g7 'm(1)Y < Oand thus |3 U (e, n)/de ]|.o) < 0. Since 3*U(e, n)/3¢?]|.—; = 0, we obtain that ¢ = | is a maximum of
the function U (¢, n)/0c. Since [3U (¢, n)/dc]| =1 =0, thas yields U (¢, n)/d¢ < 0 for ¢ in the vicinity of 1, as desired.

For the second part of the propaosition, let ny be the lowest number that satisfies the inequality 4°U(e, myjae? < 0.
By (A20), the critical number ng is obtained by the equation

[g_]{m{l}l}”_ 4
(g=Ym()" n—1

Thus, the larger the degree of convexity (as measured by the Arrow-Pran coefficient), the smaller ny hecomes.
Q.ED.
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