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Abstract

Interferometers have long been a crucial part in our investigation of nature and physical phenomena.
Particularly famous optical interferometer experiments range from Young’s double slit experiment
that explored the wave-like nature of light to the Michelson-Morley experiment, and its ultimate
extension in the modern era is the Laser Interferometer Gravitational-Wave Observatory (LIGO).
Atom intererometers [1] were first developed in the 1990’s, and nowadays are common devices for
research in the field of quantum mechanics, and are used in precision measurements of gravity
[2], fundamental constants [3], and as accelerometers for inertial guidance and many additional
endeavors [4]. While most of these devices make use of the momentum transfer provided by laser
pulses to coherently control the paths of an atom, we employ magnetic field gradients [5–7] created by
currents in wires on an atom chip. In this thesis I present our realization of the first Stern-Gerlach
atom interferometer (SGI), in which the splitting and recombination of quantum wavepackets is
performed by forces that arise from magnetic gradients acting upon atomic Zeeman sub-levels.

The Stern-Gerlach effect, discovered a century ago, has become a paradigm of quantum me-
chanics. Surprisingly there is little evidence that the original scheme with freely propagating atoms
exposed to gradients from macroscopic magnets is a fully coherent quantum process. Specifically,
no full-loop SGI has been realized with the scheme as envisioned decades ago. Furthermore, several
theoretical studies have explained why it is a formidable challenge [8–10]. The recombination in the
full-loop SGI is in fact required to be a time-reversal operation of the splitting process, such that
the final two magnetic gradients exactly undo the first two. In order to obtain high coherence (or
contrast) in the output of a spatial interferometer, one must apply stable and accurate operations
on the atom, such that the final relative distance between the wavepackets ∆z(2T ) and the final
relative momentum ∆p(2T ) are minimized, where 2T is the interferometer duration. Any deviation
from complete overlap, either in space or in momentum, will cause a decay in the resulting interfero-
metric contrast. While accuracy is the main challenge, we also need to address the issue of stability,
whereby temporal fluctuations may give rise to dephasing. Even in the absence of dephasing, drifts
may cause the interference phase to jitter from one experimental shot to the next (e.g., due to a
fluctuating bias field), thus smearing the averaged phase, or prevent recombination altogether in
the case of noise such as fluctuating gradients.

In Ch. 1 of this thesis I describe the experimental apparatus in our lab including the changes we
introduced during the time of this work.

Ch. 2 describes the experimental procedure for achieving a Bose-Einstein condensation (BEC)
and the steps manipulating the atomic states which make up the sequence of the SGI.

In Ch. 3 the theoretical background of atom interferometry is presented, mainly discussing the
visibility and the phase of the full-loop SGI.

Ch. 4 presents our realization of the full-loop SGI, confirming successful active recombination
achieved by the two final magnetic gradients. We also confirm the prediction for the phase of the
SGI and its dependence on the final spatial separation of the wavepackets. Finally, we present a
measurement of the coherence length of the wavepacket in the SGI.

In Appendix A we discuss the effect of shot-to-shot phase fluctuations on the experimental
signal, and suggest a protocol to estimate the noise sources affecting the phase stability.
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Chapter 1

The experimental apparatus

The experimental apparatus was built during the years 2007-2008, with some important changes
over the years, mainly replacing the atom chip, the main laser and peripheral electronics. A detailed
description of the apparatus is given in the PhD thesis of Shimon Machluf, who built the system [11]
with the assistance of Dr. Plamen Petrov, a Post-Doctoral Fellow in the Atom Chip Group. This
chapter briefly describes the apparatus consisting of a vacuum system; coils and copper structures
for creating magnetic fields; laser system for cooling, trapping and imaging the atoms; and the
atom chip on its mount that creates the required magnetic potentials and gradients. While the
setup was mainly constructed before my time, I detail at the end of the chapter several changes and
improvements I have implemented (together with Omer Amit) during my M.Sc.

1.1 Vacuum system

The vacuum system did not change during this work. It is built around a 6-way cross to which all
other vacuum parts are connected. The frame is designed to hold the vacuum system and magnetic
coils rigidly, with as few vibrations as possible, but still with enough space to enable easy access
from all directions. At the bottom of the 6-way cross we connect the science chamber and from
the top we insert the mount with the atom chip. On two of the sides we have the turbo-molecular
pump and the ion pump. The turbo pump can reduce the pressure to ∼ 10−8 Torr, and the ion
pump can reduce the pressure to ∼ 10−11 Torr. We occasionally use a titanium sublimation pump
which coats the chamber walls with titanium to absorb some of the residual gas particles thereby
helping the ion pump.

1.2 Magnetic fields

We use three pairs of Helmholtz coils producing the x, y and z bias fields required for trapping
and cooling the atoms. The G/A ratio (magnetic field per unit current) of the magnetic coils
was measured in [12] to be (0.835, 0.834, 1.007) G/A for the (x, y, z) coils .The potentials for
the magneto-optical trap (MOT) and magnetic trap are produced by currents through a copper
structure inside the science chamber just beneath the chip surface, in the shape of U and Z wires
(Fig. 1.1). Home-made current shutters are used for fast switching of the currents.

1.3 Laser system

Four laser frequencies are required in the experiment for cooling, repumping, optical pumping, and
imaging the atoms. We achieve this with two lasers and four acousto-optic modulators (AOMs).
The main laser is a Toptica TA 100, which delivers up to 1000 mW of power; we work at an output

1



Figure 1.1: Copper structure and chip mount. (a) The copper structure: the U-wire produces the inhomo-
geneous magnetic field for the MOT, and the Z-wire produces the magnetic potentials for the magnetic trap.
(b) The chip mount with the chip on top of it. The mount is inserted upside down so that the chip is facing
downwards inside the science chamber.

of 850 mW which is enough. The beam is split into three different frequencies for cooling, optical
pumping and imaging, each passing through a different AOM. The secondary laser is home-made
and can deliver ∼ 40 mW; it is used as a repumper during the MOT. We lock the frequency of
both lasers on a polarization spectroscopy signal using a rubidium vapor cell and a PID circuit. All
four beams are coupled into optical fibers and transferred to the science chamber, and each beam
is blocked by a mechanical shutter (Uniblitz LS6) while not in use during parts of the experimental
cycle.

1.4 Imaging system

We use on-resonance absorption imaging throughout this work. The system consists of a CCD
camera, lenses, and the imaging laser beam. Two lenses of focal lengths 200 mm and 300 mm magnify
the image of the atoms by a factor 3/2. The camera is a Prosilica GC2450 with Sony ICX625 CCD
sensor, and a pixel size of 3.45µm × 3.45µm, which results in a pixel size of 2.3µm × 2.3µm in
the object plane. The imaging resolution is diffraction limited; the numerical aperture (NA) of
0.126 yields a diffraction limit of λ/(2NA) = 3.1µm. This resolution was confirmed experimentally
as described in [13]. The imaging beam is tuned to the F = 2 → F ′ = 3 transition. To get an
absorption image we apply two separate imaging laser pulses; the intensity of the beam with atoms
and without the atoms, I(x, z) and I0(x, z), are recorded by the CCD. The atomic density can be
extracted using the Beer-Lambert law

I(x, z) = I0(x, z) exp [−OD(x, z)] , (1.1)

where OD is the optical density and I(x, z), I0(x, z) are the CCD pixel intensities in the imaging
plane with and without atoms respectively. The optical density is proportional to the column
density of the atoms at a given position

∫
n(x, y, z)dy , where x and z are the object plane positions

and the imaging laser is incident along the y-axis. The number of atoms N(xi, zj) imaged by a
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pixel is

N(xi, zj) =
A

σo
OD(xi, zj), (1.2)

where A is the pixel area in the object plane, σ0 = 3λ2/2π is the cross-section for resonant atom-light
scattering for atoms in the mF = 2 Zeeman sub-level with σ+ polarized light, and λ ≈ 780.241 nm
is the optical transition wavelength for the the D2 electronic transition, (52S1/2 → 52P3/2) of 87Rb
[14].

Figure 1.2: BGU2 atom chip. (a) Top view, showing the chip on its mount, with the copper wire structure
partially covered by the atom chip. The chip faces downwards in the science chamber and the atoms are
trapped ∼ 100µm below the chip. (b) Side view, in which the bonding wires and pins for the electrical
connections to wires can be seen. (c) Design of the BGU2 atom chip. The chip size is 25 mm×30 mm. There
are five 10 mm-long wires in the middle of the chip, three of which are used in the experiment to create the
2D quadrupole field. (d) Magnetic field strength below the atom chip, generated by the three chip wires and
a homogeneous bias field By. The wires are represented by the gold rectangles below the chip and the gray
dot represents the position of the trapped atoms. The current in the central wire is in the opposite direction
to the currents in the adjacent wires. The magnetic field in the proximity of the central wire is stronger than
in the proximity of the two adjacent wires because the magnetic field below the central wire is pointing in
the same direction as the bias field By while the magnetic field below the two adjacent wires is pointing in
the opposite direction. This effect will be reversed if the polarity of the currents is reversed.

1.5 The atom chip

Coherent momentum splitting using magnetic gradients [5] requires accurate and strong magnetic
gradients, with short pulses of those gradients. To create the desired magnetic gradients, we use an
atom chip. Brief current pulses through the chip’s micro-fabricated wires create accurate and strong
gradients, and the low inductance of the chip allows short current pulses. The atom chip consists
of a silicon wafer covered with gold, where insulating gaps in the gold layer define the wires. The
fabrication of the chip was done in an advanced fabrication facility1 capable of producing complex
structures accurately, which in turn form the required magnetic potentials. The atom chip in the
apparatus is the “BGU2” atom chip (Fig. 1.2); a detailed description of this chip is given in [13].
For a thorough review of atom chips, see [15].

The strong magnetic gradient required for the experiment can be achieved with one straight
wire, but we use an improved design with three parallel wires (note that the chip has 5 parallel
wires but the two outermost wires are not needed for the experiments described in this thesis).
The wires are 10 mm long, 40µm wide, and 2µm thick. The wire centers are separated by 100µm,
and the same current runs through them but in alternate directions, creating a 2D quadrupole

1The BGU2 atom chip was produced at Ben-Gurion University of the Negev in The Weiss Family Laboratory for
Nano-scale Systems (http://in.bgu.ac.il/en/nano-fab/Pages/default.aspx).
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field at z = 100µm below the atom chip. Positioning the atoms near the zero of the quadrupole
significantly improves the stability of the Stern-Gerlach interferometer (SGI), as the phase noise is
largely proportional to the magnitude of the magnetic field during the gradient pulse. The improved
phase stability is discussed and demonstrated in detail in [7]. As a power supply for the chip we
use simple 12 V batteries, and turn the current on/off using solid-state current shutters that allow
pulses as short as 1µs.

1.6 Introduced changes, checks, and upgrades to the apparatus

I present here a list of changes and upgrades to the apparatus. We installed the Toptica TA 100
in April 2019 after the Toptica DLX110 had a malfunction; the TA 100 was the main laser in the
first BEC experiment in our lab and is ∼ 15 years old. After installing it, the Toptica TA 100
laser showed some instability, drifting from single-mode operation to multi-mode over time; the
extra modes reduced the number of atoms in the MOT, which prevented us from getting a BEC.
To monitor this problem we installed a Fabry-Pérot interferometer and monitored the laser modes
daily. This problem was finally solved by replacing the old laser diode with a new one.

The original mechanical shutters were home-made from loudspeakers, and were replaced with
commercial Uniblitz LS6 shutters. The commercial shutters have a shorter response time, which
means adjustment of the trigger timing was required after changing the shutters. We implemented a
machine-learning online optimization algorithm [16] into our experimental control, and successfully
tested it on simple optimizations in a one-parameter space. We built a home-made, Arduino based,
temperature logger that monitors and records the temperature of 7 points in the apparatus (see
Fig. 1.3). This was done as part of the effort to better understand the apparatus and improve its
stability.

Figure 1.3: Temperature logger: home-made, Arduino based, temperature logger measures the temperature
at 7 points of the apparatus. The data is recorded to a text file, and later loaded into Matlab to produce a
plot of temperature vs. time.

4



Chapter 2

The experimental procedure

Following the previous chapter in which I described the apparatus, here I describe the experimental
procedure. The experimental cycle is 1 minute long, the first 32 seconds of which are required to trap
and cool the atoms to a Bose-Einstein condensate (BEC), with just a few milliseconds required for
the interferometric sequence. The rest of the cycle allows the coils and copper structure to cool down
so that all cycles start at the same temperature. Producing the BEC begins with a magneto-optical
trap (MOT), then loading the atoms into a magnetic trap and performing evaporative cooling.
The interferometric sequence is performed while the atoms are in free-fall during which time we
manipulate the internal state of the atoms using RF pulses and control the position and momentum
of the atoms using magnetic gradient pulses originating from the atom chip. This chapter describes
each stage of the experimental procedure up to the interferometric stage (more details can be found
in the theses of Tal David [17], Ran Salem [18] and Shimon Machluf [11]), while the following
chapters detail the theory and practice of our Stern-Gerlach interferometry experiments. As in
Ch. 1, I end the chapter with an account of my own contributions to the experimental procedure.

2.1 Trapping and cooling the atoms

2.1.1 Magneto-optical trap

The MOT consists of magnetic fields from two sets of Helmholtz coils, combined with the U-wire
quadrupolar magnetic field, and four red-detuned laser beams arranged in a “mirror-MOT” con-
figuration [19]. The atoms slow down as they experience a drag force due to the interaction with
a red-detuned laser, such that the Doppler shift allows the atoms to absorb a photon and receive
a recoil only against their direction of movement. This drag force is in fact a friction force as it
is velocity dependent, and consequently the atoms cool down. To trap the atoms and increase
their density, a position-dependent force is also required, and is achieved by use of magnetic fields
(quadrupole configuration) in addition to the light fields noted previously. The transition resonance
frequency changes with the magnetic field, due to the Zeeman splitting ∆E(r) = −µBmF gFB(r),
thus making the interaction probability with the laser position-dependent. With the correct con-
figuration of magnetic fields and light polarization, a restoring force due to recoil from the laser
beams will act on the atoms, thus trapping them in the center of the quadrupole field (see Fig. 2.2).
The magnetic fields are produced by a current of 50 A in the U-shaped wire, and homogeneous bias
fields of ∼ 5 G and ∼ 1 G in the y and z directions, respectively (see Fig. 1.1). Rubidium atoms are
released into the science chamber by running a current of 12 − 17 A through a pair of dispensers
wired in parallel. The dispensers are shut down after 12 s while keeping the lasers and fields on,
keeping the atoms trapped in the MOT, allowing the background gas to be pumped and the pressure
in the science chamber to drop, thereby increasing the lifetime of atoms in the magnetic trap which
follows and in which the evaporative cooling will take place. In the MOT, each laser beam has two
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Figure 2.1: 87Rb energy level structure of the D2 line. The fine-structure splitting occurs because of the
electron spin - orbital momentum interaction (L·S), while the hyperfine structure results from the interaction
of the nuclear angular momentum and the electronic total angular momentum (I · J). Each hyperfine level
is further split into 2F + 1 states because of the Zeeman interaction. Before loading to the magnetic trap
we optically pump the atom to the |F = 2,mF = 2〉 state, as the trappable Zeeman sub-levels in the F = 2
manifold are mF = 1 and 2.

different frequencies, one for cooling and the other for repumping. The cooler is ∼ 3Γ = 18 MHz
red-detuned from the F = 2 → F ′ = 3 transition (Γ is the electronic transition linewidth). This
cooling transition can be repeated many times since it is a closed cycle: an atom in the excited
F ′ = 3 state can only decay to the F = 2 ground state. However, some of the atoms (∼ 1/300) go
through the F = 2 → F ′ = 2 transition due to the finite width of the transition, and these atoms
can decay to the F = 1 ground state and be lost from the cooling cycle. Since this will happen
once for every 1000 transitions, and each atom is excited every ∼ 26 ns, all the atoms will be in
the F = 1 ground state in ∼ 26µs. The repumper laser is therefore tuned to the F = 1 → F ′ = 2
transition, from which the atoms can decay to F = 2 and return to the cooling cycle.

In November 2019 we suspected the dispensers are starting to degrade as we couldn’t get a BEC.
To improve the number of atoms in the MOT without significantly increasing the background
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pressure, we added ultra-violet (UV) LEDs shining through the bottom window of the science
chamber. This releases atoms from the windows and surfaces which significantly improved the
fluorescence signal of the MOT and the number of atoms in the BEC. In contrast to the dispensers,
shutting down the UV light immediately stops the release of atoms to the science chamber allowing
the LEDs to run longer; we found that the optimal run time for the UV LEDs is 19 s. The number
of atoms in the MOT is around 50− 60 · 106; Fig. 2.3 shows a picture of the MOT.

position

en
er

gy

mF=1

mF=-1

mF=0

+ -

laser

mF=0

laser 0

Figure 2.2: Light and magnetic fields in a MOT in 1 dimension for an idealized F = 0→ F ′ = 1 two-level
system (in the lab frame). The horizontal dashed line is the laser light frequency, ωlaser which is detuned
from the resonance frequency of the atomic transition, ω0. The energies of the excited states, mF = 0, 1,−1
are marked by solid lines, with different Zeeman energies due to the position dependence of the quadrupolar
magnetic field. Two counter-propagating laser beams, with polarization σ+, σ− are directed at the atoms. The
probability of absorbing a σ+ photon is maximal when the laser frequency matches the transition frequency
from the ground state mF = 0 to the exited state mF = 1, thus the force acting in the two directions is not
balanced and an effective restoring force is applied to the atoms (adapted from [20]).

2.1.2 Preparation for the magnetic trap

To load atoms into the magnetic trap the atoms must be cold enough and located in a volume
overlapping the trap, as well as being in a trappable state. This is achieved by compressing the
MOT, further cooling via a gray MOT and optical molasses, and finally applying optical pumping
to bring the atoms to a magnetically trappable state. In our case, we use the trappable low-field
seeking |F,mF 〉 = |2, 2〉 state. The MOT is much larger than the magnetic trap, so loading the
atoms directly from the MOT to the magnetic trap would be inefficient. To improve the efficiency
of loading we compress the MOT and move it closer to the chip by changing the magnetic fields.
The current in the U-shaped wire is increased from ∼ 50 A to ∼ 75 A and the bias field in the
y-axis is increased from 5 G to 24 G so that the position and size of the MOT is as close as possible
to those of the magnetic trap. This process is called mode matching and is optimized so that the
number of atoms loaded to the magnetic trap is maximal. The compression is done adiabatically
in 100 ms. Further cooling is done in two steps, gray MOT and molasses. In the gray MOT, the
cooler detuning is increased to ∼ 6Γ, while keeping the magnetic fields on. The magnetic fields are
turned off for the molasses stage, and the detuning is further increased, bringing the temperature
of the atoms at the end of the molasses to ∼ 150µK. At the end of the molasses the atoms are in
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Figure 2.3: Atoms in the magneto-optical trap, a few millimeters below the chip surface, taken with a
black-and-white CCD camera and a CCTV. The atoms fluoresce due to scattering of the laser light. The
chip surface, Macor base and wire bonding are visible.

F = 2, distributed evenly over all five Zeeman sub-levels. We apply a short pulse of σ+ polarized
laser beam along the y-axis, while a bias field in the y-axis provides the quantization axis. This
optical pumping beam is tuned to the F = 2 → F ′ = 2 transition; repeated excitation-emission
cycles fully polarize the atoms in the |2, 2〉 state, from which no further laser excitation is possible.
Some atoms can decay to F = 1, so the repumper is also turned on during the optical pumping
stage.

2.1.3 Magnetic trap

Magnetic trapping of neutral atoms is based on the interaction of the magnetic moment of the atom
µ with the magnetic field B, of the form:

U = −µ ·B ≈ mF gFµB|B|, (2.1)

where mF is the projection of the total atomic angular momentum F on the quantization axis
(the magnetic field in our case), gF is the Landé factor, µB is the Bohr magneton, and |B| is the
magnitude of the magnetic field. This is the Zeeman interaction and it lifts the degeneracy of the
different mF states, which are named the Zeeman sub-levels.

Magnetic trapping of neutral atoms was first demonstrated in 1985 by Migdall et al. [21], using
a quadrople trap consisting of two coils in an anti-Helmholtz configuration. The trap depth was
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∼ 17 mK, the trap lifetime was 0.87 s, limited mainly due to collisions with background gas. In a
quadrople trap the magnetic field at the center is zero, causing a degeneracy between the trapped
and untrapped states, and consequently allowing the atoms to flip their spin orientation and get
pushed out of the trap, known as Majorana spin flips. To prevent atom loss due to Majorana spin
flips, we use a Ioffe-Pritchard trap with a non-zero minimum lifting the degeneracy. The trap is
created by a right-angled Z-shaped wire (see Fig. 1.1a) carrying a current of 90 A combined with a
bias field of 50 G along the y-axis [22]. We also use an x-axis bias field of 33 G to lower the magnetic
field at the trap bottom. The trap has radial frequencies in the y and z directions of 2π × 585 Hz
and an axial (longitudinal) frequency of 2π × 40 Hz, and is ∼ 400µm below the atom chip. After
loading to the magnetic trap we have 30− 40 · 106 atoms in the trap, the temperature of the cloud
is ∼ 300µK, and the position is ∼ 2.5 mm below the atom chip. Once the atoms are loaded into
the trap we start the evaporative cooling.

2.1.4 Evaporative cooling

After the atoms are loaded into the magnetic trap, we start the evaporative cooling stage, where we
use RF radiation to selectively expel hot atoms from the trap [23]. This so-called RF knife couples
the trapped Zeeman sub-levels to untrapped sub-levels and the atoms in such untrappable states are
expelled from the trap. The inhomogeneous field of the magnetic trap leads to an energy-selective
loss of atoms, whereby only the hot atoms, which make it to the far edges of the trap where there
is a significant magnetic field, are in resonance with the RF field. As a result, the remaining atoms
are re-thermalized by means of elastic collisions and the mean temperature of the atomic cloud
decreases. The RF frequency starts at 50 MHz and is exponentially lowered within 12 s in a series of
steps to a final value of ∼ 0.6 MHz (we use values in the range of ∼ 0.4− 0.6 MHz depending on the
value of the x-axis bias field) . The lowest RF frequency, which controls the final cloud temperature
and BEC purity, is optimized from time to time, to compensate for minor changes in the magnetic
fields.

2.1.5 Bose-Einstein condensation

One characteristic of a BEC is the anisotropic expansion it exhibits in free-fall after being released
from the trap. Fig. 2.4 shows a series of images of a BEC for increasing time-of-flight (TOF)
after trap release. The cloud is falling freely with gravity and expands faster in the radial y and
z directions, exhibiting in the imaging x-z plane an anisotropic expansion mainly in the vertical
(z) direction. For non-interacting atoms this anisotropy can be explained using the uncertainty
principle, as the BEC is a minimal uncertainty state and the shape of the cloud after TOF reflects its
initial momentum distribution, so the smaller dimension of the cloud expands faster. For interacting
atoms such as those used in our experiment, the Gross-Pitaevskii equation (GPE) [24] predicts a
repulsive force F ∝ −∇n(r), where n(r) is the density distribution of the BEC. This repulsive force
is stronger in the radial direction due to the cloud’s initial shape due to the trap frequencies detailed
above. The expansion due to the interaction energy has the same characteristics as those due to the
uncertainty principle but they are typically stronger and the contribution due to the uncertainty
principle can be neglected. At the end of the RF evaporation we have ∼ 104 atoms in the BEC
state. The evaporation can be stopped above or below the transition temperature to BEC, thus
controlling the relative number of atoms in the condensate; we usually begin our experiments with
a purity of ∼ 70%.
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Figure 2.4: Images of a freely-falling BEC taken for different TOF (time-of-flight). The shape of the
BEC is changing and exhibits anisotropic expansion. At trap release (TOF=0) the cloud is elongated in
the horizontal (x) direction (not shown due to imaging limitations), reflecting the trap orientation, but it
expands faster on the vertical axis so that after 5 ms it is fairly symmetric and after 22 ms it is elongated in
the vertical z-axis as shown in the respective two insets.

2.2 Manipulating the atoms

After obtaining a BEC, we can start the interferometric sequence of the SGI, consisting of RF
pulses and magnetic gradients. Before that we prepare the atoms in the desired initial position and
internal state.

2.2.1 Initial position – changing the trap position

At the end of the evaporation the trap is located ∼ 400µm below the chip surface. To get strong
gradients the atoms should be closer to the chip, and preferably be positioned at the center of the
quadrupole field for maximum stability (see Sec. 1.5). To achieve this, the trap position is changed
by ramping down the current in the Z wire to 24.42 A, and the y-bias field to 41 G, which brings
the trap closer to the chip. We simultaneously turn on the current in the z-bias coils to produce a
bias field of −2.6 G which optimizes the position of the trap in the y direction. If the atoms are not
positioned directly below the center of the chip, there will be a force pushing them in the y direction
and the two interferometer arms will separate along the y-axis, which will reduce their final overlap
and reduce the visibility of the interferometer fringes. Since we image along the y-axis, we cannot
measure the position of the atoms along this axis directly, so optimizing the z-bias field is done by
measuring the interference visibility. It is important to change the fields slowly enough so that the
position is changed adiabatically, so we ramp the currents during 250 ms to prevent oscillations and
heating, and wait another 150 ms so that the cloud will stabilize in the trap.

2.2.2 Initial state – cleaning residual mF = 1

For optimal operation of the SGI, a pure state is required. The final state of atoms in the trap
however, is a mixture of atoms in mF = 2 and mF = 1. The latter is due to the RF radiation in the
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evaporative cooling stage, in which atoms in the mF = 2 state undergo transitions to untrapped
states through mF = 1, thereby leaving around 10% of the atoms in the mF = 1 state. We remove
these mF = 1 atoms from the trap by applying an RF field to couple the mF = 1 state to the
untrapped mF = 0 state. The applied RF field does not affect the mF = 2 atoms, because it is not
resonant with the mF = 2→ mF = 1 transition as discussed next.

2.2.3 Internal state manipulation

Effective two-level system

By applying a strong magnetic field in the y direction we can exploit the non-linear Zeeman effect,
and get an effective two-level system. We run 49 A in the y-bias coils, generating a magnetic
field of 35.3 G which results in a transition frequency between the mF = 2 and mF = 1 states,
f21 ≈ 24.7 MHz. At this field the transition frequency difference is f21 − f10 = 180 kHz so the
mF = 1 → 0 transition is out of resonance as long as the power broadening is low enough. By
applying on-resonance RF radiation we couple the mF = 2 and mF = 1 sub-levels to induce Rabi
oscillations and perform different RF sequences to manipulate the internal state.

Rabi oscillations

We apply on-resonance RF pulses to create different coherent superpositions of the two Zeeman sub-
levels |F = 2,mF = 2〉 and |F = 2,mF = 1〉 (which we denote simply as |2〉 and |1〉). It is helpful
to represent the state of a two-level system on the Bloch sphere, by defining the north pole of the
Bloch sphere as the state |2〉 and the south pole as the state |1〉 (Fig. 2.5). Any state of the two-level
system |ψ〉 can then be described by two angles, θ and φ, so that |ψ〉 = cos(θ/2)|2〉+eiφ sin(θ/2)|1〉.
We define a “π pulse” as a pulse that takes the Bloch vector from the north pole (θ = 0) to the
south pole (θ = π). Starting from the state |ψ〉 = |2〉 and applying a π pulse will result in the state
|ψ〉 = |1〉. A π/2 pulse is a pulse that takes the Bloch vector from the north pole to the equator
(θ = π/2), so starting from the state |ψ〉 = |2〉 and applying a π/2 pulse will result in the state
|ψ〉 = 1√

2
(|2〉 + |1〉). As a source for the RF pulses we use the SRS-SG384 signal generator, since

it has good phase modulation that we use to control the relative phase between the π/2 pulses.
The RF chain is then followed by an RF shutter for quick switching (∼ 1µs rise time), and a
Mini-Circuits RF amplifier. As an antenna we use the copper structure under the chip (Fig. 1.1).
The typical duration of a π pulse is 20µs, and we calibrate the RF frequency and amplitude to
make sure that the pulse is on resonance and that its area is indeed π. The phase of the pulse
determines the rotation axis around which the Bloch vector rotates, while the duration (area) of
the pulse determines the angle of the rotation (Fig. 2.5).

Ramsey sequence

A Ramsey sequence consists of two π/2 pulses with a time delay between them. We start with the
initial state |ψ〉 = |2〉 and apply a π/2 pulse to get |ψ〉 = 1√

2
(|2〉 + |1〉). The frame of reference is

rotating with the RF signal, so the relative phase φ evolves as φ = (ω0−ωRF)·TRamsey = δω ·TRamsey

where ω0 is the resonance frequency of the atoms, ωRF is the frequency of the RF radiation, and
TRamsey is the time between the two pulses. The evolution of the state in the rotating frame can
be written as |ψ(t)〉 = 1√

2
(|2〉 + e−iφ|1〉). The second π/2 pulse transfers the system to the state

|ψ(t)〉 = 1
2 [(1− e−iφ)|2〉+ (1 + e−iφ)|1〉], and the probability of finding the atoms in the state |1〉 is

P1 =
1

2
[1 + cos(φ)] =

1

2
[1 + cos(δω · TRamsey)]. (2.2)

As we increase TRamsey we observe oscillations in the population P1, which are named Ramsey
fringes. When observing an ensemble of atoms, effects of non-homogeneity will cause a decay of the
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Figure 2.5: Bloch sphere representation of a two-level system: (a) The Bloch sphere with the north pole
of the Bloch sphere representing the state |2〉 and the south pole representing the state |1〉. The red arrow
is the Bloch vector of the state |ψ〉 = cos(θ/2)|2〉+ eiφ sin(θ/2)|1〉. (b) Rotation of the Bloch vector around
the x̃-axis at angle θ, from the state |ψi〉 = |2〉 to the state |ψf 〉 = cos(θ/2)|2〉+ sin(θ/2)|1〉. In the π/2 and
π pulses which we use in this work, the latter represent the values of θ. We note that the z̃ axis of the Bloch
sphere is defined as the quantization axis, and in our experiment is different from the real space z axis

oscillation amplitude, since each atom has a slightly different resonance frequency, resulting in a
different final phase, and as the phase spread increases, the oscillation’s contrast decays. The time
constant of the decay is called the coherence time. To increase the coherence time, we may apply a
“spin-echo” technique [25]. Another feature of the Ramsey sequence is its sensitivity to the detuning
δω. It is clear that if the detuning fluctuates from shot to shot, the phase will fluctuate, and the
population will fluctuate non-linearly due to the trigonometric relation. The relation between the
phase noise and the population noise is discussed in Appendix A at length. Spin-echo techniques
also significantly reduce the shot-to-shot phase noise, and are discussed next.

Spin-echo

The spin-echo technique was developed in nuclear magnetic resonance (NMR) to increase the coher-
ence time of systems and to reverse the effect of inhomogeneous fields. In our system it also helps
reduce shot-to-shot phase fluctuations. The sequence consists of two π/2 pulses with a π pulse in
the middle of the two. The π pulse reverses the evolution of the state, so that the phase contribution
from the first half φ1 = δω ·T cancels the opposite phase in the second half φ2 = −δω ·T . Assuming
that the detuning is the same in both halves, the total phase φ1 + φ2 is zero for any value of δω,
thereby reducing effects due to shot-to-shot fluctuations of δω which may arise from low frequency
noise in the bias field. This kind of noise will be discussed in detail in Appendix A.

2.2.4 Population measurement

In most of our experiments we need to measure the relative population in the different Zeeman
sub-levels, whether for calibrating the Rabi pulse, or for measuring the relative population in each
output port of the SGI. The measurement sequence is simple. We first separate the two states
spatially by applying a magnetic gradient in the z-direction. This creates a differential force on
the two states due to the magnetic interaction, F = −∂U

∂z = µ · ∂B∂z ≈ mF gFµB
∂B
∂z . The gradient

duration is 1− 3 ms and is produced by running a high current in the copper Z-wire. After a TOF
of another few ms, the two states can be spatially resolved by our imaging system and we apply
the absorption imaging pulses, as described in Sec. 1.4. The image shows the two clouds, to which
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Figure 2.6: Ramsey and spin-echo sequences. (a) Ramsey sequence, consisting of two π/2 pulses, with a
delay time of TRamsey between them. (b) Spin-echo sequence, consisting of two π/2 pulses with a π pulse
exactly in the middle.

we apply a 2D-Gaussian fit to count the atoms in each cloud and calculate the relative population
in each state. To detect clouds having low OD and a small number of atoms, we apply a low-pass
filter to the image.

2.2.5 Stern-Gerlach splitting using the atom chip

Magnetic force from a three-wire configuration

To suppress phase noise, which mainly comes from fluctuations in the chip modulated currents and
is proportional to the magnitude of the magnetic field produced by the chip wires, we maintain the
gradient while minimizing the magnetic field by forming a quadrupole field and placing the atoms
close to its zero-field center. The quadrupole field is formed by three parallel current-carrying wires.
Let us derive the force applied on the atoms by currents through three infinitely-long parallel wires,
which is useful for estimating the actual magnetic gradient forces in the experiment. The three
wires are oriented along the x-axis, located at y = −d, 0, d (for our chip d = 100µm, see Fig. 2.7).
The currents in the outer wires are directed along −x while the central wire current is along +x
while the magnitudes of the currents are the same in all three wire. Due to the fact that the two
external wires cancel each other’s field in the z direction, the field directly below the central wire
(x = 0) points in the y direction. An additional strong magnetic bias field B0

y is applied. The total
magnetic field is

B = (0, By, 0),where By = B0
y −

µ0I

2π

[
1

z
− 2z

z2 + d2

]
. (2.3)

Under the adiabatic approximation, the magnetic potential is given by

U = −µ ·B ≈ mF gFµB|B|. (2.4)

The force on the atoms in state mF is given by

FB = −∇U = −∇(−µ ·B) ≈ −∇(mF gFµB|B|) = −mF gFµB∇|B|

= −mF gFµB

(
∂

∂x
,
∂

∂y
,
∂

∂z

)√
(By)2

= −mF gFµB
µ0I

2π

[
1

z2
+ 2

d2 − z2

(d2 + z2)2

]
sign[By(z)]ẑ.

(2.5)
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This expression assumes the atoms are exactly below the chip center and in this situation the force
is exerted only in the z direction. The force calculated at z = d gives the same result as the single
wire configuration because the second term in the brackets zeros out when z = d, leaving only the
contribution due to the central wire. The direction of the force may be reversed experimentally by
reversing the direction of the currents. Eq. 2.5 is not exact as the wires have finite length and finite
width; the fields generated by the chip wires are numerically calculated when necessary using the
chip wire parameters.

2.3 Troubleshooting a complex experimental procedure

The experimental apparatus that we were lucky to inherit from our predecessors is a complex and
sensitive 12 year old machine, with hundreds of components, and hundreds of analog and digital
signals each cycle. We have lots of home-made components ranging from mechanical light shutters,
to AOM drivers, and a laser (which is actually very reliable). Problems are bound to happen
and devices are bound to malfunction. The phase transition to a BEC is very sensitive and every
small change in the experimental parameters can prevent achieving a BEC. Small changes in laser
frequency (1-2 MHz), intensity or polarization of the beams during the MOT stage or the preparation
for the magnetic trap, lead to unoptimized trapping and cooling. Changes of less than 0.1% in the
bias fields during the evaporative cooling will change the trap bottom and prevent getting a BEC,
and the same may be said for small changes in timing of triggers and ramps. With such a sensitive
system, one main concern is to keep it working well, and the usual good morning greetings are
answered with “we have a BEC / we don’t have a BEC”. When facing a problem, you initially
have no clue if it is a matter of routine calibrations, like laser intensities and fine tuning of the RF
ramps, or a malfunction like a burnt current shutter, or just a wrong number you entered for one of
the cycle stages. Troubleshooting such a complex experimental procedure (sequence) becomes an
art, and to finalize this chapter, I would like to briefly list some of the maintenance tasks I had to
perform as part of this M.Sc. work:

1. Documentation - Everything you do has to be written down. Even one line can save you
tons of work. You will forget in two weeks that you changed the channel of some event,
connected a new component, or easily fixed a problem which may come back. As an example,
optimization and calibration of the MOT and trap loading, that originally took more than a
week, was repeated in less than a day, because only the parameters that showed significant
effects the first time required optimization the second time.

2. Routine calibrations - Every system needs check-lists. Here I detail the main items we had
on our regular check-list: We re-couple the laser to the fibers every week or two, or if the
fluorescence signal of the MOT is smaller than usual. We calibrate the RF ramps once in
awhile or if the number of atoms in the BEC is not optimal; usually calibrating the last ramp
or two is enough. We calibrate the resonance frequency and amplitude of the Rabi pulses
before every data-taking session. We optimize the coupling of the laser diode to the TA if the
output intensity is not high enough. We adjust the magnetic fields to get optimal loading to
the trap.

3. Inherent problems - Some problems tend to repeat themselves. Usually these problems are
easy to solve, but hard to diagnose. In our system repeating malfunctions are: current shutters
burn routinely and need replacement, light leakage that kills the BEC happens often as there
are numerous potential sources for such a leak, and finally, the laser can drift from single-mode
operation.

4. Diagnosing malfunctions and problem solving - We diagnosed and solved many problems
during this work, such as electrical noise from a faulty lamp in the lab that “killed” the
BEC, optimizing the MOT beam alignment and polarization after replacing the main laser,
diagnosing degradation of the dispensers and installing UV LEDs to compensate for this,
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Figure 2.7: Quadrupole field of the atom chip and its advantages. (a) Schematic diagram of the chip wires
which are used to generate the quadrupole field. Wires are 10 mm long, 40µm wide and 2µm thick. The
separation between the wires’ centers is 100µm, and the direction of the current I alternates from one wire
to the next. The wires, being much smaller than the size of the chip (25 mm × 30 mm), are hardly visible
in Fig. 1.2. (b) While the constant-bias magnetic field (dashed black line) is necessary to create an effective
two-level system, we do not require any additional bias to be produced by the chip wires during the gradient
pulses, but require only the gradient of the field. This requires only a single wire. However, one can see that
the total magnitude of the magnetic field produced by a quadrupole and a bias (red/orange lines) is smaller
than that produced by a single wire and a bias (blue line, as used in [5]), while the gradient (at 100µm) is
the same. Since the phase noise is largely proportional to the magnitude of the magnetic field created during
the splitting pulse [5], positioning the atoms near the quadrupole position (98µm below the chip surface)
reduces the phase noise. Taken from [13].

and many other malfunctions. One hard-to-diagnose problem was a malfunction in the x-
bias power supply chain; a small increase in the resistance of the current shutter limited the
maximal current output of the power supply, from ∼ 51 A to 48.2 A at the maximum voltage
of the power supply which is 6 V. This change of the x-bias field affected the trap bottom
and thus most of the atoms were expelled from the magnetic trap during the evaporative
cooling. The loss of atoms was thought to be due to different reasons mainly that the atoms
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were not cold enough before loading them into the magnetic trap due to suboptimal cooling
during the molasses. It was finally diagnosed by imaging the atoms at different times during
the evaporative cooling that showed a sharp loss of atoms 2 s into the evaporative cooling
stage in less than 0.1 s. The sudden loss of atoms indicated that the trap bottom has changed
which led us to suspect the magnetic fields during this stage were changed. We replaced the
power supply and carefully calibrated the current in the new power supply with a 61

2 -digit
multimeter, so that it will give the same current as the old one up to a 0.1% error margin, as
we found this precision is necessary if one wishes to avoid re-tuning all the RF ramps. After we
calibrated currents we fine-tuned the two last RF ramps to get an optimal BEC. The problem
was harder to diagnose as the malfunction began sometime during the down-time period of
replacing the main laser and realigning the MOT beams. At this point we didn’t suspect a
new problem will arise during the evaporative cooling stage, as this stage was not changed
or affected by the replacement of the laser or the alignment of the MOT beams. Of course,
such a malfunction can appear so it is important to keep the down time of the experiment to
a minimum when replacing a component. We applied this lesson to the replacement of the
laser diode in the TA-100; we first stabilized the experimental sequence in its new state after
the replacement of the laser, alignment of the MOT beams, and replacement of the x-bias
power supply. Once the experiment was stable the problem of multi-mode operation could be
isolated and we went on to replace the laser diode which indeed solved this problem.
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Chapter 3

Atom Interferometry

3.1 Interferometry in the history of physics

Interferometers have long been a crucial part in our investigation of nature and physical phenom-
ena. Particularly famous interferometer experiments range from Young’s double slit experiment
that explored the wave-like nature of light to the Michelson-Morley experiment, with its brave
attempt to measure the Earth’s movement in the “luminiferous aether”. The Michelson-Morley
experiment was one of the experimental foundations of special relativity. Its ultimate extension in
the modern era is the Laser Interferometer Gravitational-Wave Observatory (LIGO), an example of
a large-scale experiment built with the goal of detecting gravitational waves and that successfully
confirmed Einstein’s predictions 100 years after the theory of general relativity. The leap from opti-
cal interference to matter-wave interference was made around 1924, with the de Broglie hypothesis
confirmed by the Davisson-Germer experiment that demonstrated the wave properties of electrons,
exhibiting a diffraction pattern, similar to X-ray scattering experiments. Atom intererometers were
first developed in the 1990’s, and nowadays are common devices for research in the field of quantum
mechanics and are used in precision measurements of gravity [2], fundamental constants [3], and as
accelerometers for inertial guidance and many additional endeavors [4]. A detailed review of atom
interferometry may be found in [1].

In the following chapters we present our work on the Stern-Gerlach atom interferometer, in
which the splitting and recombination of quantum wavepackets is performed by forces that arise
from magnetic gradients acting on Zeeman sub-levels. Our atom interferometer is realized on the
atom chip, and stands at the opposite end of scale of the LIGO facility. Nevertheless, it is hoped
that it too has unique properties that will enable new insights in fundamental science as well as
technological applications.

3.2 Stern-Gerlach Interferometer (SGI)

In 1922 Walther Gerlach and Otto Stern published their results on “The experimental proof of
directional quantization in the magnetic field”, which is now famously known as the Stern-Gerlach
(SG) experiment [26]. In the experiment, a collimated beam of silver atoms passed through a region
with a strong magnetic gradient. The results showed a splitting into two distinct beams and were
clear evidence of the quantization of the magnetic dipole of the atom. The SG experiment con-
tributed to the discovery of quantum mechanical spin, the intrinsic angular momentum of particles.
While the SG experiment demonstrated splitting of an atomic beam into two distinct beams, it
did not demonstrate the coherence of the splitting process; to prove coherent superposition one
has to show an interference signal. The spatial fringe SGI, showing a spatial interference pattern,
and the full-loop SGI, showing spin population fringes, will be described in the next subsections,
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and prove the coherence of splitting and recombination of wavepackets via the application of mag-
netic gradients. Finally, let us comment on the previous world state-of-the-art in SG interferometry
with static magnetic fields [27–37]. While these longitudinal beam experiments did observe spin-
population interference fringes, the experiments presented here are very different. Most importantly,
as explained in [32] and [35], the full-loop configuration was never realized, since only splitting and
stopping operations were applied (i.e., there was no active recombination); namely, wavepackets
exit the interferometer with the same separation as the maximal separation achieved within.

3.2.1 Half loop – spatial fringes

In 2013, our laboratory’s team demonstrated coherent Stern-Gerlach splitting [5, 11] of an atomic
wavepacket, establishing the Stern-Gerlach beam splitter (SGBS), and showing for the first time
a spatial interference patterns from an SG apparatus (the SGBS was originally coined the field-
gradient beam splitter FGBS). The experiment is an atomic analog of the double slit experiment,
first splitting the wavepackets, then stopping their acquired momentum after some propagation
time, and finally allowing them to expand until they overlap and exhibit a spatial interference
pattern. A detailed analysis of the stability of the Stern-Gerlach spatial fringe interferometer
was recently published [7], demonstrating the very high phase stability of our implementation,
in which the multi-shot fringe visibility reached 90%. The spatial fringe SGI technique was used for
further experiments in our laboratory, where the two wavepackets were put in a clock state and the
different “ticking” rates, induced by a synthetic red-shift of proper time, gave rise to “which path”
information that affected the fringe visibility [38]. An experiment with a similar setup showed the
quantum complementarity of clocks [39], extending the known quantum complementarity relation
for visibility and distinguishability V 2 +D2 ≤ 1 [40] where V is interference pattern visibility and
D is the distinguishability of the two paths of the interfering particle. In an experiment where the
proper time is a “which path” witness, the clock complementarity relation becomes V 2+(C ·DI)

2 ≤ 1
where DI is the ideal clock distinguishability of the paths, determined by the different ticking rate
in the two paths of the clock, and 0 ≤ C ≤ 1 is the clock quality, whereby DI is due to the red-shift
of general relativity, and C is due to the quantum preparation of the two-level clock. The maturity
of these and other [41] half-loop SGI experiments in our laboratory has paved the way for exploring
the full-loop SGI, which is described in this thesis.

The experimental signal in the half loop is a spatial interference fringe pattern, containing
information about the visibility, periodicity and phase of the interferometer. The spatial fringe is
produced by the interference of two wavepackets having the same spin. To produce high visibility
spatial fringes, it is not necessary to actively recombine the paths of the wavepackets, and the
stopping of the relative motion doesn’t have to be precise. As long as the momentum distribution
of each of the wavepackets is wider than the momentum difference after stopping, the wavepackets’
expansion guarantees that they will eventually overlap and the visibility will be high. It is even
possible to increase the momentum distribution by a lensing effect of the gradients which makes the
wavepackets expand more rapidly. It follows that the half-loop interferometer does not require high
precision of the splitting and stopping operations but rather requires high repeatability of these
operations from shot to shot, which is essential for high phase stability.

In contrast, the full-loop SGI, based on splitting and recombination of two wavepackets with
different spin states, does require precision in the recombination of the wavepackets, as discussed in
the next sections.

3.2.2 Full loop SGI – spin population fringes

In 1951 David Bohm envisioned an atom interferometer based on the SG experiment, using per-
manent magnets to create four regions of magnetic gradients to split, stop, reverse, and recombine
the wavepackets in a setup analogous to a Mach-Zehnder (MZ) interferometer. Bohm mentioned
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that such a device would require “fantastic” accuracy [42]. Englert, Schwinger and Scully ana-
lyzed the concept of an SGI in more detail and coined it the “Humpty-Dumpty” (HD) effect [8–10]
to emphasize that exceptional precision would be required to coherently split and recombine the
wavepackets.

In our realization, the full-loop SGI is based on a sequence of RF pulses to manipulate the
internal state of the atoms, i.e., a two-level system of Zeeman sub-levels |1〉 and |2〉, and pulses of
magnetic gradients originating from an atom chip to manipulate the external degrees of freedom
of the atoms. We apply four magnetic gradient pulses to split, stop, reverse, and recombine the
wavepackets in momentum and position. The detailed experimental sequence will be presented in
Sec. 4.1. We start with the atoms in state |2〉, then apply the first π/2 RF pulse which creates
an equal spin superposition |ψ〉 = ψ0(r) 1√

2
(|1〉 + |2〉), where ψ0(r) is the initial wavepacket. We

then apply the gradient pulses to manipulate the momentum and position of the wavepackets. The
wavefunction throughout the propagation in the interferometer is a superposition with two different
spatial wavepackets evolving separately along the interferometer arms

|ψ(r, t)〉 =
1√
2

[ψ1(r, t)|1〉+ ψ2(r, t)|2〉]. (3.1)

After the last gradient pulse we apply the second π/2 RF pulse and finally measure the population
in the |1〉 state as described in Sec. 2.2.4. The state after the last gradient pulse is |ψ(r, tf )〉 =

1√
2
[ψ1(r, tf )|1〉+ ψ2(r, tf )|2〉], and after applying the second (and last) π/2 RF pulse we get

|ψ(r, tf )〉 =
1

2
[ψ1(r, tf )(|1〉 − |2〉) + ψ2(r, tf )(|1〉+ |2〉)]. (3.2)

The measurement of population is a projection into state |1〉, where after the projection we get

〈1|ψ(r, tf )〉 =
1

2
[ψ1(r, tf ) + ψ2(r, tf )] (3.3)

and the measured population, i.e., the fraction of atoms in the |1〉 state, is

P1 =

∫
d3r |〈1|ψ(r, tf )〉|2 =

1

4

∫
d3r (|ψ1|2 + |ψ2|2 + ψ∗1ψ2 + ψ1ψ

∗
2). (3.4)

Since the wavefunctions ψ1 and ψ2 are normalized,
∫
d3r |ψ1|2 =

∫
d3r |ψ2|2 = 1, we obtain P1 =

1
4 [2 +

∫
d3r (ψ∗1ψ2 + ψ1ψ

∗
2)], which gives

P1 =
1

2
[1 + V cos(∆φ)] , (3.5)

where

V e−i∆φ =

∫
d3rψ∗1(r, tf )ψ2(r, tf ) (3.6)

is the overlap integral. Here V is the spin population fringe visibility and ∆φ is the interferometric
phase. The different contributions to this phase and the visibility are described in the next two
sections.

3.3 Phase of the SGI

Here we explain and calculate the interferometer phase ∆φ in Eq. 3.6, which is the phase difference
between the two wavepackets ψ1 and ψ2, acquired during the propagation in the two arms. The
centers of the two wavepackets follow two trajectories R1(t) and R2(t) along the two interferometer
arms such that at the final time tf they are located at the points R1(tf ) and R2(tf ) and have
corresponding momenta P1(tf ) and P2(tf ). We can write two wavefunctions ψ1 and ψ2 in the form

ψj(r, tf ) = eiPj ·(r−Rj)/~Φj(r−Rj , tf )eiSj/~, (3.7)
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where (for j = 1, 2) Rj and Pj are the positions and momenta at the final time tf (the argument
tf is omitted for brevity), Sj are the corresponding actions along the two classical trajectories, and
Φj(r, tf ) is the wavefunction in the frame of reference that moves with Rj(t) of each arm, which
we assume to be the same for both arms [meaning Φ1(r, tf ) = Φ2(r, tf )]. This assumption is fully
justified if the time evolution involves only homogeneous gradients since such gradients affect only
the momentum of the wavepackets. In our realization the gradients are not completely homogeneous
but the deviation from this assumption due to the differential curvature of the gradients is negligible.
We note that we allow a time delay between the last gradient and the last π/2 RF pulse, during which
the wavepackets are assumed to be exposed to the same unitary time evolution which conserves the
overlap integral in Eq. 3.6, i.e., the visibility and the phase.

We define Ravg = 1
2 [(R1(tf ) + R2(tf )] and δR = R1 − R2, to get Rj = Ravg ± 1

2δR, where
+ and − refer to j = 1, 2, respectively. In the same manner we define Pavg = 1

2(P1 + P2) and
δP = P1 −P2, to get Pj = Pavg ± 1

2δP. Using this we write the phase in the first exponent

1

~
Pj · (r−Rj) =

1

~
(Pavg ±

1

2
δP) · (r−Ravg ∓

1

2
δR). (3.8)

By substituting the wavefunctions in Eq. (3.7) into the overlap integral in Eq. (3.6) we obtain

V e−i∆φ = e−
i
~ [∆S−Pavg·δR]

∫
d3r e−iδP·(r−Ravg)Φ∗(r−Ravg−

1

2
δR, tf )Φ(r−Ravg +

1

2
δR, tf ). (3.9)

We now transform the integration variable to r′ = r−Ravg

V e−i∆φ = e−
i
~ [∆S−Pavg·δR]

∫
d3r′ e−iδP·r

′
Φ∗(r′ − 1

2
δR, tf )Φ(r′ +

1

2
δR, tf ). (3.10)

Note that the integral in Eq. (3.10) is real if the wavefunction Φ(r, tf ) is symmetric or antisymmetric
under inversion, because taking the complex conjugate of the integrand gives the same integrand
with reversed coordinates r → −r. It follows that the integral can be identified with the visibility
V , while the phase can be identified with

∆φ =
1

~
∆S − 1

~
Pavg · δR =

1

~
∆S −∆ϕsep, (3.11)

where ∆S = S1 − S2 is the action difference between the two centers of the wavepackets, δR is the
spatial separation at time tf , and −1

~Pavg · δR ≡ ∆ϕsep is the separation phase which appears if
the two arms have some final spatial separation, and which depends on the average momentum of
the two arms Pavg. The decomposition of the phase in this way is not unique and depends on the
frame of reference in which the calculation is done; for example, in a frame of reference that moves
with the average velocity of the final wavepackets, the separation phase would vanish for any δR, as
Pavg = 0. We now examine more closely these two contributions to the phase: the action difference
and the separation phase.

3.3.1 The action difference

The action of each arm is the integral over the classical path Sj =
∫ tf

0 [Kj(t)− Uj(t)] dt, where
Kj(t) and Uj(t) are the kinetic and potential energies, respectively, so the action difference is

1

~
∆S ≡ ∆ϕprop =

1

~

∫ tf

0
[∆K(t)−∆U(t)] dt, (3.12)

where ∆K(t) and ∆U(t) are the kinetic and potential energy differences between the two arms
at any time t during the interferometric sequence. Our interferometer is one dimensional (motion
along ẑ) so the potential energy difference is

∆U(t) = −mg[z1(t)− z2(t)]−m[aB1(t)z1(t)− aB2(t)z2(t)], (3.13)
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where m is the mass, aB1(t), aB2(t) are the accelerations due to the magnetic gradients in each of
the arms as a function of time, and the gravitational acceleration g is assumed to be along the
positive direction of the z-axis. The kinetic energy difference is

∆K(t) =
1

2
m[v2

1(t)− v2
2(t)], (3.14)

where v1(t), v2(t) are the velocities in each of the arms as a function of time.
Our full-loop SGI is a closed interferometer, where the last two gradient pulses (reversing and

recombining) completely undo the action of the two first pulses (splitting and stopping), so that
the final position and momentum of the wavepackets in the two arms are equal (we define a closed
interferometer as an interferometer where the final separation in position and momentum, δR(tf )
and δP(tf ), are zero.) The sequence consists of four gradient pulses of duration T1, where the
accelerations aB1(t), aB2(t) are a1, a2 during the first and last pulses and −a1,−a2 during the two
middle pulses respectively. There is a delay time Td between the two first pulses and between the two
last pulses (there is no delay between the second and third pulse), during which aB1(t) = aB2(t) = 0
(see Fig. 4.1). The interferometric phase of this sequence is calculated from the action difference to
be [43]

∆φclosed =
m∆a

~

[
g
(
2T 3

1 + 3T 2
1 Td + T1T

2
d

)
+ (a1 + a2)

(
2

3
T 2

1 + T 2
1 Td

)]
, (3.15)

where ∆a = a1 − a2 is the acceleration difference.
In this derivation we didn’t include the phase due to the interaction with the magnetic bias

field. In the frame rotating with the RF frequency (see Sec. 2.2.3), this phase is given by

∆φB =

∫ (
1

~
∆|µ ·B0| − ωRF

)
dt, (3.16)

integrated over the time delay between the first and last π/2 RF pulses. In our realization we keep
this phase constant and refer to it as ϕ0, since the magnetic bias field and the time delay between
the first and last π/2 RF pulses are constant.

3.3.2 Separation phase of an open SGI

As seen in Eq. 3.11, the interferometer phase contains a term that does not follow from the action
difference and appears only in an open geometry where the two arms of the interferometer do
not terminate at the same position at t = tf . However, suppose that we wish to measure only
the separation phase, in the lab frame. This cannot be done in one measurement. Nevertheless,
subtracting the results of two experiments can provide a measurement of the separation phase in
an open interferometer that consists of half the sequence of a full-loop closed interferometer. The
phase of such an open interferometer (spin population fringes) can be measured if the separation
between the two paths is small enough such that the two wavepackets propagating along the two
arms still overlap. In our case the closed interferometer sequence is symmetric under inversion
around its middle, as the third and forth pulses are equal to the second and first, respectively. In
addition, the second pulse reverses the action of the first momentum kick such that in the middle of
the full interferometer the total momentum applied by the pulses is zero. Under these conditions,
it can be shown (see Eq. 16 of [44]) that the action difference in the middle of the interferometer
is half of the action difference at the end of the full interferometer. We denote by T the time of
the half-interferometer (T = 2T1 + Td), after which ∆z = ∆zmax is maximal and ∆v = 0, and by
2T the time of the full interferometer, after which ∆z(2T ) = 0. Then the action difference satisfies
∆S(T ) = 1

2∆S(2T ). Using this condition and Eq. 3.11, we obtain

∆φ(T )− 1

2
∆φ(2T ) = −1

~
Pavg∆z(T ) = ∆ϕsep(T ), (3.17)
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so that measuring the phase at time T and 2T enables us to isolate the separation phase from other
phase contributions. We note that ϕ0 in this open SGI configuration is the same as ϕ0 in the closed
configuration described above, since the bias field and the timing of the two π/2 pulses are the same
for both configurations. For our realization, the separation phase is calculated to be

∆ϕsep =
mg∆a

~
(2T1 + Td + T0)(T1Td + T 2

1 ), (3.18)

where T0 is the free-fall time from the trap release to the first gradient pulse. In the lab frame, the
total phase of an open SGI interferometer will be given by

∆φopen =
1

2
∆φclosed + ∆ϕsep. (3.19)

3.4 Visibility of the full-loop SGI

3.4.1 Experimental measurement of visibility

We have two methods to experimentally measure the visibility of the SGI. First, we can scan the
phase of the second π/2 RF pulse and fit the resulting pattern to Eq. 3.5, P1 = 1

2 [1 + V cos(∆φ)];
this is demonstrated in Fig. S7 of [6]. The second way is by scanning one of the SGI parameters,
e.g., maximal momentum splitting or maximal spatial splitting. This is achieved by scanning
the gradient pulse duration or delay time between the pulses. In such measurements, both the
interferometer phase ∆φ and visibility V can change. Fitting the visibility to a function of the
gradient pulse duration or delay time determines the visibility for a given set of parameters. In some
measurements we observe a decaying oscillation, where V is an envelope decaying as a Gaussian, as
explained below.

3.4.2 Theoretical prediction of the visibility

The theoretical prediction of the visibility is based on the estimation of the absolute value of the
overlap integral in Eq. 3.6 at the time of measurement. In general, assuming that the atoms are in a
BEC state, i.e., all have the same wavefunction in the initial trap, three steps are required to make
such a prediction:

1. Writing the initial conditions of the wavepacket – its shape, momentum width, number of
atoms, position, etc.

2. Calculating the evolution of the wavepacket, including atom-atom interactions and external
potentials.

3. Calculating the overlap integral of the two interferometer arms at the time of measurement.
Under most experimental circumstances, it is hardly ever practical to achieve an exact calculation
of the visibility. First, the initial conditions need to be measured, but these have unavoidable exper-
imental uncertainties. Second, to calculate the evolution of the wavepacket, some approximations
must be made, since it is impossible to directly calculate the dynamics and interactions of all the
atoms. The third step can be done more accurately once we have the final state of the two inter-
ferometer arms, since calculating the overlap integral can be done analytically or numerically. A
detailed theoretical analysis for the visibility of an SGI with a single atom in a Gaussian wavepacket
was conducted by Englert, Schwinger and Scully (ESS) [8–10]. Calculating the overlap integral for
two non-expanding Gaussian wavepackets, one gets the HD formula

V = exp

[
−1

2

(
σp∆z

~

)2

− 1

2

(
σz∆pz

~

)2
]
, (3.20)

where σp and σz are the momentum and spatial widths of the wavepacket, and ∆z and ∆pz are
the spatial and momentum differences at the moment of measurement. This calculation exhibits a

22



Gaussian decay of the visibility for increasing spatial or momentum differences. The ESS analysis
is an over-simplification for our experiments, in that it shows the general behavior of the visibility,
but ignores the time evolution of the wavepackets and the atom-atom interactions in the BEC
that also affect the evolution of the wavepacket and therefore the resulting visibility. A better
approximation of the initial wavepacket, the wavepacket evolution, atom-atom interactions, and the
resulting visibility is presented in [45], and in the next section.

3.4.3 Generalized wavepacket model

The following summary is based on the theoretical development presented by my colleague Yonathan
Japha in [45]. Here I summarize the main results related to the full-loop SGI from his work. Another
analysis of this problem, with a representation-free form, is presented in [46].

Initial condition – “Generalized Thomas-Fermi approximation”

To get an approximation to the initial wavepacket in our experiment we begin with the Gross-
Pitaevskii equation (GPE) for a BEC in a harmonic potential [24]:−~2∇2

2m
+
m

2

3∑
j=1

ω2
j r

2
j + gN |Φ0|2 − µ

Φ0(r) = 0, (3.21)

where the first term is the kinetic energy, the second term is the potential energy in a harmonic
trap with frequencies ωj in the three Cartesian co-ordinates j, and the third term is the mean-field
repulsive potential. This term is proportional to the atom density N |Φ0|2, where the wavefunction
Φ0 is normalized to unity, and to the coupling strength g = 4π~2as/m with as being the s-wave
scattering length, m the atomic mass, and µ the chemical potential.

The GPE has two familiar limits, one limit regards neglecting the kinetic energy term, and as-
suming Φ0 is in the form of Thomas-Fermi (TF) approximation (an inverted parabola). The other
limit assumes the atom-atom interactions are negligible, which leads to a Gaussian wavepacket so-
lution. Instead of using one of this limits, we estimate the kinetic energy by assuming that the
wavefunction Φ0 is an implicit hybridization of a Gaussian and an inverted parabolic wavefunc-

tion. We use the Gaussian wavepacket ΦG ∝ exp
(
−
∑

j r
2
j/4σ

2
j

)
to calculate the kinetic energy in

Eq. 3.21, namely

− ~2

2m
∇2Φ0 ≈

∑
j

~2

4mσ2
j

(
1− 1

2

r2
j

σ2
j

)
Φ0, (3.22)

and the inverted parabolic wavefunction ΦTF ∝
√

1−
∑

j r
2
j/r

2
j,max that is nonzero only when the

argument of the square root is positive, to calculate the interaction term gN |Φ0|2. The procedure
described here provides fairly good agreement with the numerical solutions of the GPE (see [45]
Fig. 1 for details). This approach generalizes the TF approximation to the whole range of atom-
atom interaction strengths, from non-interacting atoms (low densities) to the standard TF limit
(high atomic densities).

Wavepacket evolution

The wavefunction of the BEC after release from the trap satisfies the time-dependent GPE

i~
∂ψ

∂t
= ĤMF(t, ψ)ψ, (3.23)

where ĤMF(t, ψ) = − ~2
2m∇

2 +U(r, t) + gη(t)N |ψ|2 is the Hamiltonian in the mean-field approxima-
tion, U(r, t) is a time-dependent potential arising from gravity, magnetic gradients, etc., and η(t)N
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is the number of atoms in the wavepacket at any time. The atom number η(t)N can change in time
in different interferometric situations. For example, if a wavepacket is split equally, then each has
N/2 particles after achieving sufficient spatial separation, and hence the strength of the mean-field
potential decreases for each wavepacket by a factor η = 1/2. The wavefunction can be written as

ψ(r, t) = ei[P·(r−R)+S(t)]/~Φ(r−R, t), (3.24)

where R and P are as defined in the beginning of Sec. 3.3. The evolution of the center-of-mass
(COM) can be found by using Newton’s equations, while the evolution of the wavefunction within
the COM frame can be found from the following equation:

Φ(r, t) =
exp

[
i
(

1
2

∑
j αjr

2
j + ϕ

)]
√
λ1λ2λ3

· Φ0

(
x

λ1
,
y

λ2
,
z

λ3

)
. (3.25)

This scaling ansatz, holds as long as V (r, t) can be approximated by a quadratic potential around
the COM, and where Φ0 is the wavefunction at time t = 0 that satisfies Eq. 3.21 if the initial state
was a stationary state in a trap. The λj are the scaling factors for each axis, αj = ∂kj/∂rj is the
spatial derivative of the wavenumber which we call “momentum chirp”, and ϕ is the global phase.
The scaling factors, momentum chirp, and global phase are time dependent and are given in [45].

Visibility, coherence length and momentum coherence width

If Φ0 is a Gaussian, or approximated by a Gaussian, the visibility is given by (Eq. 36 of [45])

V = exp

[
−1

2

(
σ2
z∆p̃

2/~2 + ∆z̃2/4σ2
z

)]
, (3.26)

where σz is the initial wavepacket width before propagation and (Eq. 32 of [45])

∆z̃ = ∆z/λz, ∆p̃ = λz∆p−mλ̇z∆z. (3.27)

For the transverse scaling factor λz we have the form λz(t) =
√

1 + ω2
z t

2, so λ̇z = ω2
z t/λz. We

also use ~/2mωz = `2z, where `z is the harmonic oscillator length along z, namely the width of a
non-interacting atom in the ground state in the trap. We then obtain

V = exp

[
−1

2

(
σ2
z(1 + ω2

z t
2)

~2
∆p2 +

1 + ω2
z t

2 (σz/`z)
4

1 + ω2
z t

2

∆z2

4σ2
z

− σ2
z

`2z
ωzt

∆z∆p

~

)]
. (3.28)

This equation describes the visibility of the SGI, given the final momentum and spatial splitting,
initial parameters of the trap, and TOF. To better relate Eq. 3.28 to the experiment and render
it more intuitive, we define the coherence length lc as the spatial splitting at which V = 1/e (for
purely spatial splitting, i.e., ∆p = 0), and the momentum coherence width lp as the momentum
splitting at which the visibility drops to 1/e (for purely momentum splitting, i.e., ∆z = 0). Thus
Eq. 3.28 can be written as

V = exp

[
− ∆p2

lp(t)2
− ∆z2

lc(t)2
+ β(t)

∆z∆p

~

]
, (3.29)

where

lc = 2
√

2σz

√
1 + ω2

z t
2

1 + ω2
z t

2 (σz/`z)
4 , (3.30)

lp =

√
2~

σz
√

1 + ω2
z t

2
, (3.31)

and

β(t) =
σ2
z

`2z
ωzt. (3.32)
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For ∆p = 0, Eq. 3.29 gives

V (∆z)|∆p=0 = exp

[
− ∆z2

lc(t)2

]
(3.33)

and for ∆z = 0 we obtain

V (∆p)|∆z=0 = exp

[
− ∆p2

lp(t)2

]
, (3.34)

which are consistent with our definitions of the coherence length and momentum coherence width.
These definitions enable experimental determinations of the coherence length and the momentum
coherence width. A measurement of visibility as a function of spatial splitting, V (∆z), should

fit a Gaussian function V (∆z) = V0 exp
[
− ∆z2

lc(t)2

]
and yield a value for the coherence length lc.

Similarly, a measurement of visibility as a function of momentum splitting gives a value for the
momentum coherence width lp. While measuring the coherence length, it is important to make sure
that the momentum splitting ∆p is minimal (∆p� lp) so that the visibility drop is due to spatial
splitting only; this can be ensured by optimizing the gradient pulses. Correspondingly, measuring
the momentum coherence width requires ensuring that ∆z is minimal by performing a very short
sequence in which the spatial separation is negligible (∆z � lc).
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Chapter 4

Implementation of the full-loop
Stern-Gerlach Interferometer

4.1 Experimental sequence

As described in the previous chapter, the Humpty-Dumpty effect (Eq. 3.29) requires that the even-
tual experimental imprecision in closing the loop (in position and momentum), should be smaller
than the coherence length and the wavepacket width in momentum. Otherwise, the value of the
overlap integral is small and the coherence, as observed through the interference visibility, will be
small as well. This is a formidable task, and in the following I detail how it was achieved.

The experimental sequence is described in Fig. 4.1. The sequence consists of on-resonance RF
pulses that manipulate the internal state of the atoms, and magnetic gradients that manipulate the
momentum of these states. We start with a BEC, falling freely along the z-axis, in the |2〉 ≡ |F =
2,mF = 2〉 state, apply a π/2 RF pulse to create an equal superposition 1√

2
(|1〉+ |2〉), where |1〉 ≡

|F = 2,mF = 1〉. We then apply four magnetic gradients to split and recombine the wavepackets,
with the two central pulses designed to stop and precisely reverse the wavepackets’ momenta.
The last pulse is intended to create overlap between the two wavepackets in both momentum and
position.

Specifically, the first gradient (duration T1) splits the wavepackets into two momentum states and
determines the maximum momentum splitting ∆pmax. The delay time Td1 allows the wavepackets
to separate spatially and determines the maximum spatial separation ∆zmax. After this delay
time, a second gradient pulse (T2) reverses the force applied to the wavepackets, thereby stopping
their relative velocity. These first two gradient pulses complete the first half of the interferometer
(0 < t < T ). The second half of the interferometer (T < t < 2T ) acts to recombine the wavepackets
both in position and momentum. The third gradient pulse (T3) follows immediately after the second
pulse and reverses the momentum, the delay time Td2 closes the spatial separation, and the fourth
pulse (T4) closes the momentum separation, finally achieving a full-loop SGI with these four gradient
pulses.

The four gradient pulses are generated by brief currents in the atom chip wires (the atom chip is
described in Sec. 1.5). To get optimal recombination, it is necessary to adjust at least one gradient
pulse (usually T4, or T2 +T3) and one delay time (Td2). The optimization process is demonstrated in
Fig. 4.2. Such an optimization is required since gravity, and mainly the magnetic force, increase the
distance between the atom and the current-carrying wire as time evolves, and hence the magnetic
gradients change even if exactly the same current is applied.

The measurement at the end of a sequence consists of a π/2 pulse, which projects the spin state
onto the z̃-axis of the Bloch sphere (which is defined by the strong homogeneous bias field along
the y-axis in real space), after which a long gradient pulse separates the two states spatially and
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Figure 4.1: Experimental sequence of the longitudinal full-loop SGI (z position vs. time). The figure is
plotted in the center-of-mass frame. The interferometer operates for a duration 2T , and consists of four
magnetic gradient pulses (purple columns) labeled by their respective durations T1-T4, with variable delay
times Td1 and Td2 between them (there is no delay between T2 and T3). The states |2〉 ≡ |F = 2,mF = 2〉
and |1〉 ≡ |1, 1〉 are defined along the Bloch sphere z̃-axis, while in real space the quantization axis is defined
by the strong homogeneous bias field along the y-axis; the magnetic gradients and the interferometer axis are
along the z-axis (direction of gravity). The simplest way to think about this interferometer is as a Ramsey
sequence, with magnetic splitting in the middle. A more complex way to think about the interferometer, is
that the experiment starts with an equal spin superposition in the z̃ direction (on the Bloch sphere), namely,
in the x̃ direction (again on the Bloch sphere), and the final measurement is again of the spin in the x̃
direction. The latter measurement (dotted rectangle) is performed by mapping the spins from x̃ to z̃ with a
π/2 rotation (second blue columns) and applying a magnetic gradient pulse to separate the populations before
taking an image (red column). The signal, measured at t > 2T , shows oscillations in the spin population.
The first half of the interferomter (0 < t < T ) determines the maximal splitting in position and momentum
(∆zmax, ∆pmax), while the second half (T < t < 2T ) acts to recombine the wavepackets so that the final
splitting in position and momentum [∆z(2T ), ∆p(2T )] is minimal. This configuration requires high precision
in order to maintain coherence; in contrast to the half-loop sequence realized previously, the full-loop SGI
uses active recombination of the wavepackets.

an absorption image is taken. This procedure allows us to measure the relative population in each
state (see Sec. 1.4 and Sec. 2.2.4). We can then determine the total phase difference ∆Φ between
the separated arms of the interferometer using Eq. 3.5.

To increase the coherence time and phase stability, we usually employ additional π pulses similar
to the spin-echo method [47], see Fig. 4.3. The additional π pulses cancel effects of inhomogeneity in
the magnetic bias field, and thus increase the visibility. The additional π pulses also eliminate phase
fluctuations arising from detuning of the RF pulses, thus significantly increasing the shot-to-shot
phase stability of the interferometer (see Sec. 2.2.3 and Appendix A for a detailed discussion).

It is also helpful to characterize the interferometer by applying the measurement part-way into
the sequence. For example, measuring after the second pulse gives us information on the state of
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the interferometer at the time of maximum spatial splitting ∆zmax, and measuring after the first
pulse gives us information on the state of the interferometer at the time of maximum momentum
splitting ∆pmax.

5 6 7 8 9 10 11 12 13

T4 [ s]

10

20

30

40

50

60

70

80

m
F
=

1 
po

pu
la

tio
n 

[%
]

Data
Gaussian  sin fit
fit envelope

Figure 4.2: SGI optimization procedure. The population output is measured as a function of the pulse
duration T4 while other durations are fixed at T1 = 5.4µs, T2 = T3 = 6.9µs, Td1 = Td2 = 400µs. The
population oscillates around the optimal point as expected by a model of a Gaussian times a sine function.
The peak of the Gaussian envelope corresponds to the pulse duration of T4 = 8.7µs for which the wavepacket
overlap integral (Eq. 3.6) is maximized. The sine function corresponds to the added phase between the two
interferometer arms as a function of gradient pulse duration T4.

4.2 Results

4.2.1 Coherence and splitting

As described in Sec. 3.4.3 and Eq. 3.29, the visibility of the spin population fringes should decrease
as the final spatial separation increases or as the final momentum splitting increases, as this means
that the overlap is reduced. In next sections we measure the visibility as a function of the final
spatial separation, in order to confirm this relation and to measure the coherence length of the
wavepacket. We accomplish this by applying only two gradient pulses T1, T2 with a delay time Td1

between them. In addition, we perform a separate series of measurements to confirm the successful
recombination by observing the regained visibility (revival) as we add the recombining pulses T3, T4

with delay time Td2.
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Figure 4.3: Experimental sequence and timing, full-loop and double kick. (a) Full loop with dynamical
decoupling RF sequence, the two π pulses increase the coherence and stability of the spin signal. (b) Double
kick with dynamical decoupling RF sequence, this sequence measures the state of the SGI with maximal
spatial splitting. The duration T2 is optimized for maximal visibility.

4.2.2 Demonstrating active recombination

To successfully achieve spin population fringes in the full-loop SGI, one has to effectively split and
recombine the wavepackets. Here we demonstrate the effect of the splitting and recombination in the
SGI. The splitting is demonstrated by applying two gradient pulses of duration T1, T2 with a delay
time Td1 between them (Fig. 4.4 blue data). As we extend the delay time Td1 the wavepackets start
to split in space and we observe a decay in visibility which cannot be restored using T2 alone, as the
distance between the wavepackets becomes larger than their coherence length lc. We validate that
this loss of visibility is mainly due to spatial splitting (and not momentum splitting), by optimizing
T2 for each value of Td1, whereby T2 is responsible for zeroing the relative momentum. This is
explained further in the following subsection.

Separately, we measure the signal at t = 2T , after employing the two recombination pulses T3, T4,
while observing the visibility after recombination (Fig. 4.4 red data). The value of T4 is optimized
for each value of Td1 and Td2 (which are equal to each other), such that maximal visibility is
achieved. One can clearly see the Gaussian decay of the visibility due to spatial splitting in the first
(blue) data, and the revival of the visibility due to the successful recombination of the spatially-split
wavepackets (red data). The improved visibility after adding the recombination pulses verifies their
effectiveness.

In summary, we have clearly shown the successful recombination in momentum and position,
thus realizing a complete SGI.

4.2.3 Coherence length

Fig. 4.4 shows a measurement of the state of the SGI half way through the sequence at t = T
when the spatial splitting is maximal. We get an experimental measurement of the coherence
length of the cloud by fitting the envelope of the oscillations in Fig. 4.4 and extracting the value
at which the visibility decays to 1/e of its initial value. This procedure gives a coherence length of
lc = 0.7 ± 0.1µm. This stands in some contrast with the theoretical prediction of Eq. 3.30, which
yields lc ≈ 1.2µm for our experimental parameters (σz = 1.2µm, ωz = 2π × 120 Hz, t = 3.5 ms,
and `z = 0.7µm), and may result from a thermal component in the BEC. We verify that the loss
of visibility in this measurement is due to spatial splitting by minimizing the visibility loss due to
momentum splitting for each value of Td1, using the following optimization procedure. We scan for
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Figure 4.4: Effective recombination in the SGI and phase of the SGI. In blue, measuring the state of the SGI
half way through the sequence at t = T when the spatial splitting is maximal. In red, measuring the full-loop,
after recombination of the wavepackets. The data show the drop in visibility due to spatial splitting, and
revival of visibility due to effective recombination. For the blue data, we make sure that the visibility drop
due to momentum difference is minimal by optimizing the stopping pulse T2, and in the full-loop optimizing
T4 as well (see Fig. 4.2 as an example for optimization). The specific sequence is presented in Fig. 4.3. The

blue data set is fitted to a decaying oscillation of the form V0e
(−T 2

d /τ
2) sin(∆φopen + ϕ0) + d, from which we

get a decay time of τ = 270 ± 30µs, which gives the coherence length lc = ∆aT1τ = 0.7 ± 0.1µm where
∆a = 460 ± 10m/s2 is the differential acceleration of the wavepackets during T1. The red data is fitted to
an oscillation of the form V0 sin(∆φclosed + ϕ0) + d. The phase ∆φopen is given by Eq. 3.19, and ∆φclosed by
Eq. 3.15 [43].

the optimal value of T2, i.e., the value which produces the maximal visibility for each delay time
(Td1 = 100, 200, 300, 400µs), in a manner similar to what is shown in Fig. 4.2. We then determine
the optimal T2 for any given value of Td1 by using a polynomial interpolation. The blue data in
Fig. 4.3 is taken by using the optimal values of T2 as a function of Td1. This ensures that the
visibility loss due to momentum splitting is minimized for every value of Td1, meaning that the
visibility loss is mostly due to spatial splitting.
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4.2.4 Momentum coherence width

Here we measure the effect of momentum splitting on the visibility of the full-loop SGI. Figure 4.5
presents such a measurement, showing the loss of coherence due to the first magnetic pulse alone
(i.e., by setting T2, T3, T4 = 0), giving rise to orthogonality in momentum. For this purpose,
we expose the atoms prepared in the state | + x̃〉 = 1√

2
(|1〉 + |2〉), to a single magnetic gradient

kick, and we measure the spin population in the x̃ direction (same measurement as in Fig. 4.1)
before the two wavepackets have time to spatially separate. Any loss of coherence thus originates
from orthogonality in momentum. The wavepackets become orthogonal in momentum at lp/m =
0.11± 0.02 mm/s relative velocity, where m is the atomic mass, and lp is the measured momentum
coherence width defined in Eq. 3.34. We note that, to the best of our knowledge, this is the first
direct measurement of the momentum coherence width of a BEC, where advantage was taken of the
fact that we are not limited to the quantized momentum kick of a single photon, as in interferometers
based on light.
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Figure 4.5: Single kick effect on the visibility: population as a function of the duration of a single first
gradient pulse T1 (where we set T2, T3, T4 = 0). As T1 is increased, the population decays to 50% - corre-
sponding to zero visibility. In this measurement we take care that the spatial separation is as small as possible
(∆z ≤ 70 nm) such that the decay due to spatial splitting is negligible (less than 1%). The velocity difference
is calculated according to ∆v = aT1, where a = 130 m/s2 is the applied relative acceleration. The data is
fitted to a Gaussian times a sine function, and the fit returns a decay time τ = 0.86µs, which corresponds
to a momentum coherence width of lp/m = 0.11 ± 0.02 mm/s, where m is the atomic mass. As in Fig. 4.2,
the Gaussian describes the decreasing overlap and the sine describes the evolving relative phase due to the
magnetic potential induced by the gradient pulse.
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4.2.5 Momentum coherence width and temperature

Finally, we show preliminary work on measuring the dependence of the momentum coherence width
on the atom number, temperature of the cloud, and its size. It is not intended to be a quantitative
description but rather a demonstration that there is a dependence that can be observed experimen-
tally. Changing the value of the last RF ramp in the evaporation cooling process affects the atom
number, temperature of the cloud, and its size. Specifically, lowering the last RF ramp value lowers
all three (see Fig. 4.6).
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Figure 4.6: Number of atoms and cloud size (z-axis) vs. last RF ramp. The cloud size is measured at 16 ms
TOF after the trap release.

As the last RF ramp approaches the trap bottom, fewer atoms are left in the trap, the cloud’s
temperature decreases, and it gets smaller. The visibility depends on lc, lp and β, (see Eq. 3.29),
which all depend on the cloud size σz. So for a given momentum splitting, the visibility is predicted
to be higher for a smaller cloud. The results of this measurement are presented in Fig. 4.7, measuring
the loss of coherence due to momentum splitting for different values of the last RF ramp. The
results show a clear trend, in which the lowest RF ramp shows the lowest loss of coherence for
a given momentum splitting, implying that lowering the last RF ramp indeed increases lp. For
a quantitative discussion of these relations, more data and analysis are required, which is beyond
the scope of this work. This effect can be exploited in the future to improve the coherence of the
full-loop SGI and reduce its sensitivity to inaccuracies in the recombination.

4.3 Phase noise

As detailed in the above chapter, the main challenge addressed by my M.Sc. work is the HD effect,
namely, achieving the necessary accuracy to maintain coherence. However, other, more “mundane”
issues also have to be addressed in order to observe a good signal. Specifically, one also needs to
address the issue of stability, whereby temporal fluctuations may give rise to dephasing and drifts.
Even in the absence of environmentally induced decoherence, noise may cause the interference
phase to jitter from one experimental shot to the next (e.g., due to a fluctuating bias field), thus
dephasing the averaged phase. This shot-to-shot phase noise gives rise to population noise, where
spin population is our main observable. In the lab, we made a significant effort to detect and
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Figure 4.7: Momentum coherence width and temperature. Measuring the visibility decay as a func-
tion of the momentum splitting for 6 different evaporative cooling ramps. (1) The last RF ramp is
set to 0.57 MHz, and the decay constant is τ = 1.19µs. (2-6) Increasing the last RF ramp value
(0.576,0.585,0.59,0.60,0.65) MHz, i.e., increasing the cloud temperature, size, and number of atoms, shortens
the decay time (τ = 0.86, 0.76, 0.74, 0.71, 0.56µs). The six decay times correspond to momentum coherence
widths of lp/m = 0.16, 0.11, 0.10, 0.10, 0.09, 0.07 mm/s respectively.

suppress the different sources of noise. In Appendix A we detail our simulations and estimations of
our main noise sources.
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Chapter 5

Summary and Outlook

To conclude, we have demonstrated for the first time a full-loop SGI, consisting of freely propagating
atoms exposed to magnetic gradients, as originally envisioned decades ago. We have unambiguously
shown recombination in both momentum and position. We have shown that SG splitting may
be realized in a highly coherent manner with macroscopic magnets without requiring cryogenic
temperatures or magnetic shielding.

We measured the coherence length of the wavepacktes in the SGI and presented a measurement
of the momentum coherence width which is, to the best of our knowledge, the first time it has been
measured directly.

We measured the phase accumulation of an open SGI configuration and verified the theoretical
prediction for this phase including the prediction for the separation phase. We suggested a method
for isolating the separation phase contribution from other parts of the phase by subtracting the
phase of two interferometric schemes.

The measurements of the coherence length and momentum coherence width may allow us to
accurately predict the visibility of the full-loop in different interferometric schemes and configura-
tions, a challenge we have yet to overcome [6], and may help to further improve our control and
accuracy in the recombination.

The methods we introduced allow for many variations and novel interferometric schemes, such
as the T 3 SGI interferometer realized in [43] by setting the delay time between the gradient pulses
to zero, and a Tn interferometer which is feasible by controlling the temporal shape of the gradient
pulses.

Furthermore, as the SGI does not require light, it can be operated close to surfaces, and conse-
quently can be applied for probing surface physics, such as interferometric measurements of Johnson
noise and the Casimir-Polder force near the atom chip, or even searches for the hypothesized fifth
force. It could also be used for ultra-sensitive probing of electron transport down to shot-noise and
squeezed currents [48].

Another benefit of the SGI in comparison to light-based atom interferometers is the ability
to manipulate the internal degrees of freedom (Zeeman sub-levels) without affecting the external
degrees of freedom (momentum and position). Variations on the number of RF pulses and their
timings, and similar variations on the gradient pulses, will allow for more interferometric configura-
tions; for example, a butterfly configuration whose phase is not sensitive to gravity [44] is attainable
by simply adding two more gradient pulses with the appropriate timing. An interferometer with
multiple trajectories may be possible by using the 5 Zeeman substates of the F = 2 ground state. It
is also possible to have two simultaneous interferometers in one experimental cycle by establishing
and manipulating two independent two-level systems, each with its own resonance frequency, thus
allowing for differential measurements.

The full-loop SGI has been suggested as an experimental test for Einstein’s equivalence principle
when extended to the quantum domain [49]. SG interferometry with mesoscopic objects has been
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suggested as a compact detector for the space-time metric and curvature [50], possibly enabling
detection of gravitational waves. It has also been suggested as a probe for the quantum nature of
gravity [51].

It seems we have just started to explore the possibilities embedded in the Stern-Gerlach in-
terferometer. I am hopeful that my work will help open the door for a wide variety of future
experiments.
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Appendix A

Phase noise analysis

In this appendix I present an analysis of the shot-to-shot phase noise in a Ramsey sequence, and
its realtion to the noise in the population output. The issue of instability, whereby temporal
fluctuations may give rise to dephasing and drifts, and cause the interference phase to jitter from
one experimental shot to the next (e.g., due to a fluctuating bias field) is addressed. This shot-to-
shot phase noise gives rise to population noise. As an example for population noise we present in
Fig. A.1 two population measurements with some phase noise.

As the observable of our measurement is population, one cannot get a direct measurement
of the shot-to-shot phase noise. Due to the trigonometric relation of population to phase given
in Eq. 3.5, the mathematics of translating the phase fluctuations into population fluctuations has
some interesting and non-intuitive characters. In this appendix, we present numerical simulations
that provide insight and suggest a way to quantitatively estimate the shot-to-shot phase stability
of a system by measuring the population vs. Ramsey time, and fitting the data to a numerical
simulation.
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Figure A.1: A simulation of two noisy population measurements demonstrating shot-to-shot phase noise,
with a mean population Pmean = 0.5. The phase distribution may take on different forms (see Fig. A.2).

A.1 Phase noise simulation

A.1.1 Model

The relation between the phase and population given by Eq. 3.5 is P1 = 1
2 [1 + V cos(φ)], where φ is

the total phase and V is the visibility of the population oscillation which we set to V = 1 in this
discussion. To simulate phase noise, we assume φ to be a random variable with a normal distribution,
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with a mean phase φmean and standard deviation σφ, so that φ = 1
σφ
√

2π
exp

[
−1

2

(
φ−φmean

σφ

)2
]
. This

is a reasonable assumption as many experimental noise sources can be well approximated by a
normal distribution. For the numerical simulation we create a set of randomly distributed phases
with mean and standard deviation φmean, σφ (using Matlab’s normal random number generator),
and then calculate P (mF = 1) for each random phase. From this data set we calculate the mean

population Pmean and standard deviation σP =
√

1
n

∑n
i=1 (Pi − Pmean)2. Since P does not have a

normal distribution, σP is not the width of the distribution, but simply the standard deviation.
Results from this simple simulation are presented in Fig. A.2, in the form of a scatter plot and
histogram for different σφ.

Figure A.3 shows the relation of σP vs. σφ, for different φmean. The population spread σP
starts with a linear relation to σφ and reaches an asymptote with a maximal value of σP ≈ 35%.
Using this plot and the values of Pmean and σP one can extract the value of σφ. However, due to
the asymptomatic relation for large phase noise, when σφ > 60◦, the phase noise cannot be reliably
estimated with such a method.

Figure A.4 demonstrates the effect of σφ on a phase scan by showing four phase scans with
different phase noise. The phase noise lowers the visibility of the oscillation, and of course increases
the error bars. Averaging a large number of shots (> 10) allows us to obtain a signal even with
σφ = 60◦ or more. The size of the error bars oscillates along the phase scan (for σφ < 60◦), where
the oscillation of the size of the error bars may be considered a footprint of phase noise. In principle
it is possible to extract the phase noise from such a measurement by fitting the size of error bars
to a model, but in practice this approach will be beneficial only for rather small phase noise, and
will require a fine phase scan with a large number of iterations per point to get a valid estimation
for significant phase noise. Next, we suggest and implement a more effective way of estimating the
shot-to-shot phase stability of the experiment.

A.1.2 Measuring the shot-to-shot phase stability

Sources for phase fluctuations

The phase in a Ramsey scheme (Sec. 2.2.3) is given by φ =
∫ TR

0 δωdt where δω = 2π(fRF − f0)
is the detuning of the RF pulses from the atomic resonance frequency, f0, where in our system,
f0 = ∆[−µ ·B]/h = 24.6 MHz. The Ramsey time TR is the interval between the two RF pulses
(typically in the range of 50−500µs in our system). Shot-to-shot phase noise is due to low frequency
noise, such that fnoise � 1

TR
; for this condition δω is constant during TR and the integral becomes

a simple multiplication
φ = δω × TR . (A.1)

We can also electronically add a phase shift between the two π/2 RF pulses, ϕRF, and we obtain
φ = δω × TR + ϕRF. From this equation we can count the different sources for shot-to-shot phase
noise: RF signal frequency fluctuations will affect δω, RF pulse timing jitter will affect TR, RF
signal phase fluctuations will affect ϕRF. These noise sources are assumed to be negligible as the
RF signal generator contains an atomic clock, which stabilizes the RF frequency and phase, and is
synchronized to the PXI that controls the duration of the pulses. Consequently, we can conclude that
the multi-shot stability of the experiment depends on the frequency stability of the superposition
itself which is linear with the magnitude of the magnetic bias field. The magnetic field fluctuations
cannot be directly measured in a straightforward way. The magnetic field noise is mainly affected
by current fluctuations in the power supply, whose usual stability is 10−5 < δI

I < 10−4. Directly
measuring the stability of the power supply is at the limit of accuracy of the measuring device we use
(LEM IT 100-S current sensor with 8.4 ·10−5 sensitivity, connected to a Keithley 2000 multimeter).
The only thing in the lab that is more accurate and sensitive to current and magnetic field are the
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atoms themselves so in the following we use them to measure the stability of the field.

Quantitative estimation of the field stability

Observing the relation φ = δω × TR, one can see that fluctuations of δω are multiplied by the
Ramsey time TR, and consequently, the shot-to-shot phase fluctuations should be linear with TR.
Measuring these fluctuations as a function of the Ramsey time can give information on the stability
of δω. If the main noise source is the magnetic field, the stability of this field can be measured with
such a procedure (or the stability of detuning in a more general view). To conclude, increasing TR
will not only show the expected decaying population oscillation (decaying due to decoherence and
inhomogeneity in the bias field during the Ramsey sequence1), but should also show an increasing
size of the error bars (σP ). Using the relation between the error bars and the Ramsey time, we
suggest a method for measuring the field stability by measuring the size of the error bars in a
Ramsey scheme vs. the duration of the Ramsey time TR. The model is as follows: the population
of the mF = 1 state in a Ramsey sequence is given by

P (mF = 1) = 0.5 + 0.5 exp

(
− t

τR

)
cos(δω × TR + φ0) , (A.2)

where δω is the detuning, τR is the coherence time of the Ramsey sequence (not to be confused
with decay constant τ from Ch. 4), TR is the time between the two RF pulses, and φ0 is the initial
phase. To simulate the shot-to-shot phase noise, we define δω to be a random normal variable with
a mean δωmean = 2π(fRF − f0) and standard deviation σδω. This model has 4 free parameters,
τR, φ0, δω, and σδω. While fitting the model with its 4 free parameters we estimate the goodness
of the fit between the model and data by the value of R2 = 1 − SSres

SStot
where SSres =

∑
i (Pi − yi)2

(sum of squares of the residuals, Pi are simulation results and yi are the experimental data points)
and SStot =

∑
i (yi − ȳ)2 (total sum of squares). The 4 parameters are first set by hand to reach a

reasonable fit, and then optimized so that R2 is maximized using the M-loop optimization algorithm
[16].

Results

The results are presented Fig. A.5 showing the experimental data (blue) and the numerical simula-
tion of the model (red). The data shows a decaying population oscillation, and the error bar size
increasing as predicted, up to TR ≈ 300µs, where the size of the error bars starts to decay due
to decoherence. In most circumstances the fitting of a model is applied only to the mean of the
data, but here our main interest is shot-to-shot noise, so we use the model to fit also the standard
deviation of the data (the size of error bars) as shown in Fig. A.5b. Since the main source for shot-
to-shot fluctuations in our Ramsey sequence is magnetic field noise, we can write σδω = 2πf0

∆B
B

and use the magnetic bias field stability ∆B
B as the fourth free parameter instead of σδω. The best

fit between the data and the model in Fig. A.5 yields a field stability of ∆B
B ≈ 3 · 10−5.

To validate the optimization of the free parameters we plot R2 as a function of the field stability
in Fig. A.6. The maximal value of R2 is 0.7 at ∆B

B = 3 · 10−5. This result assures us that our power
supply is operating well in terms of stability. According to this result, we should expect reasonably
stable and visible Ramsey oscillations up to a Ramsey time of TR ≈ 200µs.

To conclude, we have demonstrated a method to experimentally estimate the magnetic bias
field stability by measuring the population vs. Ramsey time, and fitting a numerical simulation to
the data. This method proved to be extremely beneficial, in terms of estimating the phase noise

1We emphasize the distinction between the decoherence in the Ramsey sequence which affects the coherence of the
superposition in each single shot and arises form coupling to the environment, and the shot-to-shot noise which doesn’t
affect the coherence of the superposition and will only cause smearing of the averaged population when averaging over
several shots.
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and shot-to-shot stability of the experimental parameters. The measurement also gives information
regarding the Ramsey coherence time and the uncertainty in population per Ramsey interrogation
time. The increasing size of of error bars as a function of TR indicates that the source of shot-to-shot
phase noise is mainly fluctuations of the detuning, arising from magnetic bias field fluctuations. Fit-
ting the data to the numerical simulation provided quantitative information regarding the stability
of this field, which is not easy to obtain in other ways.
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Figure A.2: Simulated shot-to-shot phase fluctuations. (a,c,e) Scatter plot for σφ = 10◦, 30◦, 60◦, where
φmean = 90◦ corresponding to Pmean = 0.5. One can see that a phase noise of σφ = 30◦ already leads to a
scatter of population over the entire range from 0% − 100%. (b,d,f) The histogram of each set. Notice the
shape of the histogram: (b) For small phase noise (σφ = 10◦) the histogram resembles a Gaussian distribution.
(d) The histogram for σφ = 30◦ shows a wider Gaussian that approaches a uniform distribution, and for
σφ = 60◦ (f) we see a “bowl shape”, where this shape is due to the sinusoidal nature of the population,
yielding bunching at the edges where the slope of the sinusoidal function is minimal. The bunching at the
edges of the histogram is a clear signature of phase noise.
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Figure A.3: Noise in population vs. phase noise (σP vs. σφ), numerical simulation. Plotted for φmean =
0◦, 30◦, 60◦, 90◦, (corresponding to Pmean = 0%, 7%, 25%, 50%). σP starts with a linear relation to σφ and
later reaches an asymptote with a maximal value of σP ≈ 35%. Using this plot and the experimental value
of Pmean and σP one can extract the value of σφ. For large phase noise (σφ > 60◦) this method loses its
efficiency as σP approaches the asymptote.
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Figure A.4: Phase scan with shot-to-shot phase noise, 20 repetitions per data point, numerical simulation.
Four plots showing a phase scan with different noise amplitude, σφ = 10◦, 30◦, 60◦, 90◦. The shot-to-shot
phase noise has two effects. First, it lowers the visibility of the population oscillation. Second, the size of the
error bars oscillate along the scan, but this only happens if the phase noise is not “too big”. For a phase noise
of σφ = 90◦ the error bars do not significantly change along the phase scan since they are at the asymptotic
regions shown in Fig. A.3. One can estimate the phase noise from such a measurement, but this approach
will only be beneficial for rather small phase noise, since for σφ = 30◦ it already requires a fine phase scan
with a large number of repetitions per point to get a valid estimation.
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Figure A.5: Population vs. Ramsey time, experimental data vs. numerical simulation. The data exhibit
a decaying population oscillation and the standard deviation of the data (size of the error bars) increases
with increasing TR, up to TR ≈ 300µs, and later it decays as it becomes dominated by the decoherence
(at TR → ∞ the population will decay to 50% and the size of the error bars will go to zero due to the
decoherence). The model used here is a decaying oscillation with normally distributed phase noise. The

population in the mF = 1 state is given by P (mF = 1) = 0.5 + 0.5 exp
(
− t
τR

)
cos[δω × TR + φ0] where δω is

normally distributed with δωmean = 2π(fRF − f0) and σδω = 2πf0
∆B
B . For each value of TR the simulation

produces 300 values of δω, calculates the population for each of these δω, and then calculates the mean
population and the standard deviation of the population for this value of TR. This numerical simulation has
4 free parameters: δω, φ0, τR, and the stability of the magnetic bias field ∆B

B . The detuning and initial phase
determine the oscillation frequency and phase, while the decay rate and field stability determine the visibility
of the oscillation and the standard deviation for each value of TR (size of the error bars). The free parameters
are first calibrated by hand to get a reasonable fit, and then optimized by a machine learning optimization
algorithm [16]. This method estimates that the magnetic field stability in our experiment is ∆B

B = 3 · 10−5,
and δω = 2π × 1.7 kHz, τ = 540µs, and φ0 = 4.8 rad. One can notice an interesting pattern in the noise
level of the data [blue dots in (b)] from t ≈ 150 to t ≈ 350µs that does not appear in the simulation [red
dots in (b)]. This fluctuating error bar size is explained by the fact that in the experimental data each point
is an average of only 5 repetitions per point while in the simulation 300 repetitions are averaged per point.
Performing the simulation with 5 repetitions shows a similar, more random, behavior. It should be noted
that what is observed here are not the phase error oscillations shown in Fig. A.4a, since for TR = 225µs, we
get σφ = 2πf0

∆B
B TR = 1.04 rad ≈ 60◦.
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Figure A.6: Goodness of fit of the numerical simulation to the data in Fig. A.5b, as a function of the
magnetic bias field stability ∆B

B . The fitting is optimal for ∆B
B = 3 · 10−5 with an R2 = 0.7.
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 תקציר 

דוגמאות  .  מזה זמן רב את הטבע והתופעות הפיסיקליות  המדעיתחלק חיוני מהחקירה   מהוויםאינטרפרומטרים  

חקר את ההתנהגות הגלית של  אשר ניסוי שני הסדקים של יאנג, הן למשל אינטרפרומטרים אופטיים מפורסמים ל

ת בגלי  וההמשכה האולטימטיבית שלו בתקופתנו "אינטרפרומטר הלייזר לתצפי  ,האור, ניסוי מייקלסון מורלי

, וכיום הם כלי נפוץ במחקר בתחום  90-(. אינטרפומטרים אטומים פותחו לראשונה בשנות הLIGOכבידה" )

מכניקת הקוונטים, וכמו כן משמשים למדידות מדויקות של כבידה וקבועים יסודיים, למדידה תאוצה במערכות  

ם שימוש בהעברת התנע המסופקת על ידי  מרבית האינטרפרומטרים האטומיים עושי בעוד ועוד.  ,ניווט אינרצאליות

גרדיאנטים מגנטיים   תמבצעים משימה זו בעזראנחנו   ,פולסי לייזר כדי לשלוט באופן קוהרנטי במסלולי האטומים

גרלך, בו  -זרמים בשבב אטומי. בתזה זו אני מציג את המימוש החלוצי שלנו לאינטרפרומטר שטרן מ  הנובעים

מהאינטראקציה של הגרדיאנט    המגיעיםהפיצול והאיחוד של חבילות הגל הקוונטיות מבוצע על ידי כוחות מגנטיים 

 ת. והמגנטי עם רמות זימן האטומי 

 

פך לפרדיגמה בתורת הקוונטים. באופן מפתיע כמעט ואין  גרלך, אשר התגלה לפני כמאה שנה, ה-אפקט שטרן

המגיעים ממגנטים   ,עדויות כי במערכת המקורית בה אטומים נעים באופן חופשי ונחשפים לגריאנטים מגנטיים

מספר מחקרים תיאורטיים הסבירו בעבר מדוע זהו אתגר  ,נשמרת הקוהרנטיות הקוונטית. בנוסף  ,מקרוסקופיים

גרלך נדרש למעשה להיות פעולה הפוכה בזמן לפעולת  -ד של חבילות הגל באינטרפרומטר שטרן . איחוקשה לביצוע 

הפיצול, באופן כזה ששני הגראדיאנטים האחרונים מבטלים לחלוטין את הפעולה של שני הגרדיאנטים הראשונים.  

רחבי, מוכרחים לבצע  מעם פיצול על מנת להשיג קוהרנטיות גבוהה )או ניגודיות גבוהה( בפלט של אינטרפרומטר 

מינמלי, והמהירות היחסית  יהיה פעולות מדויקות ויציבות על האטומים באופן כזה שהמרחק הסופי בין חבילות הגל 

מינמלית גם כן. כל סטייה מחפיפה מושלמת במיקום או במהירות יגרום לדעיכה של ניגודיות  תהיה הסופית 

, עלינו לעמוד גם בדרישה של יציבות הפעולות  שלנו העיקרי ל דיוק היא האתגרע האינטרפרומטר. בעוד ששמירה 

ישפיעו על הפאזה ניים )למשל השדה המגנטי האחיד(  של הפרמטרים הניסיובין ניסוי לניסוי, שכן תנודות אקראיות 

 ימנעו איחוד של חבילות הגל. במקרה של אי יציבות בגרדיאנטים המגנטיים , או של הניסוי 

 

אני מתאר את מערכת הניסוי הנמצאת במעבדה שלנו, ואת השינויים שערכנו בה במהלך עבודה  של התזה  1בפרק 

 זו.

הדרושים למניפולציה הראשוניים איינשטין, והצעדים -וני על מנת להגיע לעיבוי בוזימתאר את ההליך הניס  2פרק 

 של האטומים על מנת להגשים את האינטרפרומטר. 

-מוצג הרקע התיאורטי של אינטרפרומטריה אטומית, בדגש על הניגודיות והפאזה של אינטרפרומטר שטרן 3בפרק 

 . רלךג

של חבילות   האיחוד המוצלחגרלך, עם תוצאות המאשרות את -מציג את המימוש שלנו לאינטרפרומטר שטרן 4פרק 

-הפאזה באינטרפרומטר שטרן עבורהתיאורטי הגל על ידי שני הגראדיאנטים האחרונים. אנו גם מאששים את הצפי 

לבסוף אנו מציגים מדידה של אורך   .של חבילות הגלהסופית גרלך, והתלות של פאזה זו בהפרדה המרחבית 

 הקוהרנטיות של חבילת הגל באינטרפרומטר שלנו. 

 

ומציעים הליך   וני, י אנו דנים בהשפעה של תנודות אקראיות בפאזה בין ניסוי לניסוי על האות הניס Aבנספח 

 להערכה של מקורות הרעש המשפיעים על יציבות הפאזה.
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