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Models in marketing with asymmetric reference effects lead to nonsmooth optimization problems and differential games which cannot be
solved using standard methods. In this study, we introduce a new method for calculating explicitly optimal strategies, open-loop equilibria,
and closed-loop equilibria of such nonsmooth problems. Application of this method to the case of asymmetric reference-price effects with
loss-aversive consumers leads to the following conclusions: (1) When the planning horizon is infinite, after an introductory stage the optimal
price stabilizes at a steady-state price, which is slightly below the optimal price in the absence of reference-price effects. (2) The optimal
strategy is the same as in the symmetric case, but with the loss parameter determined by the initial reference-price. (3) Competition does
not change the qualitative behavior of the optimal strategy. (4) Adopting an appropriate constant-price strategy results in a minute decline

in profits.
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1. INTRODUCTION

The study of optimal dynamic strategies in economics and
in marketing has a long history. A unique feature of var-
ious models in marketing is an inherent asymmetry in
the effect of a perception of gains versus that of losses.
This asymmetry in consumers’ behavior, which is pre-
dicted by prospect theory (Kahneman and Tversky 1979)
and confirmed in numerous experimental studies, implies
that the corresponding optimization problem is nonsmooth
and therefore cannot be solved using standard optimization
methods. Although there is a large body of literature on
optimal control and differential games in economics, very
little is known about obtaining explicit solutions when the
model is nonsmooth. As a result, in many such cases “an
explicit solution...did not seem possible” (Kopalle and
Winer 1996), and calculations of optimal strategies were
limited to numerical simulations using dynamic program-
ming (e.g., Greenleaf 1995, Kopalle et al. 1996, Kopalle
and Winer 1996).

In this study, we present a new method for obtain-
ing explicit solutions to various nonsmooth optimization
problems which arise in quantitative marketing research.
Although we mainly focus on asymmetric reference-price
effects, our method can be applied to other nonsmooth
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models in marketing, such as promotion (Lattin and
Bucklin 1989) and product quality (Kopalle and Winer
1996). The purpose of this paper is thus twofold: (1) To
present a new method for obtaining explicit solutions to
optimization problems with nonsmooth references, and
(2) to analyze the effect of asymmetric reference-price
effects on optimal strategies.

Reference price is the price consumers have in mind
and to which they compare the shelf price of a specific
product. The main concept behind reference-price effects
is that differences between the reference price r and the
shelf price p affect the demand for that product. Specifi-
cally, when r > p, consumers are likely to sense a gain,
or a “deal” that will lead to increased demand, and when
r < p, consumers are likely to sense a loss that will have
a negative effect on demand. The asymmetry in reference
price effects comes from the fact that consumers are typi-
cally loss-aversive, i.e., the effect of losses on their demand
is greater than that of gains (e.g., Weiner 1986, Lattin and
Bucklin 1989, Rajendran and Tellis 1994, Mazumdar and
Papatla 2000). Because reference price is formed through
past exposures of consumers to the product price, the math-
ematical model for the optimal strategy leads to a non-
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smooth optimal control problem for a monopoly and to a
nonsmooth differential game in the case of competition.

In this study, we introduce a two-stage method for solv-
ing this nonsmooth optimization problem, as follows. In
the first stage, we consider the symmetric case when the
effect of gains is equal to that of losses. In this case, the
model is smooth, and we can use standard techniques to
calculate the optimal strategy. Then in the second stage, we
use the solution obtained in the first stage to construct the
solution for the loss-aversive (nonsmooth) case. In addition,
we prove that this solution is the global maximizer of the
nonsmooth optimization problem.

The mathematical model of symmetric reference-price
effects bears many similarities to the model of symmet-
ric sticky-price effects, i.e., when market price does not
adjust instantaneously to changes in quantities supplied.
Indeed, our solutions of open-loop and closed-loop equi-
libria in the presence of symmetric reference-price effects
(i.e., the first stage) are similar to the sticky-price solutions
of Fershtman and Kamien (Fershtman and Kamien 1987,
1990). The methodological contribution of this study is thus
in the extension of these techniques to nonsmooth models.
For clarity of presentation, we first present the two-stage
method for the case of a monopoly over an infinite plan-
ning horizon (§3). We then show how this method can be
extended to a finite planning horizon (§4), and to the case
of oligopolistic competition for both open-loop and closed-
loop equilibria (§5).

The calculation of explicit solutions provides a full char-
acterization of optimal strategies during the product life-
cycle. When the planning horizon is infinite, after an
introductory stage, the optimal price reaches a steady-state
value, which is slightly below the one in the absence
of reference-price effects. The optimal pricing strategy at
the introductory stage can be “penetration” or “skimming”
(i.e., below or above the steady-state level, respectively),
depending on whether the initial reference-price is below or
above the steady-state level, respectively. When the plan-
ning horizon is finite, there is a third stage toward the end
of the planning horizon where the optimal price declines.

The availability of explicit solutions results in a consid-
erable simplification in the analysis of the optimal strate-
gies, because one can analyze the solution rather than the
equation. Therefore, we are able to gain new insight into
the characteristics of the optimization problem and solu-
tion, which is hard, or even impossible, to obtain directly
from the model equations and/or from numerical simula-
tions. Thus, for example, we show that when consumers
are loss aversive, asymmetry has no effect on the optimal
strategy or on profits, in the sense that they are equiva-
lent to those in the symmetric case. Furthermore, compe-
tition does not lead to a qualitative change in the optimal
strategy (e.g., to a cyclic strategy). In addition, we show
that the loss of potential profits under a fixed-price strat-
egy (also known as EDLP (Every Day Low Price)), is quite
small (§6). This observation has considerable implications
for managers and provides strong support for the constant

wholesale price strategy used by Procter & Gamble or
General Mills (Triplett 1994).

In §7 we briefly discuss the validity of the results of this
study for general demand functions. In particular, we con-
sider the case where the asymmetric loss-aversion function
is smooth, rather than piecewise-linear. We conclude by
showing how our theoretical results can be applied to a
real-life situation (§8).

2. REFERENCE PRICE AND DEMAND
2.1. Reference-Price Formation

A reference price can be defined as an internal price to
which consumers compare the observed price. It is con-
structed by consumers through personal shopping expe-
rience and exposure to price information. Most studies
assume that the reference price is a weighted average of the
historical price exposures of the consumer. For example,
Sorger (1988) and Kopalle and Winer (1996) model the ref-
erence price r(t) as a continuous weighted average of past
prices with an exponentially decaying weighting function.
Therefore,

r(t) = Be P! /_ ; B p(s) ds, (1)

where 3 is the continuous “memory parameter.” An imme-
diate consequence of Equation (1) is that reference-price
formation is given by the ordinary differential equation

r'=p(p—r), (2
where
"= (d/dt).

In this paper, we calculate the optimal pricing strategy
over a planning interval 0 <7 < T, i.e., from # =0 up to the
planning horizon T. This problem can arise when a new
product is introduced into the market, or when a retailer
decides to start a new pricing policy at time ¢ = 0. In both
cases, the initial reference price r, = r(0) is one of the
external parameters of the model, which can be used to
replace definition (1) with

r(t)=e? |:r0+B/Ot P p(s) dsi|, 0<t. 3)

2.2. Effect of Reference Price on Demand

As in Greenleaf (1995) and Kopalle et al. (1996), we
assume that the demand function in the absence of
reference-price effects is given by

Qno-ref =a— 6p7 a, 0> O, (4)

and that in the presence of reference-price effects, the
demand function becomes

0(1) =a=dp(1) = ylp(t) —r()],

In other words, we assume that in absence of reference
price the demand Q, . is linearly decreasing in p, and

v > 0. 5)

no-re



that reference-price effects are linear in p —r and additive
such that demand decreases when p > r and vice versa.

When vy is constant, relation (5) is symmetric with
respect to the effect of gains and losses. However, prospect
theory (Kahneman and Tversky 1979) and empirical stud-
ies (Kalwani et al. 1990, Krishnamurthi et al. 1992, Lattin
and Bucklin 1989, Briesch et al. 1997) suggest that the
effect of losses on demand is larger than that of gains. To
account for loss aversion, vy in (5) is taken as

Ygain p ST
Yioss p=r

Y= with ygain < Yioss- (6)
In §7 we consider the case of a more general demand
function.

3. TWO-STAGE METHOD

In this section we introduce a two-stage method for cal-
culating explicitly the optimal pricing strategy in the pres-
ence of asymmetric reference-price effects. This method
allows us to overcome the inherent difficulty in this prob-
lem, namely, the nonsmoothness of the optimization prob-
lem. To maintain a clear presentation, we begin with the
case of a monopolistic retailer.

The overall profit of a monopolistic firm between r =0
and r =T is given by

Wip] = [ e Ip(0) el dr )

where « is the discount rate, ¢ is the production cost per
unit, Q is given by (5), vy is given by (6), and r(z) is
given by (3). The optimization problem for a monopolist
can, therefore, be written as a variational problem: Find the
optimal pricing strategy poyima (1) for 0 <t < T, such that

HT[poptimal(t)] maXHT[ (t)] (8)

To solve the optimization problem (7)—(8), we can use
relat10ns (2) and (5) to rewrite Equation (7) as II7 =
f F(t,r,r)dt, where the Lagrangian density F is given
in terms of r and r’ by

F(t,r,r)y=e" (r—i—%—c) |:a—5<r+%> —)’%]- ©)

3.1. Stage I—Symmetric Effect of Gains and
Losses (')’galn 'YIoss)
We begin with the symmetric case ¥y, = Yioss- In this case,

F is smooth and application of the Euler-Lagrange equation
OF Jor — ((d/dt)(dF /dr")) = 0 to (9) yields

T _'828(a+ﬁ) +ay
2(y+9)
(a+B)(a+dc)+ayc
B 2(y+9) ' (10)

The solution of Equation (10) is

roptimal(t) :pé;timal_’_Mle_mlt_’_MZe’nZt’ (11)
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where 7 (2) is the reference price that corresponds to
Poptimal (1), and M, and M, are constants whose value will
be determined shortly,

A—a A+«
m] = ) m2 = )
2 2
5 (12)
v+96
and
(a+pB)(a+0c)+ayc
optimal — . (13)
P 28(a+B) +ay
The boundary condition at t =0 is
r(0) =r,. (14)

Because there is no constraint at + = 7, when the plan-
ning horizon is infinite (7' = o0), r should satisfy the free-
boundary condition

lim r(t) < oo. (15)
1—o00

Because 0 < m, < m,, condition (15) implies that M, = 0.
Therefore, the solution of Equation (10) with the two
boundary conditions (14)—(15) is given by

roptimal(t) = p;;)timal + (7‘0 - pé;timal)e_mlt' (16)

By combining this result with (2), we see that the optimal
pricing strategy is given by

m —m
popﬁmam=pz;ﬁmal+<ro—pz;m><1—g‘)e )

To the best of our knowledge, Equation (17) is the first
explicit expression of an optimal pricing strategy in the
presence of symmetric reference-price effects. The reason
that such expressions have not been calculated before is
probably that previous studies calculated the optimal pric-
ing strategy using a discrete-time formulation (Greenleaf
1995, Kopalle et al. 1996). The discrete formulation is con-
venient for numerical simulations using dynamic program-
ming but cumbersome for obtaining explicit solutions. The
explicit expression (17) thus illustrates the advantage of
using a continuous-time formulation in this problem.

In most applications, unless F is convex in (r,r’), it
is not possible to prove that the solution of the Euler-
Lagrange equation is indeed a global, or even a local,
maximizer. However, in our case we can prove this result
rigorously.

PROPOSITION 1. The function pyima(t), given by (17), is
the global maximizer of the optimization problem (7)—(8),
i.e., U*[poyima ()] = 11%[p(2)] for all functions p(t).

PrOOF. See Appendix A. O
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3.2. Stage Il—Asymmetric Effect of Gains
and Losses (ygain < YIoss)

When we allow for asymmetry of the effects of gains and
losses on demand using relation (6), the Lagrangian den-
sity F in (9) is nonsmooth. As a result, standard optimiza-
tion techniques cannot be used. Nevertheless, we now show
that it is possible to calculate explicitly the optimal pricing
strategy in the asymmetric case Ve < Vigss- 10 dO 50, We
begin by considering the exponent m, and the steady-state
price pgiima as functions of vy.

LEMMA 3.1. Let pgina(Y) be defined by (13). Then
Popima (¥) decreases monotonically in vy.

Proor. This follows directly by differentiating p with

g;)timal
respect to y. O

Note that from Lemma 3.1 we have that pgy;.. (Vean) >
Poptimal(Yioss) When Yggin < Vio5s- We now show that the solu-
tion in the asymmetric case is given by an appropriately
chosen solution in the symmetric case.

PROPOSITION 2. Let 0 < Yy < Vigss and let T = oo. The
optimal pricing strategy for the asymmetric optimization
problem (7)-(8), with vy defined by (6), is given by
Equation (17), where the value of vy in m, (Equation (12))
and in pyna (Equation (13)) is given by

AR}
Yioss Iy < poptimal(yloss)?
p— vl S5 AR
Y=17 poptimal(%oss) <rh < popﬁmal('}’gain),

58
Ygain o > poplimal()’gain) ’

where 1y is the solution of Py (¥) = 1o, and thus Y, <
’)7 < Yioss:
PrOOF. See Appendix C. O

The explicit solution obtained in Proposition 2 allows us
to draw the following conclusions:

1. Because the optimal solution is equal to a solution of
the symmetric case, we get the surprising result that, aside
from the dependence of y on v, and Y, loss aversion
has no effect on either the optimal pricing strategy or on
profits.

2. The optimal price increases monotonically when
To < Popimai(Yioss) @nd decreases monotonically when r, >
pggtimal(’)’gain)’ When pg;timal(YIOSs) <h < pggtimal(‘)’gain)’ the
optimal price is given by pima () = 1y (see Figure 1).

3. From Propositions 1 and 2 it follows that the solution
calculated in Proposition 2 is the global maximizer of the
nonsmooth optimization problem (7)—(8).

3.3. Initial and Steady-State Stages

When the retailer follows the optimal pricing strategy (17),
market demand is given by

Qop[imal(t) =a-— 8p(§f)timal + Dl (r() - pg;lilnal)eﬂnlt’ (18)
where

DI:(8+y)%—5>O. (19)

Figure 1. The three cases for the optimal pricing strat-
egy in the presence of asymmetric reference-

price effects (Proposition 2).

p

optimal  |\r,>p>(y

p>(y

gain

Al

pSS(’Y|OSS) ' . <

5/B t

Note. Initial stage of optimal pricing strategy is “skimming” when r; >
Pyima (Yasn) (s01id line) and “penetration” when ry < plh (Vi) (dash-
dot line). When p3r i (Yeun) > To > Pipima (Yioss)s the optimal strategy is
p = r, (dashed line).

From (17) we see that the optimal pricing strategy begins
with an introductory stage that lasts several 1/m, time units
and is characterized by a monotonic change of the optimal
price from pgim, (0) to Poptima- Because 0 < 1—m, /B <
¥/(y+98) <1, we see that pyima(0) lies between py
and r,. The initial pricing strategy (penetration or skim-
ming) depends on whether r; is higher or lower than pg ;..
(Figure 1):

L. When ry < pgiyima» the retailer faces a low initial ref-
erence price. Therefore, its goal is for consumers to grow
quickly accustomed to the higher steady-state price pg .,
with minimal penalty in reduced demand along the way. In
this case, under the optimal strategy, the penetration price
Popiimat (0) is set lower than p. .. During the introduc-
tory stage the price increases monotonically, approaching
Poptimar- Throughout this stage the price is higher than the
reference price, but the difference between the two prices
vanishes in the steady-state stage. As a result, although
the price increases, demand builds up during this stage
(penetration).

2. When ry > pgiima» the retailer benefits from a high
initial reference price. Therefore, its goal is to reach
the lower steady-state price pgu;y,» While reaping maxi-
mal benefits from the increased demand along the way.
In this case, under the optimal strategy, the initial price
Popimat(0) is higher than pg. . During the introduc-
tory stage the price decreases monotonically, approaching
Poptimar- Lroughout this stage, the price remains below the
reference price. The retailer, therefore, utilizes the high
initial reference price to benefit from increased demand,
coupled with higher initial prices (skimming).

After the introductory stage, the optimal price reaches
the steady-state value pg ... As a result, the reference
price stabilizes at the same value and demand becomes

constant. The steady-state price p can be written as
optimal
no-ref

AR
optimal

a weighted average of p and the production cost per



unit c:
sS _ optimal
poptimal - (1 - Koptimal)pno—ref + Koptimalc’
ay (20)
K

optimal — m»

where p®"™* is the optimal price in the absence of
reference-price effects (see §6.1). Because 0 < Koptimal < 1,

the steady-state price pg;,, is below the optimal price in

the absence of reference-price effects, i.e., ¢ < Pyima <
oPimal T fact, because typically @ < 8, we can conclude
that Kgyimg < 1, and that p, is only slightly below
optimal “Note that when either @ — 0, or y — 0 or 8 — oo,

no-ref .
optimal

S
poptimal approaches Pro-ref -

s
optimal

4. FINITE PLANNING HORIZON

When the planning horizon is finite, the only difference
in the model equations for the optimal pricing strategy is
that condition (15) is replaced with the finite free-boundary
condition (see, e.g., Kamien and Schwartz 1991):

F.(T,r(T),r (T))=0. (21)

The solution of Equation (10) with the two boundary con-
ditions (14) and (21) is given by (11) with

M, = (Bla+(8+7)c = Piima (28 +7)]
+e" 1 (Ppima = 70)[2(8+7) (my+B) — ¥B]) /
([2(6+v)(B—m;)—yBle™™"

—[2(8+7v)(my+B) —yBle™"),
MZ:rO_pf);timal_Ml' (22)

Therefore, the optimal pricing strategy for a monopoly in
the presence of symmetric reference-price effects over a
finite planning interval is given by

ss m —myt
pnptimal(t) = pop[imal +M1 <1 - E)e

+M2<1+%)e’"2’. (23)

In Figure 2, we present the optimal solution (23) in a
finite planning interval. As in the infinite-horizon case, the
introductory stage is followed by a steady-state stage. In
contrast to the infinite-horizon case, however, there is an
additional third stage with decreasing price levels. Intu-
itively, the reason for this is that toward the end of the plan-
ning interval there is no need to make long-term reference-
price considerations. Therefore the monopoly can reap
maximal profits by lowering its prices to benefit from the
increased demand.

5. OLIGOPOLISTIC COMPETITION

In this section, we extend the model to the case of
oligopolistic competition of N firms, possibly with differ-
ent production costs. By applying the two-stage method,
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Figure 2. The optimal strategy over a finite planning

horizon (Equation (23)).

p

optimal

1 .88
\ poptimal

0 t T

Note. Solid and dotted lines correspond to the cases ry < pgyip, and ry >
Popimal> TESPECtively.

we calculate the equilibrium strategies in the loss-aversive
case, which turn out to have the same qualitative fea-
tures as in the monopoly case. We conclude, therefore, that
competition does not add a new qualitative feature to the
model.

We denote the production rate at time ¢ of the nth
firm by ¢,(¢). The total production rate in the market is
given by

(1) = 2 4, (1). (24)

As before, we assume that the total production rate is equal
to the market demand rate. The total profit of the nth firm
is given by

LACHORENNO) =/O e “[p(t)—c,lq.(1)dt, (25)
where ¢, > 0 is the production cost per unit of the nth
firm, and the price-demand relation is determined from (5)
and (6). Thus, whereas in the monopolistic model the
decision variable can be either the price p(¢) or the pro-
duction rate Q(¢), in the oligopolistic model the players’
decision variables are their production levels g, () (Cournot
competition).

5.1. Open-Loop Equilibrium

Let us calculate the equilibrium strategies for the case
where every retailer knows the other retailers’ strategies
(open-loop equilibrium). The optimization problem for the
nth retailer is

max 7, (¢, ---» qy)> (26)
4, (1)

subject to (2), (5)(6), and (24), where {g,},, is given.

As in the monopolistic case, since the optimization prob-
lem (26) is nonsmooth, we solve it using the two-stage
method. We begin with the symmetric case.

PROPOSITION 3. Let Vg = Vipss @d T = oco. Then, the
open-loop equilibrium strategies for the optimization prob-
lem (26), subject to (2), (5)-(6), and (24), are given by

n 1 _ aﬂy
QOpen—loop(t) = NQOPBH'IOOP(I) + (C — Cn) |:8 + m] s

n=1,....,N, (27)
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where
Qopen-loop(t) =a— Spg;en,loop
s m .
+(r0_p?)pen-loop) ((5+7)E1 —8)6 lts

the steady-state price is

o _(atB)(a+dNO) +ayNe
Popen-loop = 6(N+1)(a+ﬁ)+a{N»y ,

the average production cost is given by ¢ = (ZnN:1 ¢,)/N,
my is given by
_A-a

m; =

YB(N —1)
2 26+ Y)(N+1)

and

yB(N —1) 2 (a+B)(N+1)6+aNy
\/<(8+y>(zv+1>_“> T vy

The corresponding price and reference-price trajectories

are given by
my —mit
popen—loop(t) = pf;;en-loop + (rO - péfnen-loop) (1 - F) e,

and

—mt
ropen—loop(t) = pfxf)en-loop + (rO - pcs);en-loop)e e
Proor. See Appendix D. O

From the explicit form of the solution in Proposition 3,
we can draw the following conclusions:

1. The equilibrium strategies are qualitatively the same
as in the monopolistic case. In particular,

(a) Because m, > 0, we see that equilibrium strategies
stabilize on a constant steady-state, rather than a cyclic one.
Thus, the addition of competition does not result in high-
low strategies.

(b) When 7y > pitenioops theN Popenioop(f) decreases
in 7. When, however, ry < Py then Popenioop (1)
increases in t.

(¢) The steady-state equilibrium price py, o0, 1S @
weighted average of the equilibrium price in the absence
of reference-price effects pyo . = (a+8Nc)/6(N +1) and

the average production cost c:

p(if)en-luop = (1 - Kopen»loop)ng-ref + KOPe“'l(’OpE’
ay
K = ’
open-loop (a+B)S((N+1)/N)+ay

Therefore, ¢ < pienionp S Prorer- 10 addition, when either
a— 0,y 0orf— oo, then pP.100p = Prorer-

2. From (27) it immediately follows that firms with
lower production costs per unit have higher equilibrium
production paths, namely, if ¢; > ¢; then g}, 100(f) <
quen_lmp(t). In particular, when marginal costs of all firms
are equal, ie., ¢, = ¢ for all n, then @}, 1.,(1) =
(1/N)Qopen-toop (1) for all firms.

3. Clearly, when N =1 the equilibrium strategy reduces
to the optimal pricing strategy for a monopoly, which we
calculated in §3.

To extend the results to the loss-aversive case, we con-
sider the exponent m; and the steady-state price pgi.. o0
as functions of y. Then, we can apply the same proof as in
the monopolistic case (Appendix C), to prove the following

result.

PROPOSITION 4. Let 0 < Yy < Vioss and T = co. Then, the
open-loop equilibrium strategies for the optimization prob-
lem (26), subject to (2), (5)—(6), and (24), are given by
(t) in (27), where the value of vy in p2 ()

n
qopen-loop open-loop

and m,(vy) is given by

AR}
Yioss  To < popen-loop(%oss) ’
p— 7 S5 ARY
Y=Y pOpen-loop (YIoss) <Ip< popen-loop ( ygain) ’

AR
Vgain Iy > popen-loop ( Ygain) ’

and 7y is the solution of Py, 100p(¥) = To-

5.2. Feedback (Subgame Perfect) Equilibrium

According to the definition of an open-loop equilibrium,
retailers commit to their strategy and are not allowed to
change it during the planning horizon. Thus, the open-loop
concept is equivalent to finding the Nash equilibrium of a
static game where the set of strategies for each firm is the
set of all the possible production paths where each path is
a time dependent function. Because of this precommitment
feature, it is not clear whether the open-loop equilibrium
can predict the behavior of a dynamic competition, where
firms can be expected to adapt their strategies to changes in
the market. A more realistic model is, therefore, the feed-
back equilibrium, where firms are allowed to change their
strategies in response to changes in other firms strategies.
This equilibrium is equivalent to a sub game perfect Nash
equilibrium in a discrete game (Selten 1975) and satisfies
the backward induction property.

The symmetric feedback equilibrium can be found by
solving the Hamilton-Jacobi-Bellman equation. The calcu-
lations turn out to be similar to those of Fershtman and
Kamien (1987) for the (smooth) sticky prices model. As
in the open-loop case, this approach does not work when
the asymmetry of consumers’ response to gains and losses
is included in the model, because then the corresponding
optimization problem is nonsmooth. We shall see, however,
that one can overcome this difficulty as before by applying
the two-stage method: Calculate explicitly the equilibrium
in the symmetric case, and then use this solution to find the
equilibrium in the asymmetric case.

We recall that, in general, a firm’s strategy at time ¢
depends on both the state variable r(¢) and on ¢. In the
case of an infinite planning horizon, however, the equi-
librium strategies depend only on r(t) (see, e.g., Kamien
and Schwartz 1991). Therefore, we can adopt the following
definitions.



DEeriNITION 5.1. The feedback strategy space is given by
9" ={4(r) | 4(r) = 0, g(r) is continuous in r}.

DEFINITION 5.2. An N tuple of strategies (§,(r),...,
gy(r)), each in ¢/*, is called a feedback equilibrium if for

every g, € ¢'”, 1, and r(t,) and for every n,n=1,..., N,
TG -+ s Guets Gus Quirs -+ s to» 7(20)]

> Wri[qu’ LR} q\n—l’ qn’ én-%—l’ R qAN’ z‘0’ r(tO)]’
where 7,15y Gty Gus Gurts -5 dvs Lo T(Hp)] =

e [p(t) —c]q, dt, and p is determined from (5)—(6).

Let us denote by V,(ty,7,) = m,[q1s---» qns tos 7(%)]
the total discounted profit of the nth firm under the equi-
librium strategies {g,}"_, for 7, <t < oo when the initial
reference price is r, = r(f,). Because the equilibrium feed-
back strategies do not depend on ¢, then V, =V, (r, ).

We now apply the two-stage method to find explicitly the
feedback equilibrium strategies. To avoid technical compli-
cations we assume that the production costs are identical
for all N firms, ie.,c,=c,n=1,...,N.

)

5.2.1. Stage 1: The Symmetric Case. In the sym-
MEtriC Case Yioq = Yean» the optimization problem is
smooth. Hence, the feedback equilibrium strategies satisfy
the Hamilton-Jacobi-Bellman equations for infinite horizon
planning (Starr and Ho 1969, Kamien and Schwartz 1991).
Substituting ' = B(p — r) in these equations gives

dv,(r)
dr

av, ) =mx [ =00+ 2 po-nl. e

The solution of Equations (28) leads to the following result:

PROPOSITION 5. The unique set of feedback equilibrium
strategies is given by

()= STV BNE L (248
('Ifeedback r)y= N+1 N+1 y N r,
n=1,2,....,N, (29)
where
B (6+Y)(N+1)> vy
G+y(N+12 v\ ¥
‘J (20> 55) — 2 @
and

B=(2(a—(8+7y)c)(AB(N —1)+ Ny)
+2AB(a+(8+y)Nc)(N+1))/
((B+7)(N+1)*(a+B)—2BN(QAB+7Y)). (31)
ProoF. See Appendix E. O

Thus, the feedback equilibrium strategies gL, .. are lin-
ear functions of r. Note that A and B are constants that
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depend on the demand function parameters and can thus be
estimated empirically. Furthermore, the equilibrium strate-
gies are symmetric in the sense that they are the same for
all firms.

Given the equilibrium strategies, we can recover the
equilibrium trajectories of ¢"(¢), p(t), and r(¢).

PROPOSITION 6. The feedback equilibrium trajectories are
given by

n 1 s Mieedback
qfeedback(t) = ﬁ [a - 6pfeedback + <(6 + 7) T - 8
' (r() - pé:edback)emf%dbmk[} ’ (32)

ms,
S8 eedback
Preedback (t) = Pfteedback + <1 - >

B
“(ro = Pleedback )€ ", (33)
Fieedback (1) = Plecaback T (o = Plecdpack )€ ™', (34)
where
o a+(6+vy)Nc+ BB

Preedback = 8(N+1)+'}’N—2Aﬁ’

B 2AB+vy
Micedback = ﬁ(l - m) > 0.

ProoF. The trajectory (34) was already calculated in
Appendix E. From this, the expressions for p. g (f) and
qgleedback(t) follow. 0

(35)

From Proposition 6 we see that the trajectories of the
feedback equilibrium strategies have the same qualitative
behavior as in the case of monopoly and in the case of
open-loop equilibrium, i.e., when p ...« < 7o, the market
equilibrium price is monotonically declining towards the
steady-state pg, x> and so on.

5.2.2. Stage 2: The Asymmetric Case V,,;, < Vios  AS
before, to calculate the solution in the asymmetric case,
we consider the steady-state price pg. ... the constants A
and B, and the coefficient myg g, as functions of the
parameter 7.

LEMMA 5.1. Let pg. .. (v) be defined by (35). Then,
D avack (¥) decreases monotonically in vy.

PRrROOF. It is easy to see that

dpggedback (7)

0.
dy =

y=0

Therefore, it follows that pf,..(v) is monotonically
decreasing for +y sufficiently small. Although we do not
have a proof for a general y, we have verified this result
numerically over a large range of parameters. [

The following proposition is an extension of Proposi-
tions 5 and 6 for the asymmetric case.
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PROPOSITION 7. Let 7y be given by (6). Then the feedback
equilibrium strategies §f.q..(*) are given by (29), and
the corresponding equilibrium trajectories for qf..q.. (1),
pfeedback(l‘)y and rfeedback(t) are given by (32)_(34)’ where
the value of vy in the expressions for m(vy), A(y), B(y),

and P (Y) is given by

Yioss Ip < pgesedback (71055) s
Y= 77 pggedback ( YIOSS) <h < p%gedback(’yzgain) > (36)

’)’gain Iy > pggedback(ygain)’
and 7 is the solution of pfs. .« (V) = 1.

PrROOF. See Appendix F. O

6. COMPARISON WITH SUBOPTIMAL
PRICING STRATEGIES

In this section, we compare the optimal pricing strat-
egy in the presence of reference-price effects pyma(?)
with several other pricing methods that retailers can adopt.
We begin with the classical demand-supply model with
no reference-price effects. We then consider a myopic
(greedy) model, where reference-price effects are included,
but instead of global planning the retailer maximizes short-
term profits. We conclude with a third strategy of an opti-
mal EDLP, in which reference price is included in global
planning, but the price is held constant throughout the plan-
ning horizon. For simplicity, we present the results for a
monopoly and for the symmetric case Yy, = Vioss- Lhe
extensions to an oligopoly and to the loss-aversive case are
straightforward.

6.1. No Reference-Price Model

The classical demand-supply problem for a retailer is to

find the optimal price p”™*' that maximizes its profits

I1(p) in the absence of reference-price effects, namely

H(p) = (p - C)Qno—ref(p)'

optimal __
no-ref

arg max [1(p),
»

timal
Pt can be calculated from the con-

) = 0. For example, when Q, ... = a—6p,

The optimal price p
dition IT'(p™™

no-ref

optimal — a+ oc
Pro-ref 28

Naturally, in the absence of reference-price effects (e.g.,

v =0 or B — ), the optimal pricing strategy reduces to
optimal

poptimal (t) = Puo-ref +

(37)

6.2. Myopic Price Strategy

Under the myopic strategy, the retailer takes into consid-
eration reference-price effects. However, unlike the opti-
mal strategy, the retailer adopts a short-sighted approach
and determines the price so that it maximizes instantaneous
profits:

p(t) = arg max (1),

(38)
7 (1) = (p(t) —c)a—=dp(1) = y[p(1) = r(1)]].

The dynamics of p under this myopic strategy for
both finite and infinite planning horizons, is given by
(Appendix B)

sS

pmyopic ([) = pmyopic

Y 55 = ((r428)/ Q91
+——(ro— e , (39
2('y+6) ( 0 pmyoplc) ( )
where
K imal
p:;lgyopic = (1 - Kmyopic)pggfrefa + Kmyopicc’
Y (40)

Kmyopic = m

We note that although the price and the reference price
stabilize at the same value pg . . the effect of reference
price does not disappear, as is evident from the fact that
Pinyopic # pore ! Finally, we note that, as expected, as
a — oo the optimal policy turns into a purely myopic one:

hma—)oo poptimal(t) = pmyopic(t)'

6.3. Optimal EDLP Strategy

Our model does not take into account costs associated with
price changes such as printing, invoice processing, and
order size. Because the accumulated costs of price changes
during the planning horizon increase with the number of
price changes, there is a tradeoff between additional costs
and profits associated with price changes. The retailer may,
therefore, want to consider adopting a strategy that limits
the number of price changes. Here we consider a rather
extreme case—that of a pricing strategy where the price
is held constant throughout the planning horizon. A priori,
this constraint may seem to be too restrictive and to result
in a considerable decrease in profits, compared with the
optimal strategy. However, one of the surprising results of
this study is that the relative loss of potential profits under
this strategy, compared with the optimal one, is quite small.
Let us calculate the optimal constant price poa™!
under this strategy. In this case, the optimization problem
becomes
T

max / e (p, — c)[a—8p. —y(p. — r(t))]dt,

where p. is independent of time. Using (3), it is simple to
show that in this case

r(t)=p.+(ry—p)e ™, (41)

and
10 () = (0| o 1= o)

Y(VO_PC) —(a+B)T ]

+ ——(1 =P
(a+B)

Therefore, the optimal EDLP over an infinite planning

interval (T = o0), is given by

optimal __ optimal\ _optimal optimal o +c
DepLer = (1 — Keprp )pnu—ref + KgpLp 5 (42)




where

optimal Y
==\ 43
KgpLp 5(1+B/a)+y (43)

Clearly, 0 < K;‘Sﬁfl < 1 and in the absence of reference-

. - optimal optimal
price effects (y =0 or 8 — o0), pgpip reduces to po e

Note that unlike p3},.» poml does depend on r,,. How-
ever, the effect of 7, is relatively small, since oo < 8 implies

optimal

that ki p < 1.

6.4. Comparison of Alternative
Pricing Strategies

In this section, we compare the four pricing strate-

. optimal optimal .
gies poptimal(t)’ Pro-ret > pmyopic(t)’ and Peprp 1D terms
of price dynamics and combined profits (here we use

opumal o calculate the loss of potential profits when firms
ignore reference-price effects). The price remains constant
under the no-reference price and the optimal EDLP strate-
gies. In the case of the myopic approach, after an initial
transient the price stabilizes at a constant value. The opti-
mal pricing strategy, Popima» has a short introductory stage
and a steady-state region when the planning horizon is infi-
nite, and an additional short final decline stage when the
planning horizon is finite. In the case of the two noncon-
stant strategies, Pyopic(?) and poyimg(7), the value of 7,
determines whether there is an initial decrease or increase
but has no effect beyond the introductory stage. In the case
of the two stationary strategies, the value of r, affects the
value of p?n™ but has no effect on the value of po*om".

Under all four strategies, price is constant except for per-
haps short transients at the introductory and/or final decline
stages. Therefore, one can estimate the total profits under
all four strategies by fOT e “(p.—c)(a—bp,)dt, where

. . s optimal optimal

the constant price p, is equal t0 pgiias Proret » PEpLp » and
Prnyopic> fOr the optimal pricing strategy, the no-reference
price strategy, the optimal EDLP strategy and the myopic
strategy, respectively. In addition, because a < 3, in light
of (20), (42)—(43) we have that
Piysina ~ PEDLP. ™ Proset - (44)
Therefore, although profits under pgn,(t) are greater
than those under p(r) = pgs's', which in turn are
greater than those under p(r) = p®™, the differences in
profits under these three strategies are small (see Figure 4).
However, from (40) we see that p;,.;. can be significantly
lower than p™™ Therefore, the loss of potential prof-
its under the myopic strategy can be substantial. Because
the penalty for adopting an optimal EDLP strategy is sur-
prisingly small, firms should consider whether this small
penalty will not be offset by the elimination of the added
costs involved in price changes.

7. GENERAL DEMAND FUNCTIONS

In this study, we assumed that the demand rate is linear in p
and piecewise-linear in (p —r) (see §2.2). Although these
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assumptions are quite common in the marketing literature,
it is natural to ask whether the results of this study would
remain valid for more general demand functions. The short
discussion below suggests that this is indeed the case.

Let us first consider the assumption that the demand
rate in the absence of reference-price effects Q, ¢ is lin-
ear in p. It can be shown that the essential properties of
the optimal strategy (an introductory stage followed by a
steady-state stage, (p — r) does not change its sign in the
symmetric case, validity of the two-stage method in the
loss-aversive case, etc.) remain valid when the demand rate
is monotonically decreasing in p and the profit rate is con-
cave in p, i.e.,

2

d
N Qno»ref (p) < 07 @

dp [(P - C)Qno-ref(p)] <O0.

We now consider the role of nonsmoothness in the
model. The nonsmoothness of vy as a function of (p —r)
in (6) is not based on some solid data, but rather on the
methodology of the empirical studies which measured 7y as
a function of the sign of (p — r) rather than as a function
of (p —r). Therefore, a reasonable assumption would be to
remove the nonsmoothness by replacing y with a smooth
function, which we denote by v,, that preserves the prop-
erties of (6), namely, 7, is monotonic in (p —7r), ¥ X Vgin
when p < r, and vy, = vy, When p > r. For example, the
functions

Yulp—r)=

ain + 0ss oss — /gain -
yg N + ! 7g arctan p—r ,
2 T h

h>0, (45)

satisfy all the above requirements. Note that vy, ap-
proaches (6) as i — 0.

When we replace vy, as given in (6), with vy,, the asym-
metric optimization problem becomes smooth and can thus
be solved using standard optimization methods. In that
case, however, the Euler-Lagrange equation is no longer
linear. As a result, it cannot be solved explicitly but only
numerically. A typical comparison of simulation results
of the smooth asymmetric model with the corresponding
explicit solution of the nonsmooth asymmetric model for a
monopolistic firm is given in Figure 3. It can be seen that
the change of the asymmetry model has a relatively minor
effect on the optimal price. In particular, the property that
(p —r) does not change its sign seems to be insensitive to
to the exact details of the asymmetry modeling.

8. EMPIRICAL ILLUSTRATION

In this section, we show how our theoretical results can
be applied to a real-life situation, using empirical data for
the peanut butter category from Greenleaf (1995). In that
study, the demand function in the presence of reference-
price effects was estimated as

0,00 = 308.3 — 1,878.9p, (46)
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Figure 3.

(a) Optimal pricing strategy with nonsmooth (Equation (6), dashed line) and with smooth (Equation (45)

with & = 0.5, solid line) asymmetric reference-price effects. (b) The difference (p — r) in the nonsmooth and

smooth asymmetric models.

3.5

poptimal

Note. Here, Yy, = 1, Yios = 1.5, 1y =5,=2,2=0.05,c=1,a=10, and § = 2.

where p is measured in dollars/ounce and Q is measured
in ounces. For simplicity, we consider the symmetric case
with ¥ = (Vgin + Yioss)/2 = 6,709.2. We use the average
price p,, = $2.57/(28-ounce jar) as the initial reference-
price ry. A reasonable value for the discounting rate for
commercial firms that reflects the excess risk involved in
operating in a specific industry (as opposed to the risk-free
interest rate), is & = 0.1/year.

Because peanut butter is a mature, well-established prod-
uct, of most importance are the steady-state price levels.
Our explicit solutions allow us to calculate these values
directly, using Equations (13), (37), (39), and (42). In
Table 1 we present the steady-state price levels under the
different pricing strategies for cost levels of $1.60-$2.40/
(28-ounce jar). It can be seen that the steady-state price of
the optimal pricing strategy (Pgyima) 18 just below the thi-
mal price in the absence of reference-price effects (poim™),
in agreement with the discussion in §3.3, and that the opti-
mal EDLP price poh™ is quite close to these two, in agree-
ment with Equation (44). The steady-state myopic price
Prmyopic> 1 contrast, is much lower than these three prices,
in agreement with the discussion in §6.4.

Using data from Briesch et al. (1997), we estimate that
B(peanut-butter) ~ 4.5 /year. Using expressions (17), (37),
(39), and (42), we can write explicitly the different dynamic
pricing strategies for peanut butter at any given time
during the planning horizon. For example, when ¢ = $2
and the planning horizon is infinite, then pyimy(?) =
3.25 — 0.36e 0047, (1) = 3.30, Pryopic(f) = 2.47 +
0.04¢706 and p2™* () = 3.22, where ¢ is measured in
weeks.

The explicit expressions we obtain allow us to compare
the profits under the different strategies. In Figure 4 we plot
the profits under the four pricing strategies for peanut but-
ter as a function of planning horizon 7. Because maximal
profits are attained with pg;.,, we present the profits of
the three suboptimal strategies relative to the one obtained
with pgimg- The most striking result in Figure 4 is that
profits under the optimal EDLP strategy are only slightly
below those of the optimal pricing strategy. In addition,
when T > 1/, the penalty for ignoring reference price

altogether, ie., p = psgfir?fal, is small. Finally, we note that

the penalty for adopting the myopic strategy is quite sub-
stantial. These results, therefore, confirm the estimates for
the profits under the different strategies of §6.4.

9. FINAL REMARKS

Asymmetry in marketing models leads to nonsmooth opti-
mization problems. As a result, it was widely believed that
it was not possible to obtain explicit solutions in these
cases, and that it was necessary to resort to numerical sim-
ulations. In this study we have shown that it is possible to
obtain explicit expressions in asymmetric models using a
two-stage approach, where the solution of the symmetric
problem is used to construct a solution in the asymmetric
case. Because asymmetry is an important feature of mar-
keting models, our two-stage method is relevant to a variety
of other marketing models.

The explicit expression for the optimal pricing strategy in
the presence of asymmetric reference price-effects adds to
the existing literature on reference price theory as follows:

Figure 4. Profits under the three suboptimal pric-
ing strategies: p(t) = poemt (solid), p(r) =
poriml (dashed) and Pryopic (1) (dash-dot), rel-
ative to the profit under the optimal strategy
Popiimat> a8 @ function of planning horizon T
100 ]
o 9 Lo
§/ N P
E sof N7
o /~
ot /AN
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Steady-state price levels at different cost levels.

Pricing Strategy  Steady-State Cost=$1.6 Cost=$1.8

Cost=%2 Cost=9%2.2 Cost=3%2.4

No-RP effects ot $3.10
Optimal Poptimal $3.04
EDLP Piplr. $3.02
Myopic Pryopic $2.14

$3.20 $3.30 $3.40 $3.50
$3.15 $3.25 $3.35 $3.46
$3.12 $3.22 $3.32 $3.42
$2.30 $2.47 $2.63 $2.79

1. The two-stage calculation of the optimal pricing strat-
egy is simple and amounts to substitution of parameters in a
formula. As a result, unlike calculations using dynamic pro-
gramming, it is not limited by the number of price changes
nor by the number of firms.

2. Analysis of the qualitative features of the model is
much simpler because one can directly analyze the solution
rather than the equation. Thus, analytical results (e.g., con-
vergence to a steady state) that require considerable ana-
lytical effort under previous formulations (Kopalle et al.
1996) become almost trivial once the explicit form of the
solution has been obtained.

3. As we obtain an explicit expression for the optimal
steady-state price pg,, We are able to fully character-
ize it, showing, for example, that it is slightly below the
optimal price in the absence of reference-price effects.

4. Unlike previous studies that focused on the steady-
state stage, we are able to fully characterize the introduc-
tory and final stages, both in terms of duration and in terms
of penetration or skimming.

5. We show that both open-loop and feedback competi-
tion do not add new qualitative features to the model. In
particular, they do not lead to high-low pricing strategies.

6. Our two-stage method leads to the surprising result
that loss aversion has no effect on the optimal pricing
strategy, except for the value of the loss parameter .

7. Our analysis shows that retailers can obtain near-
optimal profits with the EDLP strategy. Because this strat-
egy has many other advantages that were not taken into
account in our model (simplicity in implementation and
analysis, elimination of costs associated with price changes,
etc.), our study provides strong support for this approach.

APPENDIX A: PROOF OF PROPOSITION 1

We verify that 7,ma (7), given by (11), satisfies the follow-
ing three conditions, which are sufficient for it to be the
global maximizer of the variational problem (7)—(8), i.e.,

[ FIt. e 0). P01t > [ L1, (0. 7 1))

for all functions r(f) such that r(0) = r, (see, e.g.,
Brechtken 1991):

CONDITION 1. 7m0 (7) is regular, namely
0
F;"’r’ = E’r’(t’ roptimal(t)’ r(/)ptimal([)) # 0’ 0 < ! < T.

PrOOF. From (9) we have that F?, = —2(y + 8)B~*
e £0. O

ConbpITION 2. There is no conjugate point to t = 0 for
Foptimal (£) 10 (0, T'], i.e., there is no point 7. € (0, T'], such
that R(z.) =0, where R(t) is any nontrivial solution of the
Jacobi equation

d
[E%RY—Pﬁ—gfﬁ1R=0, R(0)=0. (47)

Here Fror = Frr(t’ roplimal(t)’ r(/)ptimal(t)) and Fror/ = Frr’(t’
roptimal(t)7 r(;ptimal(t))'

ProoF. The Jacobi equation (47) is simply

1 ’ 26(a+B)+ay _

The solutions of Equation (47) are given by R(¢) =
ky(e™' —e~™"), where m, and m, are defined in (12) and
k, is an arbitrary constant. Therefore, because m, > —m,,
there is no ¢, € (0, T] for which R(z,)=0. O

ConNDITION 3. The Weierstrass e-function
e(t,r,r',q)=F(t,r,q)—=F(t,r,r')=F,(t,r,r')(g—7)

is negative for every (¢, 7,7, q) such that r € [0, T], g € R
and g #r'.

PROOF. Some technical calculations yield e(¢,r, /', q) =
—(y+8)B e ¥(r—g)?<0. O

APPENDIX B: MYOPIC STRATEGY
We differentiate 7, given by (38), with respect to p and

equate it to zero to get

a+ (y + 3)C + ’Yrmyopic(l)
Pmyopic(t) = 2(’y+8)

(48)

Substituting p,,qpic (£) from (48) into the relation (2) yields
the equation for 7, (1):

( v )_a+(y+6)c

l_uy+& T 2(y+9) B

4
rmyopic + Brmyopic

r(0) =r,.

Solving this equation and substituting 7, (¢) into (48)

myopic
gives (39).
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APPENDIX C: PROOF OF PROPOSITION 2
Let us denote the profits under a price strategy p(t) by

8Os Yot POV = [ € (p(1) = ) Q(0) .

where Q is given by (5), r is given by (3), and vy is
given by (6). Then g increases monotonically in y,,, and
decreases monotonically in vy,,. In particular,

g(Ygain’ Yioss p(t)) < g(’y~7 Fy~; p(t))
for all y such that Yy, <V < Vioys-  (49)

Let us also denote the maximal profit in the asymmetric
case by

G(Yga.in’ yloss) = Supg(’}/gaim Yioss> p(t)) (50)

p(t)

Then from (49) and Proposition 1, we have that

G(Ygain’ 71055) < G(y’ ’}7) <0
for all y such that Y, <V < Yo (51)

1. When pgima (Yean) < 7o from (16)—(17) with y =

Yeain WE have that p iy (1) < Fopima () for all £ > 0. There-
fore, g(ygain’ Yioss> poplimal(t)) = g(Ygain’ ’Ygain; poplimal(t)) =
G (Ygain» Yeain)- On the other hand, from (50)~(51) we have
that

g(Ygain > Vloss> poptimal (t)) < G(’Ygain ’ 71055) < G('Ygain ’ Ygain) .

Combining the last two relations gives that g(¥ein> Yioss:
Poptimal (1)) = G(Ygains Vioss)» Which is what we wanted to
prove.

2. When pgi)timal(’ymss) < o < p;;ﬁmal(’Ygain)’ then
Poptimal (t) = Topima (1) =1 for all £ > 0. Let y be such that
Popimat(¥) = ro. From Lemma 3.1 we have that v, <
')7 < Yioss- Therefore’ g(Ygain’ YIoss;poptimal(t)) = g(’)7, 7~;
Poptimal (1)) = G(¥,¥). On the other hand, g(Ygins Vioss:
poptimal(t)) < G(ygain’ ’YIoss) < G(’)Nl’ i) Combining the last

two relations gives g()’gain’ Yioss> poptimal(t)) = G(’Ygaim ’YIOSS)'
3. The proof is the same as in part (1).

APPENDIX D: PROOF OF PROPOSITION 3

We give here only the sketch of the proof, as it is similar to
the one in the monopolistic case. Using (5), we can write
the optimization problem (7) as

o0 1
max [ e a—Q+vyr—(8+vy)c,)q,dt,
ma [ ¢ 5 (@ Q4 yr=(6+7))q

B
a—Q—6r).

5y @—0-0n

The current value Hamiltonian for the nth firm is given by
1

= a—Q+vyr—(6+1v)c,)q,

3“,( O+ yr—(8+v)c.)q
B
)16+‘y

subjectto ' =

n

+A (a—Q—ér).

Therefore, the first-order conditions for equilibrium are

J0H 0H
=0, N =a\, ——=, n=1,...,N,
aq, or

subject to the free-boundary conditions lim,_, e~ *'A,(¢) =
0forn=1,...,N, and r(0) = r,. Solution of these equa-
tions yields the desired results.

APPENDIX E: PROOF OF PROPOSITION 5
From (5) we have that

_a—Q0+vyr

o 8+y

In light of (52), the right-hand side of (28) is quadratic and
concave in ¢q,. Hence, its global maximum with respect to
q, 1s attained at

(52)

dav,(r)

dr (53)

Go=a+yr—0—(+y)c—B

where Q = 221:1 g, Summing this relation over all n yields

é:N+1<a+yr—(6+7)c—%Vr>, (54)

where

V=Y vm. o=y

n=1 n=1

Thus, we have by (52) and (54) that

a+yr+(6+7y)Nc+BV.(r)
G6+y)(N+1)

p= (55)
Summing (28) over all n gives aV = (p — c)§+ B,
(p — r). Substituting Q and p from (54)—(55) in the last
equation yields

N
aV:—(8+y)(N+1)2[a+yr—(5+7)c+BV,]
[orrr-Game- G ]+ i

Ja+(64+7y)Nc+BV,—(6+7y)(N+1)r+vyr]. (56)
The solution of (56) is given by
V(r)=Ar*+Br+C, (57)

where

G+NN+1? vy
8B2N 28

G+NINF? v\

A=(a+2P)

B is given by (31) and C is a constant whose value does
not affect the equilibrium strategies. The following lemma
rules out the larger value of A in (58).



LeEmMA E.1. The equilibrium strategies are stable if and
only if A is given by (30).

Proof. From (55) and (57) we have that

a+vyr+(8+y)Nc+ BQRAr+ B)
(6+y)(N+1)

p= (59)

Substituting p into (2) yields

a+(8+7y)Nc+BB+r(y+2AB—(6+7y)(N+1))
(6+7y)(N+1) '

r=p

The solution of this equation, subject to r(0) = ry, is
given by (34). Because r(f) should remain bounded as
t — oo, the stability condition is Mg, > 0, or Y+2A8 <
(6+7v)(N +1). Using (58), the stability condition can be
rewritten as

(8+7)(N+1)?
48N

5 2y
o ((wop 1D Y

(a+2B)

<(@+y)(N+1).

The lemma is thus proved if we can show that

(0+7y)(N+1)? P
\/<(0‘+2.3)4/3—N—7> -

(N+1)
48N

> (6+y)(N+1)‘l—(a+ZB)

Taking the square of both sides yields, after some
manipulations,

o(a+2P)
——~ > —a(o ,

BN > —a(6+7y)
which is always true because all parameters are positive. [

Substitution of V(r) from (57) in (54) gives the equilib-
rium value of Q:

-~

0=t

<a+yr—(8+7)c—£(2Ar+B)>. (60)

We now prove that the equilibrium strategies are symmet-
ric. Therefore, dividing (60) by N yields the equilibrium
strategies (29).

Lemma E.2.

1
|% =V =1,...,N.
()= SV()

ProOF. Substitution of (53) in (28) yields a set of N dif-
ferential equations

s AV
aV,=(p=—)d,+—tB(p=r) n=1,....N. (61)
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Eliminating p and ¢, from (61) and using (53), (59)—(60)
yields the linear differential equations

dv,
dr

B(c—r)—= —aV,=H,r’+ H,r +Hj, (62)
where {H,}3_, are constants that are independent of n. The
solutions of (62) are of the form

V.(r)y=A,r"+B,r+C,. (63)

Let us assume that there exist k # j such that V; # V;. From
(62) it follows that

@V, = Vi) = Ble =) 4 (V,= )

Therefore, V; =V, = E(c — r)*/B, where E # 0 is a con-
stant. However, by (63), we have that V; —V, is of the form
V.=V, =(A;—A)r’+(B;—B,)r+(C;—C,), which is a
contradiction. [

APPENDIX F: PROOF OF PROPOSITION 7

To calculate the feedback strategies in the asymmetric
(nonsmooth) case, it is useful to work with the integral
relation (Definition 5.2), rather than with the differential
one (Hamilton-Jacobi-Bellman equations). Let us denote
the profits of the nth player under a strategy g,, given

Q—n = Zk#n qub-game’ by

8 Vi Y 4 0-) = [ € (p(1) = ©)g, (1) dr.

)

Then g, is monotonically increasing in 7,,, and monoton-
ically decreasing in 7,.,. The rest of the proof is exactly
the same as in Appendix C.
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