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We consider a potential bioterror attack on an airport. After the attack is identified, the government is
faced with the problem of how to allocate limited emergency resources (human resources, vaccines,
etc.) efficiently. The government is assumed to make a one-time resource allocation decision. The optimal
allocation problem is discussed and it is shown how available information on the number of infected pas-
sengers can be incorporated into the model. Estimation for parameters of the cost function (number of
deaths after the epidemic is over) is provided based on known epidemic models. The models proposed
in the paper are demonstrated with a case study using real airport data.
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1. Introduction

Since the fatal attack of anthrax on the US postal office in the
fall of 2001, bioterror has become a realistic threat. The US popu-
lation is more vulnerable now to the smallpox virus than three
decades ago as a result of the discontinuation of smallpox vaccina-
tion in 1972. Henderson (1999) presents a discussion on the
threats of bioterrorism with special attention to smallpox which
is regarded, together with anthrax, as one of the two greatest po-
tential bio-weapon threats.

Bozzette et al. (2003) call attention for the relevance of the sub-
ject and point out the magnified effect of bioterrorism if done in an
airport. The web page of the Federation of American Scientists dis-
plays the Congressional Research Service Report on the bioterror-
ism detection program known as BioWatch. The severity of an
airport attack discussed in Bozzette et al. (2003) and the fact that
the US government has a program for bioterrorism detection sug-
gests that the matter is not only an academic concern but it is a de
facto concern. In addition, Jane’s Homeland Security & Resilience
Monitor (2004) cites Mark Cetron, president of a risk assessment
company working for both the FBI and the Department of Defense,
as evaluating the chance of terrorists obtaining smallpox to be
about 80%.

There are two streams of research that discuss the new threat of
smallpox bioterror attacks. One stream focuses on studying the
ll rights reserved.
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transmission of smallpox and examining the impact of pre- or
post-event vaccination strategies and control policies. Bozzette
et al. (2003) develop scenarios of smallpox attacks and present
a stochastic model of outcomes under various control policies
(vaccination of contacts of infected persons and isolation of pa-
tients, pre- or post-attack vaccination of either 60% of the popu-
lation, or 90% of the health care workers, or both). Bauch et al.
(2003) present a synthesis of game theory and epidemic model-
ing that formalizes the conflict between self-interests of individ-
uals and group interest for the population. They show that
voluntary vaccination is unlikely to reach the group-optimal
level.

The other stream of research attempts to address the process of
post-event vaccination in the case of smallpox. Kaplan et al. (2002)
propose a continuous-time model with 17 ordinary differential
equations. The details of their model are reported in Kaplan et al.
(2003), in which they model the ‘race to trace’ (i.e., attempting to
trace and vaccinate an infected person when (s)he is still vac-
cine-sensitive). Meltzer et al. (2001) construct a Markov chain
model to describe the epidemic progression of smallpox through
a susceptible population. They examine the impact of quarantine
and vaccination, separately and together on the spread of smallpox
and find that only a combination of vaccination with an effective
quarantine may eradicate the epidemic.

Kaplan et al. (2003) propose a model (hereafter KCW) based on
the SEIR Model. The basic SEIR model (see for example Bauch et al.,
2003) considers four basic stages of the disease: First stage is when
the individual is susceptible (S), he/she is asymptomatic, non-
infectious and vaccine-sensitive; in the second stage the individual
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3 The airport city where the attack occurred is a dummy destination.
4 If the attack occurs simultaneously in several terminals in different cities we do

416 O. Berman et al. / European Journal of Operational Research 219 (2012) 415–424
is exposed (E), is asymptomatic, non-infectious and vaccine-insen-
sitive; the third stage is when the individual is asymptomatic,
infectious (I) and vaccine-insensitive; and finally, the individual
is symptomatic and either removed (death) or recovered (R). Peo-
ple who get a vaccine in the first stage will shift from the Suscep-
tible group to the Recovered group. KCW offer more complex
analysis when they incorporate queueing issues. Similarly to the
basic SEIR model, KCW offer an approximation to the exact solu-
tion under some mild assumptions.

In this paper, we focus on the post-event response. We discuss
how a government should react and allocate limited resources (hu-
man resources, vaccines, antibiotics, etc.) to minimize the expected
cost (number of deaths) in the aftermath of a bioterror attack using
smallpox or a similar agent on a major airport. Once the bioterror at-
tack is identified, the government can assign additional centralized
emergency resources to each destination city1 to deal with the
disaster along with existing initial resources. We discuss two cases
regarding whether or not the initial resources in each city could be
re-allocated to other cities. We construct a cost (number of deaths
after the epidemic is eradicated) function based on results from KCW.

This paper considers a bioterror attack on an airport using some
biological weapon (i.e., smallpox, etc.).2 The occurrence of the at-
tack remains unknown (except to the terrorist) until the time when
some infected passengers start showing symptoms. After the attack
is identified, the government is faced with the problem of how to
allocate limited emergency resources efficiently to the different cit-
ies. The location of the attack can be identified after a few cases of
infections are observed. The health care authorities can trace back-
ward and cross reference the time and location where infectious pas-
sengers are identified to the time of flights and the airport terminal
where the attack occurred.

The government is assumed to make a one-time resource allo-
cation decision and possible subsequent reallocations are ignored.
However the Center for Disease Control (CDC) calls attention to the
need for vaccinating not later than 4 days after contact with an
infectious person in order to prevent or modify the disease (CDC
Interim Smallpox Response Plan and Guidelines, Draft 2.0, Novem-
ber 21, 2001, Atlanta). Since reallocation is time consuming and the
time window for applying the allocation decision is small, realloca-
tion of resources may not be even a feasible option. Therefore, a
good single (or first) allocation decision is very important for the
success of fighting the epidemic.

The number of passengers who get infected is not known when
the resource allocation decision is made. However, the cumulative
number of passengers who have been showing symptoms by a spe-
cific time is a useful information. The optimal post-attack allocation
problem is analyzed, and available information on the number of ini-
tially infected passengers can be incorporated into the model.

The cost functions used are based on known epidemic models
and estimation of parameters of KCW. We prove convexity of the
objective function with respect to the decision variables (subject
to two reasonable conditions) which makes the solution tractable.
We also solve the problem of minimizing the maximum number of
deaths when little is known about the number of infected passen-
gers arriving at each destination. In fact, our results suggest that in
this case the airport is not the best place to perpetrate the attack.
We provide an approach to solve the allocation problem taking
into account information on infected passengers (i.e., a posterior
analysis) and we demonstrate our models with a small case study
using data from the Long Beach Airport.

We show the advantage of our approach by comparing it to two
myopic approaches that may be used by the government. There is
1 The destination city of the passenger from the airport where the attack occurs.
2 Different diseases affect in different ways the parameters of the cost function

which are introduced later.
limited research about a potential bioterror attack on airports. We
have identified one as mentioned above, but, to the best of our
knowledge, none is addressing the problem of allocating resources
for mitigating its effect.

The remainder of the paper is organized as follows. In Section 2,
we present a model in which the government has to make a one-
time resource allocation decision after identifying a bioterror at-
tack. In Section 3 we discuss how to solve the allocation problem.
In Section 4, we analyze the problem of allocating resources to
minimize the maximum number of deaths. In Section 5, we study
the problem using information on the number of passengers in-
fected so far. In Section 6, we discuss an application of our models
in a case study with real data of a small airport. In the last section,
we provide concluding remarks.

2. The model

Let N = {1, . . . ,n} be the set of cities with flights arriving from the
airport where the attack occurs; Ki denotes the total number of
passengers flying to destination city i,3,4 i 2 N, of which I0

i is the
number of initially infected passengers flying to city i. Note that
I0
i ’s are unknown and thus treated as random variables. The govern-

ment has a total of R emergency resources available excluding initial
resources that may already exist in each city.5 Let p be the probabil-
ity for a passenger6 to get infected when an attack occurs. Suppose
that the government can make a one time decision on where to allo-
cate resources after the attack is recognized and later on they cannot
change that allocation (e.g., moving vaccinators between cities is not
efficient). We consider two cases regarding p: known and unknown.
When p is unknown which we term ‘‘stochastic’’, we mean that
based on experts’ opinion a distribution of p can be assessed. We
note that Bozzette et al. (2003) consider high or low impact of air-
port outbreak disease (namely, high or low p).

Let fi li; I
0
i

� �
, where li is the total number of resources allocated

to destination city i, be the cost (number of deaths after the epi-
demic is over) at city i given that the number of initially infected
passengers to city i is I0

i . Note that if there are already l0
i existing

resources prior to allocation, then l0
i is included in li. Thus, the

authorities minimize the total expected number of deaths:

f R; fKign
i¼1

� �
¼ min

li ;i¼1;...;n

Xn

i¼1

Ep;I0
i
fi li; I

0
i

� �
s:t:Xn

i¼1

li � l0
i

� �
6 R

li P l0
i i 2 N:

ð1Þ

Note that when p is a known constant, the expectation in
f R; fKign

i¼1

� �
is only with respect to I0

i . The problem (1) is a resource
allocation problem (see Ibaraki and Katoh, 1988).

To find the value of fiðli; I
0
i Þ one can solve numerically a SEIR

model with vaccination. As our model will lead to an extremely
complex problem with high computation time using the exact ap-
proach, an approximation is needed. The approximation suggested
by KCW which we simplify is included in the on-line supplement.

The one-time decision is made at time t P tmin (the detection
delay). For the time being, we ignore the information on the num-
ber of infected passengers that are already identified by time t and
not need to change the model but we should aggregate the number of passengers
going to each destination city.

5 A resource unit might be interpreted as a vaccinator.
6 Passenger in the airport where and when the bioterror occurs. We note that the

value of p might be different for different individuals.



Table 1
Notation used and accepted parameters values for smallpox (KCW).

Parameter Description Accepted
values

Mi Population size of city i
r1 Disease stage 1 rate (3 days)�1

r2 Disease stage 2 rate (8 days)�1

r3 Disease stage 3 rate (3 days)�1

r4 Disease stage 4 rate (12 days)�1

d Smallpox death rate 0.30
g Vaccination fatality rate 10�6

vr Vaccinator vaccination rate 200 person/
day

IðiÞj
Number of infected at city i, stage j when disease
is discovered

I0
i

Initial number infected in city i

R0 Basic reproductive rate [3,6]
tmin Detection delay 5 days
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therefore we do not update the distributions of I0
i according to this

knowledge. Assume that p is a random variable and I0
i jp � BðKi; pÞ

(a Binomial distribution with parameters Ki and p) implying that

for each city i, E I0
i

� �
¼ Ki�p, where �p ¼ EðpÞ if p is stochastic and

EðI0
i Þ ¼ Kip if p is a constant.
When using the Binomial distribution we make three assump-

tions: (i) each passenger can be treated as a trial of an experiment;
(ii) the trials are independent; and (iii) the probability p remains
identical in all trials. The first assumption obviously holds. The sec-
ond assumption also holds since during the attack there is no per-
son-to-person contamination and it takes a few days of incubation
until an infected individual becomes infectious. The third assump-
tion is the strongest since the probability of getting infected may
be indeed different for different passengers but it is impossible
to get such information and therefore the assumption is quite
reasonable.

Proposition 1.

E½fiðli; I
0
i Þ� ¼ fi li; E I0

i

� �� �
¼ fiðli;Ki�pÞ:
Proof. The cost function fi li; I
0
i

� �
given in (A.1) (see the on-line

supplement) is linear in IðiÞj ; j ¼ 1;2;3;4. From (A.2) we find that
IðiÞj ’s are linear in the initial number of infected passengers I0

i and
thus fi li; I

0
i

� �
is linear in I0

i . h

In order to avoid the use of additional parameters, we will not
use the notation Ki and p in the model we introduce shortly. Notice
that when existing (prior to an attack) resources at city i can be
transferred to another city, li may be less than l0

i . Therefore, we
make the following classification in terms of the value of li’s
accordingly: (i) li P l0

i ;8i 2 N; (ii) li P 0 (namely, the authorities
can shift some or all the initial resources available in city i). We
first consider the case where li P l0

i ; i 2 N. Let R0 ¼ Rþ
P

i2Nl0
i .

The problem is to allocate the resources available R0 (I0 is a vector
of I0

i values),

f ðR; I0Þ ¼ min
li ;i¼1;...;n

X
i

fiðli; EðI
0
i ÞÞj

X
i

li 6 R0;li P l0
i

( )
: ð2Þ

The disease stage rates are considered deterministic parameters.
The same is implicitly assumed in KCW. Table 1 below summarizes
the main parameters used herein.

3. Solving the model

From the on-line supplement, fi li; I
0
i

� �
can be expressed as
fi li; I
0
i

� �
¼ a0

l2
i

þ a1

li
þ a2 þ a3li þ a4li e�

a5
li ð3Þ

where aj, j = 0, . . . ,5 are city dependent and

a0 ¼
1
6

IðiÞ3

tmin
R0dr3

Mi

v r

� �2

;

a1 ¼
R0dr3 r1IðiÞ3 �

IðiÞ3
tmin

� �
2r1

Mi

v r

� �
;

a2 ¼ gMi þ d
X4

j¼2

IðiÞj þ IðiÞ3 r3R0
1

tminr2
1

� 1
r1

� �
þ IðiÞ1

 !
;

a3 ¼ �a4; ð4Þ

a4 ¼
d r2

1IðiÞ1 þ R0r3
IðiÞ3

tmin
� r1IðiÞ3

� �� �
r3

1

Mi

v r

� ��1

;

a5 ¼ r1
Mi

v r

� �
:

The use of (3) is shown by the following proposition.

Proposition 2. If the following two conditions are met then fi li; I
0
i

� �
and thus f l; EðI0

i Þ
� �

are convex in vector l = (l1,l2, . . . ,ln):

(a) The time until detection, tmin, is larger than the time an infected
person spends in the first stage of the disease, i.e. tmin >

1
r1

;

(b) R0 <
r2

1 IðiÞ1

r3 IðiÞ3 ½r1�1=tmin �
; that is the basic reproductive rate, measured

by people infected per day, is not too large.

Moreover, the accepted smallpox epidemic values from Table 1
support items (a) and (b).
Proof. The proof follows the second derivative of (3) with respect
to li:

6a0

l4
i

þ 2a1

l3
i

þ a4a2
5 e�

a5
li

l3
i

ð5Þ

which is positive, for positive values of a0,a1 and a4. Clearly, a0 is
non-negative by the non-negativity of each individual parameter.
Constant a1 P 0 if r1 > 1/tmin as stated in Condition (a). Note that
a5 > 0.

Constant a4 is non-negative if

R0 <
r2

1IðiÞ1

r3IðiÞ3 ½r1 � 1=tmin�
ð6Þ

as stated in condition (b). Since f l; I0
i

� �
is the sum of convex func-

tions, the proof is complete. h

Note that the two conditions above are sufficient but not nec-
essary conditions for convexity. If we consider the smallpox case,
the parameters given in Table 1 show that both conditions are
satisfied. From Table 1, r1 = 1/3 > 1/tmin = 1/5. Also the RHS of
(6) (taking into account that numerical experiments show that
Ii
1 P 3Ii

3) is greater than 7.5 which is greater than R0 2 [3,6].
However, when Ii

1 ¼ Ii
3 the RHS of (6) is 2.5 and therefore the

second condition does not hold (R0 2 [3,6]). Still, expression (5)
is non-negative for all positive values of li and thus convexity
still holds.

As mentioned earlier our problem is a resource allocation prob-
lem which is an easy problem (that can be solved polynomially)
even when li’s are integers, for any function fi when R is polyno-
mial in n, and for any R if fi’s are convex. Therefore Proposition 2
implies that solving the problem is very easy for any size of R. In
this case we can do a marginal cost analysis. Therefore a greedy



7 Obviously, we may expect that there will be more passengers flying to a large city
than to a small city.

8 The Washington Post, on 12/01/08 (Page A01), reported that the U.S. Northern
Command has plans to station, by 2011, around 20,000 troops inside U.S. trained for
dealing with an attack using weapons of mass destruction.
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algorithm that allocates the next available resource to the city with
the largest marginal contribution to the objective function is
optimal.

We now present the algorithm to obtain the optimal solution.
Let l = {l1, . . . ,ln} and Di(l,E(I0)) be the improvement in the objec-
tive function value obtained when one extra unit of resource is
allocated to city i. That is Di(l,E(I0)) = f(l0,E(I0)) � f(l,E(I0)), where
l0j ¼ lj, for all j – i, and l0i ¼ li þ 1. We will drop the explicit refer-
ence to I0 whenever that causes no confusion. Also, whenever it is
clear enough we will just write I0 without the expectation opera-
tor. In addition, we assume here that the decision variables li’s
are integers. If this is not the case we can either use standard con-
vex optimization algorithms or, alternatively, we could employ a
standard marginal cost analysis, that is computing the improve-
ment in the objective function value by adding extra resources
through using the derivative of each city contribution. We do not
elaborate more on that since in practice we believe that resources
are non-negative integers (such as number of vaccinators). The fol-
lowing discrete version of the marginal analysis algorithm is for
the li P l0

i case.

Algorithm. MA

Input (EI0,R0, f)
Initialize

li ¼ l0
i 8i ¼ 1; . . . ;n

Do While
P

ili 6 R0

x 0,best 0
While j 6 n

If Dj(l0) > x then
x Dj(l0), best j

lbest = lbest + 1
Return (l)

In Algorithm MA, we only assign a resource to city j if the
additional resource would save no less lives than if assigned to
city q q – j,q 2 {1, . . . ,n}. Later we will provide a simpler approx-
imation where, through using Lagrangian relaxation, we can de-
rive a closed form solution when either l0

i ¼ 0 without the
option of transferring existing resources or l0

i P 0 with that
option.

We point out several observations related to Algorithm MA:

1. At the optimal solution the values of li are such that the mar-
ginal cost of adding another resource to city i is approximately
the same for all li > l0

i ; i 2 N.
2. For all li > l0

i ; i 2 N, the derivative of fi li; I
0
i

� �
with respect to

li is the same (the continuous counterpart of Obs.1). Although
this information is useful to find numerically the optimal solu-
tion (without using the algorithm presented above), it does not
imply that a closed form solution can be achieved.

3. The optimal solution does not imply that the chance of dying at
city i is the same for all cities with li > l0

i ; i 2 N.
4. Although all the discussion up to this point refers to the case of

an attack using smallpox, the general mathematical framework
could be used to address several related problems of other
infectious diseases, such as the Norwalk virus or the Avian
influenza.

5. KCW notes that the expected number of deaths is not heavily
affected by the cities’ total population. In fact, the impact
caused by the number of people initially infected outweighs
by far that of the total population. Hence, the total cost is less
dependent on the size of the cities (destinations) connected
to the original airport and more on the size of the initial pop-
ulation infected which is related to the size of the airport
(measured by the traffic of passengers) where the attack
occurred.7

Observation 3 brings up a variation of the problem where one
could set the problem as a multi-objective optimization trying to
address, in addition to efficiency, also the equity issue of not hav-
ing one city with higher fraction of fatalities than others. We will
not elaborate more on this variation but we suggest it for future
research.

Now we assume that the existing resources prior to the attack
can be transferred. Suppose that some cities have l0

i existing re-
sources available prior to the attack. Recall that R0 ¼ Rþ

P
i2Nl0

i

is the total resource availability in Algorithm MA. The problem is
identical to the one when transferring resources between cities is
not allowed and there are no existing resources, i.e. in the initiali-
zation stage of Algorithm MA, li = 0"i 2 N. The cities virtually shift
their initial resources to the main pool and the authorities allocate
them as when there are no initial resources in the cities. A city
which receives less resources than their initial amount (i.e.,
li < l0

i ), actually gives up l0
i � li of its initial resources which

are transferred to another city.

3.1. A simple approximation

Here we show that in fact a simpler approximation than (3) can
be obtained with the function

gðliÞ ¼ bi
1 þ

bi
2

l2
i

: ð7Þ

In the case of using expression (7), we assume continuity of the
decision variables. In (A.2) (see on-line supplement) it is easy to
verify that Ii

j; j 2 f1; . . . ;4g, are also linear in I0
i . Thus, ai’s in (4) are

also linear in I0
i .

First we will show why (7) is a reasonable approximation to the
original cost function (3). Then, we will find the parameters for (7)
that will give an excellent fit with the original cost function (3).
The quality of the fit depends on the possible range for the value of
parameters. We have tried to use realistic values as much as possi-
ble. For example, according to the Registered Nurse Population
Health Resources and Services (2001) and considering a large city
(about 10 million people as considered in KCW’s analysis), the city’s
internal resources should be around 5000. Even if the authorities
allocate additional resources, it is still not expected to be too large.8

Namely, the process of vaccination of the whole city should take a few
days if we consider a unit of resource as a single vaccinator (medical
staff). Assuming that each medical staff vaccinates vr = 200 people
every day (see Table 1), li is in the range between 5000, which is
equivalent to vaccinating the entire city in 10 days, and 20,000, which
is equivalent to vaccinating the entire city in 2.5 days. Following KCW
and (A.2), the number of people in stages [1, 2, 3, 4] is equal to [415,
662, 156, 103], respectively, and therefore the values of the ai’s in
(4) are [a0,a1,a2,a3,a4,a5] = [3.9 � 109,4.6 � 105,354.64, �0.0041,
0.0041,16666]. When li is not too large (i.e., li � 1000), the term
a2 þ a0=l2

i is dominant and thus, the approximation (7) should be
good.

However, this naı̈ve approximation might be less accurate when
li is larger and other terms are needed for good approximation. We
may divide the range of li into segments and produce a reasonable
approximation for every segment. However, to have an efficient



Fig. 1. Eq. (A.1) and (7).

O. Berman et al. / European Journal of Operational Research 219 (2012) 415–424 419
tool we have found a good approximation which is based on run-
ning a fit between expression (7) and (A.1) (see on-line supple-
ment). The cost function obtained is:

gðliÞ ¼ 336:38þ 4:25� 109

l2
i

:

The fit, using the case study data that will be presented later in the
paper, was found to be very good with R2 = 0.993.

Fig. 1 shows the cost functions when using equation (A.1), la-
beled ‘‘Original’’, and expression (7), labeled ‘‘Approx’’.The visual
fit is very good. In order to improve the visualization we plot in
Fig. 2 the LogLog of the two functions.

It is clear from the figures that there is almost a perfect fit. The
two curves have similar asymptotic cost, when l ?1, of 336.38
and 290, respectively for (7) and (A.1). Although the difference be-
tween the two results is not small, we believe that in the range of
interest it is not a problem. To illustrate that, note that when
l = 50,000 the values of the two functions are 338 and 311. In or-
der to perform the fit, we used 490 points in the range
l 2 [1000,50000].

As mentioned in Observation (5) above, the total number of
deaths is less dependent on cities’ size than on the number of in-
fected people going to that particular city. Consequently, the
parameters bi are affected mostly by the number of infected people
and to less extent by the population size. Thus, in a practical situ-
ation one could estimate values of bi for small, medium and large
cities. Categorization would reduce the number of estimations nec-
essary to obtain a solution. The parameters we used are based on
KCW calculations which consider a city of 10 million. However,
the structure of rapid decline of the number of death/infected peo-
ple remain the same for smaller cities and thus, we can use (7) for
different city sizes.

Using approximation (7) in (2), we assume now that either
l0

i ¼ 0 8i 2 N or that some l0
i might be positive and we allow

transfer of resources. We have the following result:
Fig. 2. LogLog plot: Eq. (A.1) and (7).
Corollary 1. The optimal solution is

l�i ¼

ffiffiffiffiffi
bi

2
3
q
P

j

ffiffiffiffiffi
bj

2
3
q R0; i 2 N: ð8Þ

The result is obtained by using Lagrange multipliers to solve the
problem:

min
li ;i2N

X
i2N

bi
2

l2
i

ð9Þ

s:t:
X
i2N

li ¼ R0 ð10Þ

li P 0; i 2 N: ð11Þ
4. The allocation problem with limited information

Until now we assumed that we can derive estimations of the
number of initial infected passengers arriving to each city
i E I0

i

� �� �
. Here we assume that we only have an estimate of the to-

tal number of initially infected passengers arriving to all n cities.
We define a new problem that can be used also to allocate re-
sources in advance of an attack. In this problem, assume that the
total number of initially infected passengers is, W (out of K). The
decision maker then allocates resources in order to either mini-
mize the maximum total number of deaths in case of an attack
(Problem MiniMaxSum (MMS)) or minimize the maximum number
of deaths among all cities (Problem MiniMax (MM)).

Note that, in contrary to the previous section, W is not a random
variable. It is possible to consider a random variable W but it does not
bring any value to the discussion that will follow. In the first 3 sec-
tions we focus on the authorities’ optimal allocation of resources
strategy. Here we discuss a hypothetical scenario where we take into
consideration the best attackers’ target if the maximization of the
number of deaths is their objective. The key result is the understand-
ing that attacking an airport is not necessarily the best target for
maximizing the damage. This is the reason for fixing W.

We assume, in both problems, that (a) when l0
i ¼ 0 for some i 2 N,

the decision maker must assign at least one resource to city i. Consid-
ering that the number of resources is always much larger than the
number of destinations this assumption is not very restrictive. We also
assume that (b) each destination-city will receive at least one passen-
ger infected. This assumption is also not restrictive. Assumption (a) is
needed because li = 0 implies that fi is undefined due to a zero in its
denominator. Assumption (b) implies that if no infected passenger
travels to some destination i then we should remove that particular
destination from our list of possible destinations.

First, we address the Problem MiniMaxSum (MMS). The objec-
tive function is given by

Problem MMS : minimizel maximumI0

X
i

fi li; I
0
i

� �
; for all I0

i j
X

i

I0
i ¼W

( )

ð12Þ

where vector l 2 X ¼ lj
P

ili ¼ R0;li P max 1;l0
i

	 
	 

.

In order to solve the problem we must know the form of the
optimal solution. Define l⁄ to be the optimal allocation vector.
Thus, we have the following result.

Proposition 3. In the optimal solution of Problem MMS the maxi-
mum number of deaths will occur for a vector I0 with the following
profile: Let i, j be the indices of destination cities. I0

j ¼W � n0 þ Ij (n0

is the number of cities without existing resources) for some city j and
I0
i ¼ 1 for i – j;l0

i ¼ 0.9
9 Ij is a binary indication that assumes the value 0 when l0
j > 0 and 1 otherwise.
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Proof. We use a logical argument in this proof. To make the proof
easier to understand, assume that there is an evil agent that can
assign the W infected passengers to cities at his own will. Consider
an optimal solution where l⁄ is the allocation vector that mini-
mizes the maximum number of deaths. The agent, knowing that
the resource allocation has been made and how the resources are
allocated, will assign the first n passengers one to each destination
city (Assumption (b) above). The agent will then compute the num-
ber of deaths caused by an extra infected passenger to each city.
However, it is easy to see that expression (A.1) is linear in IðiÞk and
IðiÞk (where k is the stage of the disease) is linear in I0

i given in
(A.2). Hence, the best the agent can do is to allocate all remaining
passengers to city i with the highest coefficient of I0

i . Since the
same reasoning would hold for any vector l 2X, the proof is
complete. h
Corollary 2. Causing maximum damage can be also achieved by
attacking a particular city directly (rather than through an indirect
mechanism; i.e. attacking an airport).

This result is surprising since there is a belief that attacking an
airport would be a very efficient way to maximize damage (see
Bozzette et al., 2003). However, it is important to note that attack-
ing an airport may cause more fear than attacking a particular city
directly.

Corollary 3. Problem MMS can be solved by standard convex
minimization procedures.
Proof. According to Proposition 3, there are only n different possi-
ble vectors I0. Let I0

ði;kÞ denote the value corresponding to the ith city
in the kth vector. Therefore we have to solve

minlmaxI0

X
i

fi li; I
0
i

� �
for all I0

i j
X

i

I0
i ¼W

( )

¼minl max
X

i

fi lijI
0
ði;kÞ

� �
jk ¼ 1; . . . ;n

( )
ð13Þ

Note that the term between the curly brackets, lijI
0
ði;kÞ

� �
, is a func-

tion of li for each of the k = 1, . . . ,n possible vectors I0. Thus, we
have a maximum of n different convex functions of li which is in-
deed convex in li. Hence, Problem MMS can be solved by standard
convex algorithms. h

Problem MM is to minimize the maximum number of deaths
among all cities. The problem is then defined as

Problem MM : MinlMaxI0 fi li; I
0
i

� �
for all I0

i j
X

i

I0
i ¼W

( )

A similar reasoning to our last two proofs, which is omitted, leads us
to the following corollary.

Corollary 4. A standard convex minimization algorithm solves Prob-
lem MM.
10 Walden and Kaplan (2004) apply a similar approach when they estimate the time
elapsed from the beginning of the disease given the current number of disease
carriers.

11 In the case of smallpox, H(t) can be found in Bozzette et al. (2003).
5. A learning process

One of the main problems in models addressing bioterror
attacks is the missing information about some parameters’
values. Most of the parameters can be reasonably estimated from
historical data (such as data in the medical literature), as
has been done by KCW and others. However, the values of p and
I0
i cannot be found in the literature and thus, the usual approach

is to assume some values for the unknown parameters
and apply sensitivity analysis. In this section, we consider
the learning process of I0
i , and p, by using the available informa-

tion.10 The tools we offer can help decision makers to estimate these
parameters based on the available information on the total number
of identified infected passengers.

Define tmax to be the maximum elapsed time for all infected pas-
sengers to be identified, 0 6 tmin 6 tmax. Assume the government de-
cides to allocate emergency resources at t with 0 6 tmin 6 t 6 tmax.
Let I1

i ðtÞ be the cumulative number of infected passengers identified
until time t in city i from the Ki passengers flying to this city and let
I1ðtÞ ¼

Pn
i¼1I1

i ðtÞ. Given p and I1
i ðtÞ, we can derive the conditional

probability of I0
i given I1

i ðtÞ for each i 2 N as follows:

Pr I0
i ¼ kijI1

i ðtÞ ¼ mi

� �
¼

Pr I0
i ¼ki ;I

1
i ðtÞ¼mið Þ

Pr I1
i ðtÞ¼mið Þ ; ki P mi;

0; ki < mi:

8<
:

Given that a passenger is infected, let the random variable S be the
length of time it takes her to first show symptoms, and be identified
as a disease carrier. Define sj, j = 1,2 to be the time that an infected
passenger spends in stages E and I and let S = s1 + s2, obviously
tmin 6 S 6 tmax. Assume that S has a known cumulative distribution
H, i.e., P(S 6 t) = H(t).11

Therefore given p, when ki P mi,

Pr I0
i ¼ kijI1

i ðtÞ ¼ mi

� �
¼ Pr I1

i ðtÞ¼mi jI0
i ¼kið ÞPr I0

i ¼kið ÞPKi
j¼mi

Pr I1
i ðtÞ¼mi jI0

i ¼jð ÞPr I0
i ¼jð Þ

¼

ki

mi

� �
HðtÞmi ð1�HðtÞÞki�mi

Ki

ki

� �
pki ð1�pÞKi�ki

PKi
j¼mi

j

mi

� �
HðtÞmi ð1�HðtÞÞj�mi

Ki

j

� �
pjð1�pÞKi�j

¼
Ki �mi

ki �mi

� �
½ð1�HðtÞÞp�ki�mi ð1�pÞKi�ki

ð1�HðtÞpÞKi�mi
:

ð14Þ
We distinguish between the two cases: (i) p is stochastic and (ii) p is
a known constant.

5.1. Stochastic p

Assume that p has a discrete probability distribution Pr(p = r)
where r 2{d1,d2, . . . , }. Let qt be the probability that a random pas-
senger will first show symptoms t days after the attack occurs.
The parameter p is assumed to be independent of S. We note that
it is possible that an individual resistance to the disease depends
on some other individual parameters and that the disease duration
may depend also on the same parameters. However, there is no
indication in the literature and no model (analytical, empirical,
simulation, etc.) that captures this dependency. All research and
data gathered in the field of epidemic is based on aggregates and
not on individuals. Thus, qt = pH(t). Since I1

i ðtÞjp � BðKi; qtÞ, the pos-
terior conditional probability of p at time t given I1(t) is

Prðp ¼ rjI1ðtÞ ¼ mÞ ¼ Prðp¼r;I1ðtÞ¼mÞ
PrðI1ðtÞ¼mÞ ¼

PrðI1ðtÞ¼mjp¼rÞPrðp¼rÞP
p

PrðI1ðtÞ¼mjpÞPrðpÞ

¼

K
m

� �
qm

t ð1�qtÞK�mPrðp¼rÞP
p

PrðI1ðtÞ¼mjpÞPrðpÞ

¼

K

m

� �
ðrHðtÞÞmð1�rHðtÞÞK�mPrðp¼rÞ

P
p

K

m

� �
ðpHðtÞÞmð1�pHðtÞÞK�mPrðpÞ

¼ Prðp¼rÞrmð1�rHðtÞÞK�mP
p

PrðpÞpmð1�pHðtÞÞK�m :

ð15Þ
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Observe that there is a minimal time for the appearance of symp-
toms. Thus, for t < tmin the probability of showing symptoms is
H(t) = 0. It follows that for t < tmin the number of passengers with
symptoms is identically zero, i.e., I1(t) = 0. We then assume that
t P tmin. The modified objective function is

min
li ;i2N

X
i2N

E fi li; I
0
i

� �
jI1

i ðtÞ ¼ mi

h i
¼ Ep

X
i2N

EI0
i

fi li; I
0
i

� ����I1
i ðtÞ ¼ mi; p

h i�����I1ðtÞ ¼ m

 !
;

where m ¼
P

i2Nmi.
Notice that with updated information at different points in

time, the resources allocated correspondingly will have different
efficacy denoted by ci(t) (discussed below), which is captured in
the modification of (7) given by (16). To capture the linear depen-
dency in I0

i we rewrite the cost function as (16):

fi li; I
0
i ; t

� �
¼ ~bi

1 þ
~bi

2

ðliciðtÞÞ
2

" #
I0

i ð16Þ

where ~bi
1 and ~bi

2 are independent of I0
i .12 As mentioned earlier, this

function reflects the situation when resources allocated at different
times have different efficacy, i.e., ci(t) is no longer a constant equal
to 1. Instead, it is a non-increasing function of time t,
0 6 ci(t) 6 1(c(tmin) = 1). Actually, the impact of li units of resources
at time t P tmin is lic(t) 6 li. ci(t) reflects the deterioration of mass
vaccination efficiency due to delay in the beginning of the vaccina-
tion process. In the analysis hereafter, function fiðli; I

0
i ; tÞ will be

used instead of fiðli; I
0
i Þ to accommodate the time-dependent re-

source efficacy.
We let I1ðtÞ ¼ I1

1ðtÞ; I
1
2ðtÞ; . . . ; I1

nðtÞ
� �

and assume that the time to
make a decision is discrete (e.g., number of days).

Let J(t, I1(t)) be the total expected cost if we allocate emergency
resources li, i = 1, . . . ,n, at time t, i.e.,

Jðt; I1ðtÞÞ ¼
X
i2N

Ep EI0
i

fi li; I
0
i ; t

� ����I1
i ðtÞ ¼ mi; p

� ����I1ðtÞ ¼ m
h i

: ð17Þ

From (14) and (16),

Ep EI0
i

fi li; I
0
i ; t

� ����I1
i ðtÞ ¼ mi;p

� ����I1ðtÞ ¼ m
h i
¼ Ep

~bi
1 þ ~bi

2ðliciðtÞÞ
�2

� �n

�
PKi

ki¼mi

Ki �mi

ki �mi

� �
½ð1�HðtÞÞp�ki�mi ð1�pÞKi�ki

ð1�HðtÞpÞKi�mi
ki

�����I1ðtÞ ¼ m

)

¼ ~bi
1 þ ~bi

2ðliciðtÞÞ
�2

� �
Ep

mið1�pÞþKipð1�HðtÞÞ
1�pHðtÞ

���I1ðtÞ ¼ m
� �

:

Notice that ð1�HðtÞÞp
1�HðtÞp is the conditional probability of a random pas-

senger showing symptoms after t, given that they haven’t been
symptomatic by time t.

Let

DiðtÞ ¼
mið1� pÞ þ Kipð1� HðtÞÞ

1� pHðtÞ ð18Þ

and

BiðtÞ ¼ EpðDiðtÞjI1ðtÞ ¼ mÞ

where Bi(t) is independent of li and the expectation is calculated
according to (15). Note that Di(t) is the expected number of infected
passengers given the information at t when p is a known constant.
In addition, from expression (18), Di(t) is the weighted average of mi

and Ki. Now the allocation problem discussed in Section 3.1 is:
12 Observe that substituting bi
j ¼ ~bi

jI
0
i ; j ¼ 1;2 in (7) gives the Eq. (16) and it is

justified since (7) is an approximation to (3) and the parameters in (16) have a linear
dependency in I0

i .
Jðt; I1ðtÞÞ ¼min
l

X
i2N

~bi
2BiðtÞ

ðliciðtÞÞ
2 j
X
i2N

li ¼ R; li P 0 8i 2 N

( )

Similar to Section 3.1, where ~bi
2

BiðtÞ
ciðtÞ

2 replaces bi
2, the optimal solution

when either l0
i ¼ 0 8i 2 N without transfer of existing resources, or

when some l0
i > 0 with the possibility of transferring existing re-

sources, is:

l�i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
~bi

2
BiðtÞ
c2

i
ðtÞ

3

r
P

j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
~bi

2
BjðtÞ
c2

j
ðtÞ

3

r R0: ð19Þ

The optimal allocation given by (19) is similar to the optimal
allocation (8). The weights are affected now by the information
at time t and by the different efficacy at every city. Observe that
if the efficacy functions are identical for all cities, then the solu-
tion is independent of the ci’s. The difference between the solu-
tion (8) and the solution with learning and delay (19) is due to
the change in the beliefs about the initial disease parameters gi-
ven by Bi(t) and the lost of efficiency because of the delay given
by ci(t). A city where the updated beliefs that the initial number
of infected passengers is increasing at time t will receives higher
amount of resources while a city with a lower efficacy of re-
sources at time t will also receive more resources since the
weights are divided by ci(t).

5.2. Constant p

If p is a known constant, then the objective function is

min
li ;i2N

Jðt; I1ðtÞÞ ¼
X
i2N

EI0
i

fi li; I
0
i ; t

� ����I1
i ðtÞ

� �
¼
X
i2N

~bi
2DiðtÞ

l2
i c2

i ðtÞ
;

where Di(t), defined in (18), is independent of li, "i. Di(t) is the
equivalent of Bi(t) in the case where p is a constant. It is the ex-
pected number of infected passengers given the information at t,
i.e., DiðtÞ ¼ E I0

i jI
1
i ðtÞ

h i
. Note that Di tmaxð Þ ¼ I0

i . Then, the optimal
solution to the allocation problem discussed now is:

l�i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~bi

2DiðtÞ=c2
i ðtÞ

3
q

P
j2N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~bj

2DjðtÞ=c2
j ðtÞ

3
q R0: ð20Þ

Observe that the optimal allocation (20) is a modification of the
solution (8) of the problem without learning. The original weightsffiffiffiffiffi

bi
2

3
q

in (8) are now
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~bi

2DiðtÞ=c2
i ðtÞ

3
q

5.3. Estimation of c(t)

The estimation is for a given I0 and based on the equation

f ðl; tÞ ¼ ½~b1 þ ~b2=ðlcðtÞÞ2�I0 ð21Þ

where t is the time when vaccination starts and the index i is omit-
ted. Assume that cðtÞ ¼ e�aðt�tminÞ. This assumption suggests that
when t = tmin the resources have their maximum efficacy (c(t) = 1)
and when t is increasing, the efficacy is declining. Obviously, this
model is valid for t = tmin, . . . , tmax since else, f is not bounded. We
can use any epidemic dynamic modes such as that of Bauch et al.
(2003) to calculate the value of f(l, t) for pairs of l and time delay
t. The value of ~b1I0 might be interpreted as the number of deaths
if ls

i so large that the entire population is vaccinated immediately.
Thus, ~b1I0 should be equal to the number of people that get infected
until tmin and die. Thus, ~b1 ¼ d where d is the death rate and it is as-
sumed that vaccination is not efficient for the initial disease carrier.
We can rewrite (21) as
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lnðf ðl; tÞ=I0 � dÞ ¼ ln ~b2 � 2atmin � 2 lnlþ 2at: ð22Þ

Now we can estimate ~b2 and a by regression to minimize LSE (Least
Square Errors) of (22) with respect to the variables lnl and t. Note
that the estimation is not based on data since there is no existing
data. Instead we run the KCW model and then find the best ~b2

and a such that our approximated cost function is as close as possi-
ble (best fit in minimum square error) to KCW.

When allocating resources too early, possibly better informa-
tion on the number of infected people in each destination city
may be missed; when allocation is too late, many people may get
infected. Therefore, an interesting line of investigation to pursue
further would be to optimize the timing for allocating resources.
There are several issues that make this line of investigation diffi-
cult, the most important being the identification of a correct epi-
demic model that captures the effect of delayed response beyond
the threshold of 5–6 days. Nonetheless, this is an important issue
to be considered.

6. Case study

In this section, we demonstrate our models with a hypothetical
case using some real airport data.13 For simplicity, we consider a
small airport (we ignore the fact that terrorists will probably choose
a much larger airport to attack), Long Beach Municipal Airport in
Long Beach, California (airport code LGB). It is the most accessible,
centrally located alternative for air travel in and out the Los Angeles,
South Bay and North Orange County areas.

6.1. Data and parameter description

On April 15, 2002, there were 13 flights arriving at Long Beach
Airport and 12 flights taking off with destination cities (airport
codes): Colorado Springs, CA (COS), Dallas/Fort Worth, TX (DFW),
Minneapolis, MN (MSP), New Orleans, LA (MSY), New York, NY
(JFK), Newark, NJ (EWR), Philadelphia, PA (PHL), and Phoenix, AZ
(PHX). Among all the flights departing LGB on April 15, 2002, there
were 5 direct flights and 7 flights connecting to some other airports
and then going to their final destinations. All the non-direct flights
departing LGB had only one stop before their final destination. For
simplicity, we assume that all flights are direct flights from LGB
and there is only one flight for each destination. Also, 3000 passen-
gers arrived at LGB which is their final destination. We assume that
each flight has capacity for 300 passengers and that each flight is
full; because of the lack of specific information we assumed that
the airplanes are Boeing 777. Airplanes with smaller capacity
may be more realistic for a small airport but appropriate for many
bigger airports. Moreover, we believe that the conclusion about the
impact of the attack will remain similar. The population size14 in
each of the cities included is shown in Tables 2.

We assume that an attack on the airport has the potential of
infecting passengers in all flights discussed above. Note that both
EWR and JFK have the same population size because both serve
the same metropolitan areas. Thus, we add their infected passen-
gers when calculating the impact of the attack. The calculation be-
low uses values found in Table 1. We also assume:

� the total number of emergency resources analyzed is R = 5000,
20,000;15
13 We are grateful to Professor Mara Lederman at Rotman School of Management,
University of Toronto for providing the airline data.

14 According to Census of 2000.
15 The parameters we use for the example are in the same scale as the parameters

used by KCW. Note that, as long as the size of the attack is much smaller than the
population size, it seems that KCW model is not sensitive to the scale of the attack.
� the probability, p, that a passenger gets infected is 0.4;
� there are no existing resources prior to the attack in all the cities

involved.

Therefore, the expected number of infected passengers arriving
at each airport of destination ðEðI0

i ÞÞ is (300)(0.4) = 120 and LGB
sees (3000)(0.4) = 1200 infected arriving passengers. Tables 3
shows the expected number of infected passengers at stage 0 of
the disease arriving at each metropolitan area.

6.2. Model illustration

Since the problem with 9 cities is relatively small, we use the
cost function (5). Table 4 presents the calculation of the number
of people infected by the disease in each disease stage at time
tmin = 5. The results are direct application of expression (A.2). Note
that IðiÞj are functions of the number of initially infected passengers
and not functions of the population associated to passengers.
Applying algorithm MA when the total amount of resources avail-
able is R = 5000, 20,000, gives us the results shown on respectively
Tables 5 and 6 (the columns headings are self explanatory).

It seems that the number of deaths per initial number of in-
fected patients and per hundred thousand people decreases faster
when R increases for large cities than for smaller ones. Although, as
stated in KCW, the objective function values is more sensitive to
the number of initially infected people than to the population of
each city, the results show that, when jockeying for the same pool
of resources, the optimization algorithm takes into account the
population size and larger cities see the reduction in deaths falling
to less than half, when doubling the amount of resources, while
smaller cities do not feel the same effect. This effect can be easily
noted by comparing the changes, as function of the amount of re-
sources available, between COS and PHL.

We solved Problem (MMS) for the same example considering
that all initially infected passengers could in fact go to any of the
eight possible destinations. When minimizing the maximum num-
ber of deaths (the worst case) we find the following results shown
on Tables 7 and 8. The solution in Table 7 is to assign the resources
according to the first column (for example, 1483 resources to New
York City) and the expected number of total deaths is 15,480,
which is also the maximum number of deaths in all cities.

Tables 5 and 6 show the interesting result that Algorithm MA
allocates resources heavily influenced by the number of initially in-
fected passengers that flew to each city. However, when one wants
to minimize the maximum number of deaths (the worst case using
solution of problem MM), then as seen in Tables 7 and 8 the pop-
ulation size plays a major role in the number of resources
allocated.

The number of deaths also follows a similar pattern when Algo-
rithm MA is utilized. As seen in Tables 5 and 6, the number of ini-
tially infected passengers has a strong influence on the total
number of deaths. However, the result when facing Problem
MMS, as seen in Tables 7 and 8, shows a leveling trend. By trying
to minimize the maximum number of deaths, the cities see similar
potential losses in absolute values—there is no strong relationship
with the initial number of infected passengers. City size does play a
role obviously.

Considering the case when R = 20,000, the minimization of the
maximum number of deaths results in the worst case solution of
1875 deaths. This number of deaths assumes that the worst case
solution is applied but if the decision makers knew with certainty
the number of infected passengers were indeed equals to the
expectations ðEðI0

i ÞÞ, by allocating according to the solution pro-
posed by Algorithm MA, the total number of deaths would have
been 1622. Thus, we can say that the price of information in this
case is measured in number of lives lost and it is 253



Table 2
Population of metropolitan areas associated with each airport.

City airport code (index i) LGB (1) EWR (2) MSP (3) PHX (4) MSY (5)
Population 14,531,529 19,549,649 2,538,834 2,238,480 1,285,270
City airport code (index i) DFW (6) COS (7) PHL (8) JFK (9)
Population 4,037,282 397,014 5,892,937 19,549,649

Table 3
Expected number of initially infected people at time zero in each metropolitan area.

City airport code (index i) LGB (1) JFK + EWR (2) MSP (3) PHX (4) MSY (5)
Expected number of infected passengers 1200 240 120 120 120
City airport code (index i) DFW (6) COS (7) PHL (8)
Expected number of infected passengers 120 120 120

Table 4
Number of infected people in each stage of the disease at the moment of detection
(tmin = 5 days).

Metropolitan area Airport code IðiÞ1 IðiÞ2 IðiÞ3 IðiÞ4

Los Angeles LGB (1) 492.12 806.10 172.39 1436.5
New York JFK + EWR (2) 98.42 161.22 34.48 287.30
Minneapolis MSP (3) 49.21 80.61 17.24 143.65
Phoenix PHX (4) 49.21 80.61 17.24 143.65
New Orleans MSY (5) 49.21 80.61 17.24 143.65
Dallas/Fort Worth DFW (6) 49.21 80.61 17.24 143.65
Colorado Spring COS (7) 49.21 80.61 17.24 143.65
Philadelphia PHL (8) 49.21 80.61 17.24 143.65

Table 5
Results for R = 5000 (units of resources).

Resources
allocated

Total number
of deaths

Deaths per

EðIð0Þi Þ
Deaths per
105 people

Los Angeles 1950 3208 2.67 22.08
New York 1373 2032 8.47 10.40
Minneapolis 282 479 4.00 18.86
Phoenix 259 449 3.74 20.07
New

Orleans
180 338 2.82 26.32

Dallas/Fort
Worth

382 621 5.17 15.37

Colorado
Springs

83 204 1.70 51.30

Philadelphia 491 769 6.41 13.05

Totals 5000 8100

Table 6
Results for R = 20,000 (units of resources).

Resources
allocated

Total number
of deaths

Deaths per

E Ið0Þi

� � Deaths per
105 people

Los Angeles 7953 648 0.54 4.46
New York 5339 289 1.20 1.48
Minneapolis 1127 115 0.96 4.52
Phoenix 1041 112 0.93 5.00
New

Orleans
737 102 0.85 7.90

Dallas/Fort
Worth

1513 127 1.06 3.16

Colorado
Spring

363 88 0.74 22.23

Philadelphia 1927 141 1.18 2.40

Totals 20,000 1622
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(1875 � 1622) which is an increase of 15% above the initial
expectation.

Conversely, it could happen that decision makers, assuming
particular EðI0

i Þ allocate resources according to Algorithm MA. For
example, suppose R = 20,000 as above and 2160 infected passen-
gers were believed to be distributed according to Table 3 (total)
when, in fact, they were all flying to a single metropolitan area.
In this case, we calculated the total number of deaths, which is
equal to 2135; fostered by a wrong assumption. However, if the
mini-max was used then the number of deaths would had been
1875. Thus, the wrong assumption had a cost of approximately
260 lives or close to 16%.
Table 7
Results for R = 5000 – minimizing the maximum number of deaths.

Resources
allocated

Total number
of deaths

Deaths per

E Ið0Þi

� � Deaths per
105 people

Los Angeles 1219 12900 10.75 88.77
New York 1483 15480 64.50 79.18
Minneapolis 386 4716 39.30 185.78
Phoenix 355 4418 36.82 197.40
New

Orleans
247 3328 27.74 258.96

Dallas/Fort
Worth

523 6093 50.77 150.92

Colorado
Spring

115 1980 16.50 498.63

Philadelphia 672 7537 62.80 127.90

Max. Deaths 15,480

Table 8
Results for R = 20,000 – minimizing the maximum number of deaths.

Resources
allocated

Total number
of deaths

Deaths per

E Ið0Þi

� � Deaths per
105 people

Los Angeles 4093 1463 0.68 10.06
New York 6010 1875 0.87 9.59
Minneapolis 1665 1029 0.47 40.53
Phoenix 1543 1002 0.46 44.79
New

Orleans
1107 906 0.42 70.48

Dallas/Fort
Worth

2214 1143 0.53 28.32

Colorado
Spring

565 773 0.34 194.79

Philadelphia 2803 1261 0.58 21.41

Max. Deaths 1875
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A similar discussion could be done for the case of using Algo-
rithm MM. Comparing the results with those obtained by using
Algorithm MA results in similar analysis and insights which we will
omit from this paper.
6.3. Alternative policies: myopic approaches

Here we show the advantage of our approach for allocating re-
sources over a myopic policy that may be used by the government.
In this policy, each city i receives the proportion of the total re-
sources corresponding to the proportion of the total number of in-
fected passengers reported. When R = 20,000, the number of
deaths induced by applying the myopic policy is 2224 in compar-
ison to 1622 deaths when MA is applied (see Table 6); an increase
of 37% in number of fatalities. Analogous results hold when
R = 5000. The myopic policy discussed above ignores the cities’
population size. A second myopic approach could be to allocate re-
sources according to the fraction of the city’s population to the to-
tal population. When the number of resources is 20,000 the gap is
close to 10%. When the number of resources R = 10,000 (details are
not shown), applying this policy yields an increase of 16% in fatal-
ities; a significant increase but not as high as the one induced by
the first myopic policy. Obviously, both myopic policies would be
very inefficient for the worst case scenarios but comparing them
to that case is meaningless.
7. Conclusions and future research

In this paper, we considered a potential bioterror attack on an
airport. Once the attack is identified the government has to decide
how to allocate limited resources. The cost function which repre-
sents the number of death is derived either by well known epi-
demic models or through regression analysis.

The allocation problem is discussed assuming information or
lack of information on the number of infected passengers identified
prior to the decision time. We showed that simple marginal anal-
ysis algorithms can solve the problem. We also solved the problem
of allocating resources given estimates of the total number of ini-
tially infected passengers (scenario analysis could be developed
for estimating the number of infected passengers and allocate re-
sources prior to an attack as proactive measure). In this case, we
showed how to allocate resources given information only on the
total number of infected passengers. With this information the
problem solved is to find optimal allocation of resources so as to
minimize the maximum number of deaths. We also provide an
analysis to solve the allocation problem taking into account infor-
mation on infected passengers.

Finally, we presented a small case study using data from the
Long Beach Airport and twelve flights to different airports. The case
study illustrates the approach discussed in Sections 3 and 4. This
approach was compared to alternative myopic policies for the case
study. We showed that the use of myopic policies could be very
inefficient. It is important to note that even though our simple
model can be used to understand the main underlaying problem
of resource allocation and to clarity side effects, decision makers
should be careful when using it for policy implications. At the same
time we believe that our simple approximation can be handy for
performing first cut evaluations. Additionally, our approach will
be as precise as the KCW analysis.

We can add another level to the model by considering a game
where the terrorist may choose the airport to attack assuming that
the authorities will react optimally against any attack. In this case,
the terrorist will choose to attack the airport which, after the opti-
mal defender’s reaction, will maximize the damage occurred. This
model generate a dynamic game between the terrorist and the de-
fender. A similar approach was used by Berman and Gavious
(2007).

Future research might include: (i) for a known constant and sto-
chastic p, develop an efficient approach to find the optimal time to
allocate the resources; and, (ii) solve the resource allocation prob-
lem when the government can dynamically re-allocate the re-
sources over time.

We note that the difficulty with these two problems is that the
ordinary differential equations used to model the dynamics of the
disease only hold for quick reaction time to vaccinate.
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