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requirements for the degree of

Master of Physics

Abstract

An AtomChip is a device that allows the trapping and manipulation of cold atoms with high
accuracy using potentials created on a substrate by employing lithographic methods similar
to those used in integrated circuit technology. In particular, the trapping and control of a
Bose-Einsten Condensate (BEC) with such methods allows the investigation of fundamental
aspects of quantum mechanics such as coherence and entanglement. This work focuses on
the manipulation of a BEC by magnetic potentials created by gold current carrying wires
on a silicon substrate.

The goal of this work was to optimize an experiment so that it could detect interference
fringes emerging from a 1D lattice of traps. Such an interference pattern has not been seen
before on an AtomChip. The complexity of the experiment requires several preparation
stages, each of which may be considered a research project in its own right. It is these
preparatory projects which were the goal of my work.

As part of this program, I have conducted the following research projects:

1. I performed a theoretical study of the emergence of interference patterns originating
from a BEC released from a periodic potential generated by our AtomChip. The particular
geometry of the potential and imaging limitations are shown to inhibit the direct observa-
tion of such fringes. We then perform a simulation of the BEC dynamics and show that
gradually changing the potential in the release stage can overcome these difficulties.

2. The parameters found from the simulation analysis have been used to design and build
dedicated electronics hardware that will allow us to perform such a task in the future.

3. In order to be able to assist with the loading of the atoms into the 1D lattice, I de-
signed and built a new imaging system. At this stage, the new system was used to evaluate
the cloud position relative to the various AtomChip elements. This allowed us to observe
alignment problems with our previous design and has helped us design and install a new
AtomChip for which the imaging system has shown that no such alignment issues remain.

4. In order to be able to further optimize the signal, once a first interference pattern is
observed, I implemented an advanced control system that would enable automated opti-
mization of the experiment by employing artificial intelligence algorithms. The new system
has been tried on existing experimental signals.

All four projects were successfully carried out.
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Chapter 1

Introduction

So long as big and small are merely relative concepts, it is no help to explain

the big in terms of the small. It is therefore necessary to modify classical ideas

in such a way as to give an absolute meaning to size. ...In order to give an

absolute meaning to size, such as is required for any theory of the ultimate

structure of matter, we have to assume that there is a limit to the fineness of

our powers of observation and the smallness of the accompanying disturbance -

a limit which is inherent in the nature of things and can never be surpassed by

improved technique or increased skill on the part of the observer.

Principles Of Quantum Mechanics - P.A.M. Dirac

This quote from the seminal book of Dirac [1] illustrates a basic conceptual difficulty in

our understanding of Quantum Mechanics. The abstract concept of the state of a system,

coupling together both the object at interest and the very act of observing it, lies at the heart

of this difficulty. By using Heisenberg’s uncertainty relations (assumed quite remarkably

from basic philosophical principles) Dirac treats Planck’s constant as a universal scaling

factor that determines objectively what “small” and “big” really mean. A system is then

said to be big if the act of measuring disturbs it only negligibly and it is said to be small if

it disturbs it measurably. In the early days of quantum mechanics and up to recent years,

physicists striving for a better grasp of the fundamental aspects of the theory had few tools

to explore the basic questions it poses. Questions regarding the exact meaning of the state

vector or the nature of its reduction (or collapse), were considered metaphysical questions

that where beyond the scope of physics. The difficulties encountered in approaching these

questions until quite recently has both historical and technical reasons. Historically, the
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impression of the vast majority of physicists was that “Bohr had eventually won the debate

with Einstein, so that discussing again the foundations of quantum mechanics after these

giants was pretentious, useless, and maybe even bad taste” [2]. This position, together with

the sheer counter-intuitive character of the theory caused a dearth in the successful studies

of these questions lasting several decades.

But there is another, more technical reason, that these questions were not raised, namely

due to a lack of the right kind of experimental systems capable of shedding light on such

problems. In the early days of quantum mechanics, the objects to which the theory was

applied were either small and simple or big and complex. Small systems, in the sense that

probing them causes a disturbance that is not negligible, did not allow for conceptions of

isolated quantum phenomena to be formulated (such as in early work on atomic systems).

Big systems on the other hand, had the advantage of being associated with a measurement

process that caused negligible disturbance, but were nevertheless too complex (such as su-

perfluids, superconductors or various solid state systems just to name a few) to be described

in terms of isolated quantum phenomena, making it virtually impossible to draw a boundary

between “intensive” and “extensive” research 1. For example, the recognition that particles

obeying the Schrödinger equation can tunnel through classically impenetrable barriers is

considered as one of the first successes of the quantum theory [4]. However, despite the

success in calculating various tunneling rates (an emergent phenomena), asking what is

the time it takes a single particle to tunnel through a barrier (a fundamental process) is

still an open question [5]. Experimental observations of the tunneling of a single quantum

state are quite recent (see for example [6]) and the multitude of possible theoretical de-

scriptions of this basic phenomena only shows how deficient our current understanding of

quantum mechanics really is, precisely because this problem forces us into a discussion on

the fundamental nature of the state vector.

In the early stages of the development of the theory, systems which were both simple

and weakly coupled to a measurement process simply did not exist, and experimentalists

as well as theoreticians had no models with which they could investigate isolated quan-

1To quote Weisskopf [3]: “Looking at the development of science in the Twentieth Century one can
distinguish two trends, which I will call “intensive” and “extensive” research, lacking a better terminology.
In short: intensive research goes for the fundamental laws, extensive research goes for the explanation of
phenomena in terms of known fundamental laws. As always, distinction of this kind are not unambiguous,
but they are clear in most cases. Solid state physics, plasma physics, and perhaps also biology are extensive.
High energy physics and a good part of nuclear physics are intensive.”
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tum phenomena. A lack of such experimental systems in a way limited the scope of the

theory to the application of the axiomatic structures that were set up by Bohr, Einstein,

Heisenberg, Pauli, de-Broglie and others in the Solvay meetings [7] (what later emerged as

the “Copenhagen interpretation”) without much questioning into its various fundamental

aspects. This adoption of the orthodox formulation of the theory was later termed by N.

Mermin the “shut up and calculate” interpretation of quantum mechanics [8]. This way of

doing quantum physics however, is becoming less and less popular in recent years, in some

part due to the fact that new experimental and theoretical tools have been developed that

allow the creation of macroscopic quantum states (“big” systems in Dirac’s parlance) that

push the borders of the quantum world to larger and larger systems that are still neverthe-

less described as single quantum objects. Since the measurement process can in these cases

be treated as a negligible perturbation, it allowed (some would say forced) physicists to

study isolated quantum phenomena and begin again to ponder on the fundamental aspects

of quantum mechanics. One of those macroscopic quantum systems, the Bose-Einstein Con-

densate (BEC) and ultra-cold bosons in general, is the topic of this thesis. The following

section will describe what a BEC is and how it is instrumental in answering fundamental

questions of quantum mechanics.

1.1 Ultracold atomic physics

The classical formulation of statistical mechanics treats particles as distinguishable entities.

Quantum mechanics on the other hand rejects this notion [9, 10]; particles with identical

properties are treated as fundamentally indistinguishable and consequently their statistical

behavior changes drastically. When bosons are cooled and compressed beyond a critical

point a phase transition occurs in which a macroscopic number of atoms occupy the ground

state [10], individual atom movement is suppressed and only coherent motion of the whole

cloud is possible [11]. This new phase, called a Bose-Einstein Condensate (BEC), is a new

state of matter in which the atoms are described by a single macroscopic wavefunction

which evolves quantum mechanically. The transition from a classical thermal gas to a

Bose-Einstein condensate occurs when the phase space density (PSD) reaches a value [10]:

nλ3T ∼ 1, where n is the atom density and λT = h/
√
2πmkBT is the thermal de-Broglie

wavelength [10]. The PSD represents the amount of overlap the single-particle wavefunctions
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experience, thus providing a measure of the system’s coherence. For PSD> 1 quantum

behavior emerges and a purely classical analysis treating particles as distinct entities no

longer holds. The cooling and compression processes required to satisfy this condition

were made possible only recently [12, 13] by applying the techniques of laser cooling and

evaporative cooling.

After the discovery of BECs, their properties and behavior have been studied exten-

sively [14, 15]. The macroscopic wavefunction of a BEC evolving in a certain potential

landscape resembles that of a single particle wavefunction. Upon measurement the macro-

scopic wavefunction reduces to N individual particles which are then found at positions that

correspond to the amplitude of the wavefunction. It is said then that the wavefunction of a

BEC has the classical interpretation of being the atomic cloud’s density function, a feature

that in fact allows experimentalists a tool to measure “single-particle” like wavefunctions

in a single experimental run since measuring a BEC is similar to performing N separate

measurements on individual particles (neglecting interactions). BECs then allow us to

measure a multitude of fundamental quantum mechanical phenomena, from foundations of

quantum mechanics [16, 17, 18] to solid state physics [19, 20, 21], to quantum information

processing [22, 23] and even high-energy physics and cosmology [24, 25]. In addition to

fundamental physics BECs can also be used for interferometry [26, 27, 28] and since BECs

can be number squeezed [29, 30, 31] they are capable of surpassing the Heisenberg limit [32]

and are thus expected to take a fundamental role in future quantum metrology [33].

The quantum mechanical behavior of BECs is frequently observed through the detec-

tion of interference patterns produced from splitting and later recombining the condensates.

This technique allows experimentalists to directly measure coherent properties of the macro-

scopic wavefunction associated with a condensate. BECs are also used to study solid state

systems by trapping them in periodic potentials, thus simulating particle-in-a-lattice type

systems. This is the main objective of our research. We have designed and built a system

capable of generating a one dimensional lattice (details of which will be discussed later) in

order to study various phenomena occurring in one dimensional periodic potentials. We

aim to measure coherent behavior of the trapped BEC by imaging interference fringes orig-

inating from BECs released from the sites of our engineered lattice. This objective poses

several problems associated with the particular geometry of the potentials we are capable

of producing and it is one of the goals of this thesis to explore these difficulties and propose

12



experimental solutions so that the anticipated interference patterns can be detected.

In the following chapters we will describe our setup for creating and manipulating cold

quantum gases using the AtomChip [34] technology which allows for the miniaturization

and integration of cold atom experiments by adapting semiconductor technology to the field

of matter wave optics. The scope of this work is threefold: to study how interference fringes

originating from the overlap of separated BECs can be observed in our system, during which

we will identify some problems with the detection of such fringes and propose a solution.

To design and build an imaging system to aid in the positioning of the cloud relative to

the AtomChip elements, and to create an automatic optimization system for the various

system parameters. A fourth sub-project was to construct appropriate electronics, but this

will not be elaborated upon.

The precise structure of the thesis is described in the following section.

1.2 Overview of this thesis

This thesis is structured as follows: chapter 2 reviews the basic theoretical tools required

for the analysis of our experiment. We discuss the basic atomic structure of 87Rb, an atom

from the alkali metal family used in our experimental setup. We follow with a description

of the fundamental processes used to trap and cool atoms and the theory of trapped BECs

in harmonic potentials.

Chapter 3 presents the experimental apparatus with its various subsystems including

the computer control system and the analysis software. A separate section is devoted to the

new AtomChip recently installed in the apparatus, along with a discussion of its various

wires.

Chapter 4 details our proposal for measuring interference patterns originating from

expanding BECs from several sites in a one dimensional magnetic lattice. Several problems

that suppress the fringe contrast are discussed and a way to overcome these difficulties is

presented. In this chapter we also describe theoretical calculations explaining the underlying

phenomena together with detailed simulations of the cloud’s expansion showing how our

proposed solution solves the problem.

Chapter 5 presents the motivation and construction of a new imaging system embedded

into our setup together with a discussion of the properties of the resulting images and their

13



usefulness.

Finally, in Chapter 6 we discuss the theoretical foundations of genetic algorithms (GAs)

and their implementation in our system for the optimization of various processes. The

various algorithm parameters and their meaning is also discussed, followed by a few examples

showing the successful implementation of the methods.

We end the thesis with a brief summary and conclusions chapter.

14



Chapter 2

Theoretical Background

2.1 Atomic structure of the alkali elements

In this section we will review the tools required for the theoretical study of atomic physics.

This will include a discussion of atomic structure, interactions with electromagnetic ra-

diation, and many-body phenomena relevant to ultracold interactions. The most natural

platform to derive the Hamiltonian of an atomic system is Relativistic Quantum Mechan-

ics (RQM) and specifically Dirac’s equation [1]. RQM is the birthplace of the intrinsic

angular momentum (or spin) degree of freedom which plays a central role in atom trapping

and cooling. Relativistic corrections appear naturally in such a derivation without the need

for hand-waving arguments. We begin from the Dirac equation for an electron in the pres-

ence of a centrally symmetric potential V (r) and look for stationary solutions (eigenvectors

of the energy operator [35]:

Ĥ ~ψ(r) = [cα̂ · p̂+ βmec
2 − qeV (r)]~ψ(r) = E ~ψ(r), (2.1)

where p̂ is the momentum operator and

α̂ =





0̂ σ̂

σ̂ 0̂



 β =





1̂ 0̂

0̂ −1̂



 (2.2)

with σ̂ = (σx, σy, σz) being the familiar Pauli matrices.

We notice that unlike in the non-relativistic case (Schrödinger’s equation), the orbital

angular momentum operator L̂ is not a constant of motion in RQM since it does not
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commute with the Hamiltonian (it commutes with the momentum operator squared p̂2 but

not with p̂, for example see for L̂x = ypz − zpy). However, the new operator:

Ĵ = L̂+
h̄

2





σ̂ 0̂

0̂ σ̂



 = L̂+ Ŝ (2.3)

does commute with H and is thus a new constant of motion1.

The operator Ĵ we have introduced is interpreted as the total angular momentum

while Ŝ is referred to as the intrinsic, or spin angular momentum, a new degree of freedom

with units of angular momentum but with no classical analogy. Some authors [36] treat the

spin as a consequence of the linearization of the wave equation and not due to a relativistic

effect. This perspective neglects the fact that the linearization of the wave equation has the

proper relativistic motivation [1] of having an equation which transforms in a simple way

under Lorentz transformations. This is done by giving an equal footing to the spatial and

time coordinates (since the equation is linear with respect to time). Conversely, one could

also argue that the experimental observation of spin confines us to theories with a linear

form.

We now plug in a Coulomb potential interaction V (r) = − Z′e2

4πǫ0r
in Eqn. 2.1, take the

first-order terms of a non-relativistic approximation (vc ≪ 1) and after some algebraic

manipulations arrive at the fine structure equation for the energy eigenvalues [35]:

E ~ψ =

(

p̂2

2m
− p̂4

8m3c2
− Z ′e2

4πǫ0r
+

Z ′e2h̄2

8ǫ0m2c2
δ3(r) +

Z ′e2L̂ · Ŝ
8πǫ0m2c2r3

)

~ψ, (2.4)

where we have treated the nucleus as a point particle with an effective charge +Z ′e that

accounts for the shielding of the nuclear charge by the core electrons and where we wrote

for the potential ~∇ · ~V = ρ
ǫ0

= Z′e
ǫ0
δ3(~r).

In this expression the first and third terms give the non-relativistic Hamiltonian, the

second term is the classical relativistic correction to the energy, while the fourth term is

the so-called Darwin term [37] which has no classical analogy, and the final term is the

celebrated spin-orbit coupling which appears naturally from the Dirac equation. The spin-

1Following Ehrenfest theorem: d
dt
A = 1

ih̄
< [A,H] >, where A is any time independent operator, com-

muting with the Hamiltonian results in dA
dt

= 0.
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orbit interaction causes the energy of the atom to depend not only on the absolute magnitude

of the operators L̂ and Ŝ but also on their orientation relative to each other, subsequently

only the total angular momentum Ĵ = L̂ + Ŝ is conserved and not L̂ and Ŝ separately.

This first order relativistic effect breaks the (2S+1) degeneracy of the atomic energy levels

and causes the well known fine-structure splitting of spectral lines in atomic physics.

Up to now we have treated the nucleus as a point charge. In general however, the full

interaction between the atomic electrons and the nucleus can be expanded in a multipole

series [38]:

Hint =
∑

k

T k(N) ·Mk(e), (2.5)

where T k(N) and Mk(e) represents the multipole expansion of the electromagnetic field of

the nucleus and electrons respectively. Since the atomic potential is isotropic, the atomic

wavefunctions are symmetric with respect to space reflections and are thus also eigenfunc-

tions of the parity operator (P̂ ~ψ(r) = ~ψ(−r) = ±~ψ(r)). For this reason, only terms in

the expansion that do not change the parity of the state have non-zero expectation values.

Since the electric and magnetic field operators have parity eigenvalues (−1)k and (−1)k+1

respectively, the only terms which remain are the even electric and odd magnetic terms

in the expansion. The contributions are the electric monopole, which is just the electric

charge, the magnetic dipole, the electric quadrupole and the magnetic octupole which has

not been observed up to now in 87Rb. This should not to be confused with electric or

magnetic dipole transitions in which different states of the atom are coupled by an ex-

ternal electromagnetic field. Here we are discussing the terms in the multipole expansion

of the unperturbed atom (nucleus + electrons) contributing to its energy level structure.

The terms scale as me/mp and so their effect is smaller by a factor of about 1000 between

successive terms. The expansion stops at the octupole moment (k=3) for 87Rb, since the

largest possible rank of the tensors involved cannot exceed twice the nuclear spin [9] (which

for 87Rb is I = 3/2). Plugging in the various expressions for the multipole expansion [38] up

to the electric quadrupole term one obtains the following expression for the energy levels:

En,I,j = − Z ′2me4

8h2n2e20

[

1 +
(Z ′α)2

n2

(

n

j + 1/2
− 3

4

)]

+
1

2
hAK+hB

3
2K(K + 1)− 2I(I + 1)J(J + 1)

2I(2I − 1)2J(2J − 1)
,

(2.6)

17



where we wrote K = F (F + 1)− I(I + 1)− J(J + 1) = 2I · J and have used the constants

A and B that can be obtained either from theory or from experimental measurements, and

that depend on the specific level of interest [39].

In doing this we have treated I, J , and F as good quantum numbers, justified by

the fact that the splitting originating from the I · J coupling in Eqn. 2.6 (the hyperfine

splitting) is much smaller than the energy difference between levels with different J values,

and certainly much smaller than the energy levels involved in changing the nuclear state.

The total angular momentum F is always a good quantum number since the total angular

momentum of a closed system is a conserved quantity (isotropy of space).

To obtain exact values for the energy levels from these theoretical considerations one

first needs to find the principal energy level En prior to any fine or hyperfine splitting.

This is not a simple matter since the Rydberg formula does not provide us with a good

estimate for multi-electron atoms (such as rubidium) which are much heavier than hydrogen.

To obtain the basic energy levels one needs to use effective values for the nuclear charge

number Z (as previously discussed) or the principal quantum number n to account for

various shielding effects. Eventually, semi-empirical values are obtained and the role of

the theoretical model just reviewed is reduced to a qualitative discussion on the origins

of the various energy level splittings. Nevertheless, the similarity of the alkali family of

atoms to hydrogen (a characteristic single unpaired electron) render their spectroscopy and

interactions with magnetic fields relatively simple to analyze, allowing one to grasp the

fundamental processes using simple theoretical considerations. For these reasons, as well

as for practical advantages (such as a split ground state and closed loop transitions), this

group of atoms have taken a central position in the study of ultracold atomic physics.

Eventually one obtains for the three lowest energy levels of 87Rb the structure depicted

in Fig. 2-1. The colored arrows represent the four atomic transitions employed in our

experimental cycle. The transitions are excited using laser radiation emitted from diode

lasers which are locked to nearby atomic transitions. In the following sections we will

describe in detail how we exploit this particular atomic system to create interesting quantum

states that help enable studies of fundamental questions of quantum mechanics.
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Figure 2-1: The hyperfine structure of 87Rb. The energy level structure is shown with the
optical transitions used for laser cooling and trapping and the lifetime (τ) for spontaneous
emission to the ground state from the various levels. Taken from [40].

2.2 Interactions with a magnetic field

Since each of the hyperfine levels discussed in the previous section contains 2F+1 degenerate

magnetic sublevels, applying a magnetic field lifts the degeneracy (Zeeman splitting). An

inhomogeneous field will therefore create a spatially dependent shift of the sublevels which,

as we shall see below, allows a trapping potential to be formed for the atoms.

In general, there are three contributions to the atomic magnetic dipole, originating from

the electron’s intrinsic spin, its orbital angular momentum, and the nuclear magnetic dipole:

HB =
µb
h̄
(gsŜ + glL̂+ gI Î) · B̂ =

µB
h̄

(gSSz + gLLz + gIIz)Bz. (2.7)

For magnetic fields of around 10G, this Zeeman term in the Hamiltonian is much smaller

than the level spacing of the hyperfine structure (µB/h ≈ 1.4MHz/G). Treating this term

as a perturbation allows us to keep treating F as a good quantum number and we can then

write [39]:

HB = −µ̂ · B̂ = µBgFmFBz = µzBz, (2.8)
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where gF is the hyperfine Lande g-factor given by:

gF ∼= F (F + 1)− I(I + 1) + J(J + 1)

2F (F + 1)
. (2.9)

We notice that for cases with gFmF > 0 we have an energy term that increases the atom’s

energy for increasing fields. Such states are called low-field seeking and are attracted to

a minimum of the magnetic field. In the opposite situation, states for which gFmF < 0,

are called high-field seeking states and are attracted to field maxima. Due to Earnshaw’s

theorem [41], no magnetic field maxima are allowed in space since no magnetic monopoles

seem to exist. This reduces our possibilities for trapping atoms to the class of low-field

seeking states, which unfortunately are not the lowest energy states. This reminds us that

particles in such states could at times decay into the lower energy high-field seeking states

which are not trappable, requiring us to always make sure such loss channels are dealt with.

In fact, Earnshaw’s theorem also does not allow for a field minimum. We bypass this

restriction by noting that the theorem does not forbid a minimum of the modulus of the

filed. Hence, as long as an adiabaticity criterion is fulfilled we may use in Eqn. 2.8 the term

|B|. This criterion requires that the rate with which the atom’s spin may follow changes in

the field direction (estimated to be proportional to the Larmor frequency ωL) is much larger

than the rate with which the magnetic field changes direction (estimated to be proportional

to the trap frequency ωT ). We therefore write:

ωT ≪ ωL, (2.10)

where ωL is:

ωL =
gFµB
h̄

|B̂|. (2.11)

We see that the adiabaticity condition may be violated in regions where the magnetic field

becomes small. In such cases the atomic magnetic moment cannot follow the magnetic

field and might flip its orientation relative to the field (to the more probable lower energy

state), changingmF and thus switching to a strong-field seeking state which is then repelled.

Such events are referred to as Majorana spin flips and, as discussed in the Sec. 2.6, are an

important consideration in the design of magnetic trapping potentials.
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2.3 Doppler Cooling

Atoms moving against the propagation direction of a laser beam experience a blue detuning

of the frequency (Doppler shift), so a laser must be red-detuned to maintain the resonance

condition. Atoms moving towards such a red-detuned laser beam will scatter more light

than atoms moving in the opposite direction and the absorption of the photon’s opposing

momentum will cause the atoms to slow down, thereby cooling them. To first order, the

Doppler cooling force is proportional to the velocity, which results in a viscous damping of

the motion. For this reason the effect gained the name “optical molasses” [42]. The limit

of this cooling technique may be deduced by noticing that there is some heating caused

by the spontaneous emission of photons. Although on average the velocity imparted by

this spontaneous emission is zero (since it is isotropic), there is still a Brownian motion in

momentum space due to the finite lifetime of the excited level in the absorbing atom. A

limit on this process can be obtained from:

∆E∆t ≥ h̄

2
, (2.12)

where ∆t is the excited level’s lifetime and ∆E is the energy associated with the transition.

After averaging over the ensemble, we can take the limiting value of this equation and write:

kBTD =
h̄

2∆t
=
h̄

2
Γ, (2.13)

where Γ is the energy level linewidth and TD is the Doppler limit – the lowest temperature

allowed by the linewidth of the transition. This temperature is typically several hundred µK

(∼ 140µK for 87Rb) and represents the lowest attainable temperature for many radiation

cooling schemes.

2.4 Magneto-optical traps

Now we describe a dissipative trapping potential that combines the velocity-dependent

cooling force (provided by red-detuned counter-propagating laser beams) with the spatially-

dependent trapping force (provided by the inhomogeneous magnetic field acting upon low-

field seeking states) also known as a Magneto-Optical Trap (or MOT). In Fig. 2-2, we show

two laser beams counter-propagating along the ẑ-axis (denoted by their circular polarization
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states as σ+ and σ−) and red-detuned by a frequency δ from resonance (the horizontal line

denoted by Me = 0). An inhomogeneous magnetic field of ~B = Bz induces a linear Zeeman

shift as shown for the three M sublevels of a presumed J = 1 excited state. This Zeeman

shift brings atoms positioned to the right of the trap center (e.g., at z′) closer to resonance

if they are in the M = −1 sublevel (i.e., if they are excited by the σ− beam), whereas

atoms positioned on the opposite side of the trap will be closer to resonance if they are

excited by the σ+ beam to the M = 1 sublevel. In either case, an atom experiences a force

pushing it to the center (z = 0). By adding two additional pairs of opposing laser beams

along the x- and y-axes, the atoms can effectively be trapped in three-dimensional space

and simultaneously cooled by the Doppler mechanism described in the previous section.

Figure 2-2: Arrangement of a MOT in 1D. Two counter propagating laser beams impinge
on an atom at rest in the center of a quadrupole magnetic field. The horizontal dashed line
represents the laser frequency (red shifted from resonance) as seen by the atom. Due to the
inhomogeneous magnetic field the Zeeman shift is position dependent in a way that causes
atoms on the right side of the trap center to be closer to resonance with the σ− laser beam
while atoms on the left are closer to resonance with the σ+ beam. Consequently the atom
feels a force directed towards the center of the trap. Taken from [43].
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2.5 Sub-Doppler cooling

In a surprising experiment [44] temperatures two orders of magnitude lower than the Doppler

limit were observed (0.1− 1µK) in MOT experiments. This extra cooling can be explained

as occurring due to a lag between the orientation of the atomic electric dipole moment and

the optical field polarization vector [42]. To understand the origin of this effect we notice

that the light pressure is given by the interaction of the atom’s electric dipole with the laser

electric field, i.e. its polarization vector. We then have for the force:

F̂ = ∇(d̂ge · Ê), (2.14)

where dge is the dipole moment between the ground and excited levels (ge stands for the

ground→excited transition). For an atom at rest at steady state the dipole moment is

aligned with the polarization vector and will experience no net force. But if the optical

polarization changes along the atom’s path such as in the case of our σ+−σ− configuration,

the atom’s electric dipole will follow the polarization non-adiabatically and will lag behind

it (see Fig 2-3), creating an angle that increases with the atom’s velocity.

Figure 2-3: Polarization gradient cooling in 1D. Two counter propagating laser beams with
σ+ and σ− polarizations create a linear polarization vector that rotates in space. When an
atom moves through this field his electric dipole follows the optical field polarization vector
with the angle between the atom’s electric dipole and the optical field growing with the
atom’s velocity. For kinetic energies higher than 1µK the electric dipole lags behind the
optical field, causing the process to be non-adiabatic. The force on the atom then becomes
velocity dependent and thus dissipative. Taken from [42].

Such an angle will cause a net force on the atom that will oppose the motion causing it and

a damping of the atomic motion will ensue. Microscopically, Dalibard et al. [42] showed that
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the rotation of the quantization axis (the polarization vector) induces a higher population

of the mF = +1 state over the mF = −1 one (in the ground state of the atom) when

the atoms are moving towards the σ+ beam and vice versa for the motion towards the σ−

beam. Since atoms in the mF = +1 (mF = −1) scatter light from the σ+ (σ−) beam more

efficiently (due to the different Clebsch-Gordan coefficients) a net force opposes the atom’s

movement.

In contrast to the Doppler cooling mechanism whereby light is preferentially scattered

due to frequency shifts induced by the Doppler effect, the polarization gradient cooling

mechanism is responsible for preferentially scattering light due to the imbalance in the

populations caused by the non-adiabatic following of the atomic orientation relative to the

local field. In the mechanism discussed here, the cooling occurs for each scattering event,

unlike in the case of Doppler cooling where cooling was a result of multiple absorption-

emission cycles. For this reason the lowest temperatures attainable are set by the recoil

energy of a single photon (with wavevector ~k) and are not limited by the indeterminacy of

the atomic linewidth:

kBTr =
h̄2k2

m
, (2.15)

This temperature is on the order of 1µK and thus represents a further cooling by two orders

of magnitude relative to the Doppler cooling mechanism, and is best achieved by closing

the magnetic fields and further detuning the laser beams. Although extremely cold, 1µK is

still not enough to achieve a BEC where temperatures on the order of 200 nK are needed

(required by the typical densities achievable with trapped gases). For such low temperatures

different methods are employed such as evaporative cooling inside magnetic traps.

2.6 The AtomChip reflection MOT

In the case of AtomChip experiments, the chip blocks optical access along some directions,

a situation which requires some modifications to the typical setup. Since the laser beams

are reflected from the mirror-like surface of the AtomChip (see Fig. 2-4), the setup requires

a quadrupole field rotated by 45 degrees relative to the chip surface. Such a field can be

obtained by anti-Helmholtz coils with a 45 degree axis or more conveniently with a U-shaped

wire (as shown in Fig. 2-5). This has received the name: The U-MOT.
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Figure 2-4: Six beam MOT Vs. Mirror MOT. a. A 2D cut through a standard 6-beam
MOT b. mirror U-MOT configuration. The presence of the AtomChip prohibits one pair
of beams from accessing the trapping region but fortunately also provides a solution to
the problem. Since reflection reverses the circular polarization, using the AtomChip as a
mirror the standard configuration of six beams with the proper polarization is maintained.
Different than what is used in Fig. 2-2, the convention of polarization used here is that of
the photon frame of reference. Taken from [40].

The U-wire can be regarded as a superposition of a central wire, a perpendicular bias field

and two legs (the wire leads), the two legs carry currents in opposite directions, so that the

net field in the middle is in the ẑ direction. The wire together with the bias field creates an

atom guide (see Fig. 2-6) for low-field seeking atoms, whose field minimum is zero, and the

configuration is a two-dimensional quadrupole. By adding the two legs one creates “end

caps” for the wire guide, and a 3D quadrupole is obtained.

Additionally, the U-wire trap configuration is preferred when working with AtomChips

since one can form the initial MOT closer to the surface, thus allowing easier loading to

the AtomChip in later stages and also permitting high magnetic field gradients due to the

proximity of these wires to the atomic cloud. The MOT trap has the ability to collect a

relatively large numbers of atoms, but at phase space densities that are much too low for

the formation of a BEC (a typical phase space density at the MOT stage is 10−6).

2.7 Magnetic traps

As previously mentioned, the point of vanishing magnetic field at the center of the quadrupole

trap operates as a loss channel for cold atoms. As the temperature drops, atoms spend an

increasing amount of time in the presence of low fields and spin-flip rates increase up to

a point where losses become prohibitive. Consequently, in order to achieve lower temper-
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Figure 2-5: The U-MOT configuration. On the left, magnetic field lines produced by each
segment of the U-wire are shown which, together with the bias field Bb, generates a confining
potential along the wire axis and a sharp minimum of zero field at some distance z0 from
the wire. On the right we show the quadrupole field generated in a plane perpendicular
to the central wire. In the central figure we show the radial and axial potentials of the
generated trap. Notice however that in standard MOT configurations the orientation of the
magnetic field (which acts as a quantization axis) relative to the direction of propagation of
the laser beams is important. It might seem that our configuration will fail since the laser
beams coming at 45◦ incidence are oriented differently than for the six-beam MOT. This
confusion is resolved by noticing that the quadrupole field generated by the U-MOT is also
rotated by 45◦ relative to standard configurations. Taken from [45] and [46].

Figure 2-6: Sideguide potential. A sideguide generated from a single current-carrying wire
and a perpendicular bias field. The one-dimensional guide is parallel to the wire at a
distance of z0.

atures a new trap is needed that does not have a zero magnetic field at its minima. In

order to achieve a trap with high gradients and a non-zero minimum field we employ a

Ioffe-Pritchard type of trap which is created by passing currents through a Z-shaped copper

wire.

To understand the field configuration we first consider a sideguide generated by a single

current-carrying wire (along the x̂-axis) and a perpendicular bias field (along the ŷ-axis, see

Fig. 2-6). This configuration has a field:
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which due to the bias field along the ŷ-axis results in a cancellation of the overall field at

the group of points z0 = (x, 0, µ0I
2πBy

).

This trap unfortunately is unsuitable for trapping since it suffers from the same condition

of the previously encountered quadrupole, it has zero field at its center. If we apply another

bias field along the x̂-axis we will have:

B ≈ µ0I

2πz20
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Creating an x̂-bias field can be done by bending the wire to a Z-like shape (see Fig. 2-7 b),

the bent legs now give a field at the waveguide of the form:

Bz,legs =
−µ0I
4π

(

x+ L

z20 + (x+ L)2
+

x− L

z20 + (x− L)2

)

≈ −µ0I
2π

z20 − L2

(z20 + L2)2
x

Bx,legs =
µ0I

4π

(

z0
z20 + (x+ L)2

+
z0

z20 + (x− L)2

)

≈ µ0Iz0
2π(z20 + L2)

− µ0Iz0(z
2
0 − 3L2)

2π(z20 + L2)3
x2.

(2.18)

and trapping frequencies given by:

ω2
ρ =

µBmF gF
m

× ∂2B

∂ρ2
=
µBmF gF

m
×

B2
y

z20B0,x

ω2
x =

µBmF gF
m

× ∂2B

∂x2
=
µBmF gF

m
× µ0Iz0(z

2
0 − 3L2)

π(z20 + L2)3
≈ µBmF gF

m
× 6By

L2
,

(2.19)

where B0,x = µ0Iz0
2π(z2

0
+L2)

is the field at the trap bottom (called the Ioffe-Pritchard field).

In the case of the U-wire configurations we can see that the contributions from the legs

cancel and the remaining field is that of a 3-dimensional quadrupole. In our experiment,

27



Figure 2-7: U- and Z-wire configurations and their corresponding magnetic fields. As
the temperature of the trapped atoms is reduced, the U-wire configuration is no longer
adequate for trapping. As slow atoms spend an increasing amount of time in a region with
zero magnetic field, the probability to undergo a spin flip (Majorana spin flip) followed by
a removal from the trap is no longer a negligible process. The solution to this problem
is to incorporate a Z-wire type trap which has the crucial feature of allowing a non-zero
minimum in the magnetic field. Majorana spin flips can then be reduced to negligible levels
by setting the magnetic field minimum at approx. 1G. Taken from [47].

we employ a combination of U- and Z-traps in order to generate the U-MOT and magnetic

trap respectively. By such methods, a twelve orders of magnitude increase in phase space

density (relative to room temperature and density) can be achieved by means of evaporative

cooling, which is the topic of the next section.

2.8 Evaporative cooling

In order to reach the required phase space density of 2.6 [48], a further increase of 6 orders of

magnitude is needed beyond what is provided by typical laser cooling. To achieve this goal

we load the atoms into the Ioffe-Pritchard trap described in the previous section and exploit

the inhomogeneity of the magnetic field. Following a suggestion first made by Pritchard [49]

and later applied by Davis et al. [50] this variation permits the use of RF transitions to

selectively excite atoms that are in a region of relatively higher field, and flip their magnetic

moment to a non-trappable state, thus ejecting them from the trap. Since atoms in high

field regions carry a larger than average energy (i.e., they are far from the trap minimum),

their removal, followed by re-thermalization of the remaining atoms through collisions, will

lower the ensemble temperature. According to Eqn. 2.8 the energy difference between two
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adjacent Zeeman levels (∆mF = ±1) is given by:

∆U∆mF=±1 = hνRF = gFµBB. (2.20)

Our cooling ground state is |F = 2,mF = 2 > where gF = 1/2 and we get a splitting of

0.7MHz/G between the different levels. Applying a radio pulse with a frequency νRF will

cause a transition to the |F = 2,mF = 1 > state, followed by another absorption which

leads to the non-trappable |F = 2,mF = 0 > state and the desired ejection from the trap.

While in the |F = 2,mF = 1 > state, the atoms are still trappable and could oscillate back

to a low field region where they interact with other cold atoms in a spin exchange collision,

causing additional loss from the trap. To overcome this process one needs to make sure

that the spin flip rate is faster than the spin exchange time.

To find the required RF frequency we write the trapping potential in the form:

Vtrap = gFmFµB(B(r)−BIP ), (2.21)

where BIP is the Ioffe-Pritchard field (the field at the minimum of the Ioffe-Pritchard trap).

For an applied RF field with frequency νRF we see that only atoms with energies exceeding

h(νRF − νIP ) will be ejected (evaporate) from the trap (where hνIP is the energy at the

trap bottom). As can be seen in Fig. 2-8, atoms are distributed in the trap according to

the Maxwell-Boltzmann distribution. Each atom has a mean kinetic energy of 3
2kBT and

according to the virial theorem he then spends most of his time in regions of space with

comparable potential energy (magnetic in nature) 2. The RF signal (also known as “RF

knife”) is kept at a constant energy above this most probable value hνRF = ηkBT where

we have introduced a semi-empirical factor η to be optimized in the evaporative cooling

procedure. The amplitude of the RF signal is chosen so that the broadening of the signal

is small compared to the frequency, ∆ν ≪ νRF . Thus the RF radiation expels those atoms

that are significantly hotter than the average in the trap.

RF induced evaporative cooling has several advantages over other methods (such as

changing the trap depth adiabatically or optical excitation). For once, the trap depth can

be changed continuously without affecting the trap confinement (and thus density) and

2According to the equipartition and virial theorems a particle has a mean energy of 3/2kBT for both the
kinetic and potential contributions
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Figure 2-8: Illustration of the RF cooling mechanism. The mean energy (kinetic + potential)
of a trapped atom is 3kBT . The RF knife is kept at a constant ratio above the thermal
average (ηkBT ) thus expelling atoms with above average kinetic energy. The constant
factor η is chosen to ensure ”run-away” evaporative cooling [51]. The interaction of the
RF pulse with an atomic transition has a width of h∆νRF which depends on the power of
the RF signal (power broadening) and must be taken into consideration. All the excitation
frequencies in RF cooling are defined relative to the trap bottom (the minimum field or
energy at the minimum, denoted here by BIP or hνTB) so one must also be careful to have
this value stable throughout the cooling process. Taken from [40].

so the evaporation mechanism becomes largely independent of the trap shape. This fact

allows working with dense samples which increases collisions and facilitates thermalization.

Also, since the radiation penetrates all of the condensate, however dense (unlike methods

employing optical evaporation where high optical density reduces the radiation intensity),

the interaction is 3-dimensional in momentum space and thus highly efficient [51]. From

a technological standpoint, RF pulses can be generated with very high precision, allowing

accurate control and characterization of the cooling process.

The main limitation of such a method is in the loss of a large fraction of the sample.

This could be understood by thinking of an extreme example. In principle, one can raise

the trap depth to a value comparable with the total energy possessed by all the atoms in the

trap. One then only needs to wait until one atom will have all of the energy of the system

and subsequently escape from the trap, leaving the remaining atoms at zero temperature.

Unfortunately, due to the exponential form of the Second Law of Thermodynamics, such

events are extremely rare and the experimenter will have to wait a practically infinite

amount of time for the process to occur. Although discouraging, this gedanken experiment

demonstrates that evaporative cooling is a compromise between efficiency and cooling speed.
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What sets the timescales for the method are the unavoidable loss rates which will eventually

deplete the sample.

Good collisions, bad collisions, and rate equations

The depletion and thermalization of the sample are determined by atomic collision rates

which set the timescale of the whole evaporation process. On the one hand, the rate of

elastic collisions determines the thermalization time, and thus the rate at which the RF

knife can be lowered. On the other hand, the rate of inelastic collisions (with background

gases or other relaxation/recombination processes within the trap) determines the sample’s

lifetime which subsequently determines the time available for the evaporation process. For

alkali atoms the main loss channel is background collisions. Spin flipping 2-body collisions

and molecule forming 3-body collisions are present at higher densities. Background gas

collisions have no energy dependence and so they remove atoms with an average energy

from the trap, while the other two types are density dependent and since the density is

highest for low energy atoms (near the trap minima) it predominantly removes atoms with

lower than average energy from the trap, thus increasing the average energy.

For this reason evaporative cooling requires a favorable ratio of elastic to inelastic col-

lisions, defined as R = τloss/τel, where τloss and τel stand for the mean free time between

collisions. As atoms evaporate from the trap the phase space density increases but so do

the loss rates; in order to maintain an accelerating collision rate (“runaway evaporation”)

we require that the evaporation begins with an R value larger than a certain minimum:

R > Rmin. Since elastic collisions are density dependent unlike background gas collisions a

compression of the trap is employed prior to evaporation in order to increase the R ratio.

In conclusion, the requirements to reach a BEC using RF evaporation involve:

1. A vacuum on the order of 10−11Torr (ultra-high vacuum region) to suppress background

collisions;

2. A minimum initial phase space density combined with a sustainable collision rate ratio R

in order to be in the runaway regime;

3. Maintaining the RF knife at a constant multiple η of the temperature during the evap-

oration;

4. Adiabatically compressing the sample prior to evaporation to increase the good to bad

collision ratio.
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2.9 Theory of a BEC in a harmonic potential

The Gross-Pitaevskii (GP) equation for the multi-particle wavefunction Ψ0(r) =
√
N0φ0(r)

(where ψ0(r) is the single particle wavefunction and N0 the number of atoms) is given by:

(

− h̄
2∇2

2m
+ Vext(r) + g|Ψ0(r)|2

)

Ψ0(r) = µΨ0(r), (2.22)

where the quantity µ is the chemical potential which is fixed by the condition that there

are N atoms in total, N =
∫

|Ψ0|2dr, and where we have used a formulation in terms of an

effective potential which when expressed in terms of the s-wave scattering length a, has the

form:

g =
4πh̄2a

m
. (2.23)

The balance between the kinetic and interaction energy terms fixes a typical distance over

which the condensate wave function can heal, this length scale is given by:

ξ =

√

h̄2

2mgn
(2.24)

where n is the sample density.

This length scale, termed the healing length, separates solutions of the GP equation

into 2 classes.

For small values of ξ we can neglect the kinetic term and write the equation as:

(

Vext + g|Ψ0(r)|2
)

Ψ0(r) = µΨ0(r), (2.25)

which is the useful Thomas-Fermi (TF) approximation. The solution of this equation gives:

|Ψ(r)TF |2 = nTF (r) =
µ− Vext

g
. (2.26)

On the other hand, for large values of ξ we can neglect the interaction term and write:
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(

− h̄
2∇2

2m
+ Vext

)

Ψ0(r) = µΨ0(r), (2.27)

which can be solved either analytically or numerically, depending on the form of the trapping

potential. Intermediate values of ξ are of course also possible, for which numerical methods

are usually employed.

In the case of trapping in a harmonic potential (such as generated by the magnetic trap

near its minimum) the external potential is given by:

Vext(r) =
m

2
(ω2

xx
2 + ω2

yy
2 + ω2

zz
2), (2.28)

where ωi is the trapping frequency in the ith direction. The ground state of an oscillator in

the large ξ limit can be solved by a Gaussian form:

ΨGauss(r) = (
mωho

πh̄
)3/4exp(−m

2h̄
(ωxx

2 + ωyy
2 + ωzz

2)), (2.29)

where we have defined ωho = (ωxωyωz)
1/3, and took as the chemical potential the energy of

the ground state µ = ǫ0 =
h̄
2 (ωx + ωy + ωz) The normalization condition on all solutions is:

∫

Ψ(r)∗Ψ(r)dr = N ; n(r) = N |Ψ|2 (2.30)

The parameter ξ has dimensions of length; in order to have an absolute meaning to its scale

we need another length dimension against which we can compare it. Since we are trapping

atoms in harmonic traps the natural length scale in our situation is the oscillator amplitude

(12mω
2
i a

2
i =

h̄
2ωi). Comparing ξ to ai gives us:

ξ

ai
=

√

h̄2

2mgn
√

h̄
mωi

=

√

1
2 h̄ωi

gn
(2.31)

When the interaction term is larger than the oscillator energy, ξ is small compared to the

size of the trap and a Thomas-Fermi approximation is adequate. In the opposite limit, if

the oscillator energy is larger than the interaction term, interactions can be neglected, ξ is

larger than the trap and we are back to the ideal gas solution with a Gaussian form. We see

that the healing length can be small or large compared to the harmonic oscillator length at
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each direction, and at times we can have solutions which resemble a TF form on one axis

and a Gaussian form on another.

As we will later see, in our experimental setup we encounter harmonic traps which have

very tight confinements only in 2 of the 3 axes. Such anisotropic traps display density

profiles similar to the TF solution for the low frequency axis while simultaneously having

a Gaussian profile for the high frequency ones. In the case where the tightly confined axis

gives very large values of ξ relative to the oscillator length on that axis, the condensate

cannot be excited beyond the lowest lying vibrational state (higher states are said to be

“frozen”) and the condensate is said to be in a one dimensional trap.
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Chapter 3

Experimental Setup

Experimental systems of trapped neutral atoms allow scientists a unique opportunity to

study atomic physics as well as many-body physics. For this to be possible the atoms must

be isolated from the environment by confining them with, for example, magnetic fields as

discussed in Sec. 2.4. This isolation must last long enough for the experimenter to prepare,

manipulate and measure the quantum state as desired (e.g. the state of the internal and

external degrees of freedom of the atoms). Amongst the experimental restrictions imposed

by these requirements is that the density of background gas must be kept sufficiently low

in the volume where the actual experiment takes place; background gas particles would

otherwise collide with the cold atoms and eject them from the shallow magnetic trap.

In particular, RF evaporative cooling (the method of cooling commonly used for reaching

a BEC) depends on suppressing such background (inelastic) collisions sufficiently that elastic

re-thermalization occurs within the cold gas to generate the BEC (see Sec. 2.8), with enough

time remaining for experimentation. This generally requires a vacuum on the order of

10−11Torr. Into this vacuum setting one then needs to introduce all the standard laser

cooling schemes (involving precisely aligned laser beams and magnetic fields), then to control

the various fields, and finally to image and analyze the atomic cloud. The operation of such

an apparatus is the topic of this chapter which will include a discussion of all the relevant

subsystems.
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3.1 Vacuum system

In order to reach vacuum levels on the order of 10−11Torr we use the vacuum system

depicted in Fig. 3-1. The chamber is made from 316LN non-magnetic stainless steel and in-

corporates large-diameter tubing to allow high conductance for the ion pump. The complete

system is built around a 6-way cross to which the pumps, a smaller chamber and the Atom-

Chip mount are connected. The smaller chamber, an octagon (73mm high, 200mm wide),

is where the experiment takes place and is thus termed the “science chamber”. Seven of

the access ports on the science chamber have optical-grade windows (anti-reflection coated

for 780 nm radiation); the eighth port has an atom vapor dispenser. The atom vapor dis-

penser (SAES Getters Rb/NF/3.4/12) acts as our atom source by releasing rubidium into

the chamber after heating with around 16A of current at the beginning of each experimen-

tal cycle. In addition to the dispenser, we use an array of ten UV LEDs positioned around

the chamber; the light-induced atom desorption (LIAD) effect causes rubidium atoms to

desorb from the vacuum chamber walls [52]. Releasing atoms from the surface allows us to

use lower current for the dispenser while generating the same number of gas atoms, thus

recycling rubidium and helping to reduce the overall pressure.

Figure 3-1: Vacuum System. Top view on the left and front view on the right of the vacuum
system used in our setup. Adapted from [40]

The vacuum system incorporates four types of pumps, a dry scroll pump, a turbo pump,

an ion pump and a titanium sublimation pump (TSP). Initially, a dry scroll pump (Varian

SH-100) evacuates the chamber to low pressure (10−2Torr) to allow the turbo pump (Varian

TV70LP, 70 l/s) connected to it in series to start working (since turbo pumps cannot start

from atmospheric pressure). This initial pump-down brings the chamber to high vacuum
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levels (10−8Torr). To achieve ultrahigh vacuum (< 10−10Torr) needed for our experiments,

it is then necessary to implement a baking procedure [53] to extract water vapor stuck to

the chamber’s walls that would otherwise provide an almost infinite source of gas. We use

a relatively low baking temperature of 150◦C to avoid damaging the AtomChip, since gold

can diffuse at high temperature. We generally bake the system for 5-7 days even though the

chamber is flushed with nitrogen when opening it for maintenance. The ion pump (Varian

Vac-ion, 300 l/s) is started during the baking procedure and is kept on permanently. When

the gas load due to baking has declined sufficiently, the turbo pump is separated from the

chamber using a UHV valve (VAT all-metal UHV angle valve - series 54). Occasionally

we run the TSP in order to further reduce the pressure, but this operation tends to cause

instabilities in the experiment and is not applied frequently. These four pumps, together

with the science chamber and the AtomChip mount, occupy 5 ports of the 6-way cross (see

Fig. 3-1). The ion pump is kept at a distance from the science chamber so that the magnetic

field utilized by the pump will not interfere with the experiment. This is done by placing

a 500mm-long tube between the pump and the science chamber where the atomic cloud is

located.

In order to measure the pressure we use a nude ionization gauge (Varian UHV-24p)

between the valve connecting the turbo pump and the 6-way cross. The rated low-pressure

limit of this gauge is 5 · 10−11Torr, although we achieve a magnetic trap lifetime on the

order of 60 s, indicating an effective background pressure on the order of 10−12Torr. Thus

the actual pressure is usually below the nude ion gauge limit, which is therefore used only

during pump-down and bakeout.

3.2 Laser light

In our experimental system we use four different laser frequencies in order to induce the

required atomic transitions (see Fig. 2-1 and Sec .2.3).

1. Cooling - |F = 2 >→ |F ′ = 3 >, red-detuned by 16MHz, σ+ polarization, power deliv-

ered to the experiment of around 90mW;

2. Repumping - |F = 1 >→ |F ′ = 2 >, on resonance, σ+ polarization, power ≈ 10mW;

3. Imaging - |F = 2 >→ |F ′ = 3 >, on resonance, linear polarization, power of few µW;

4. Optical pumping - |F = 2 >→ |F ′ = 2 >, on resonance, σ+ polarization, power of few
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µW.

In order to generate these four frequencies we use two lasers and shift their frequencies

using acousto-optical modulators (AOM’s). The AOM’s are also used as fast shutters and

to adjust the cooler and repumper frequencies in real time during the MOT and optical

molasses stages (the former aiming at the Doppler limit and the latter at the recoil limit

by shutting down the magnetic fields and further detuning the lasers), all of which are

controlled by the computer. Noting that three of the required laser transitions originate

from the |F = 2 > state, while one originates from the |F = 1 > state, the resulting

frequency spacing between the repumper and the other beams (6.835GHz) is too large to

be obtained using standard high-efficiency AOM’s (capable of shifting frequencies by only

a few hundred MHz).

The first laser, a TA100 unit from Toptica (utilizing a master-slave tapered amplifier

architecture), generates up to 1W of power at 780 nm and is split into the cooling, imag-

ing, and optical pumping beams. A second laser, a DL100 unit also from Toptica, has an

output power of 80mW and is used only for the repumper beam. The TA100 is locked

using a Pound-Drever-Hall detector (PDD) with a 20MHz current modulation around the

1 − 3 crossover peak of 87Rb which is then fed back into the Toptica PID regulator. The

spectroscopy peak is obtained by a saturated absorption spectroscopy technique. The re-

pumper laser is locked using the Toptica PID regulator directly locked to the 1−2 crossover

peak obtained again from a saturated absorption spectroscopy signal. Both spectroscopy

setups supply us with Doppler-free spectroscopy signals for the various locking mechanisms.

The lasers and their respective spectroscopy optics are located on a separate breadboard

sitting on the optical table for increased stability, and are enclosed in a box to reduce air

currents and acoustic vibrations. The table itself sits on standard pneumatic legs to reduce

vibrations.

Optical layout

The optical layout in our setup is illustrated in Fig. 3-2. The cooler beam is shifted by

196MHz to be near-resonant with the |F = 2 >→ |F ′ = 3 > cooling transition (212MHz

detuning is on resonance) by going through the AOM twice in a double-pass configuration.

The imaging beam is detuned by 212MHz to be on resonance with the cooling transition.
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The optical pumping beam is tuned to be on resonance with the |F = 2 >→ |F ′ = 2 >

transition by passing once through the AOM and shifting the frequency to the red of the

crossover by 50MHz. The repumper beam is tuned on resonance with the |F = 1 >→ |F ′ =

2 > transition, 80MHz detuned from the lock point of the DL100 laser, by a single pass

through the AOM.

Figure 3-2: Optical layout. The TA100 and DL100 main beams are split into four beams
and each one is shifted individually by an AOM. The imaging beam is further split into
two for the separate imaging axes. These five laser beams are then injected into five fibers
for greater stability and spatial filtering; the fiber outputs are then fed into the science
chamber. Taken from [40].

Shutting off the AOM’s causes the laser beam to be blocked and the AOMs are thus used

also as fast shutters (ns time scale). However, the AOM’s allow some light to leak through

even when shut, so we trigger mechanical shutters (Uniblitz) shortly after the AOM’s

in order to completely block the residual light. All four laser beams are coupled into

polarization-maintaining fibers for more convenient transmission to the science chamber, to

improve beam quality (the emerging beam is Gaussian), and to reduce stray light entering
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the science chamber.

The cooler and repumper beams are superimposed using a polarizing beam splitter

(re-combiner) and then split into the four counter-propagating MOT beams, each of which

passes through a λ/4 waveplate to change the light polarization to σ+ (in the photon frame)

immediately before entering the science chamber.

The optical pumping beam and the main imaging beam are inserted into the science

chamber along the ŷ-axis. For imaging atoms very close to the AtomChip surface (h <

50µm) we tilt both the imaging beam and the camera by about 5◦, so that the beam

reflects off the AtomChip; the resulting mirror images then directly give the distance of the

atoms from the chip surface (see [54] for more details).

An additional imaging beam is injected parallel to the plane of the AtomChip at a 45◦-

angle to the ŷ-axis; its optics provide smaller magnification in order to image larger clouds

(in the MOT and magnetic trap stages) further from the AtomChip. A third imaging beam

incorporates a setup along the ẑ-axis using a periscope system with the AtomChip acting

as a mirror in order to image the atoms from below (more on this in Sec. 5). Three cameras

are positioned opposite each imaging beam’s entrance ports and are triggered to take an

absorption image of the cloud at the desired time.

Figure 3-3 shows the layout of the various laser beams positioned around the science

chamber.

3.3 Magnetic fields

3.3.1 Coarse magnetic fields

We construct magnetic traps by combining homogeneous (“bias”) and inhomogeneous fields.

In order to generate bias magnetic fields, our system incorporates three pairs of coils oriented

along the three orthogonal axes, and a fourth pair oriented along the x̂-axis but allowing

opposite current polarity for conveniently reversing the direction of the field along this

axis. All four coils are centered around the science chamber. For the main x- and the y-

coils, we use two identical pairs of square coils separated by 285mm, with inner dimensions

of 110mm. The coils are constructed from 25 turns of 25mm2 cross section copper wire,

resulting in outer dimensions of 200mm. Each pair of coils has a resistance of 70Ω and

an inductance of 0.56mH, and generates a measured field of 0.54G/A at the center of the
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Figure 3-3: Science chamber layout. Blue rods represent the imaging beams while the
red ones are the cooler/repumper beams. The cooler/repumper beams show only the last
segments prior to entering into the chamber.

science chamber with good uniformity within the central few cubic cm of the chamber.

The z coils are made from 20 turns of the same wire but have a circular shape with an

inner and outer diameter of 220 and 283mm respectively. Their separation is only 85mm,

resulting in a stronger measured field of 1.54G/A at the center of the science chamber.

In addition to these bias fields, we create inhomogeneous fields for trapping by pushing

current through various elements (such as the U- and Z-wire) discussed previously (see

Sec. 2.4). The wire elements are embedded in the AtomChip mount (see Fig. 3-4), which is

inserted into the 6-way cross from above (Fig. 3-1) and brings the AtomChip through the

cross all the way down to the center of the science chamber.

As seen in Fig. 3-5 we have built a set of copper wire elements, supported and aligned by

a macor structure. These four elements are the U-wire (for the MOT quadrupole field), the

Z-wire (for the Ioffe-Pritchard magnetic trap), and two “legs” that allow us to add further

confinement to the magnetic trap. These thick copper wires are responsible for generating

the required inhomogeneous magnetic fields used for trapping atoms before transferring to
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Figure 3-4: The AtomChip mount.

the AtomChip magnetic potentials. The wires are connected to Cu leads (10mm diameter

for the Z-wire, 6mm diameter for the other three wires) going upwards from the macor

block to feedthroughs in the 160CF flange. Four stainless steel rods welded to the flange

support the entire AtomChip structure mechanically (Fig. 3-4). The diameter of the Z-wire

leads was increased from 6mm to 10mm since the smaller diameter caused unexpectedly

large thermal expansion of the Cu leads. The expansion of the new mount leads has been

reduced to 250µm, which was measured by running the experimental cycle with maximum

currents for a period of 24 hr. Insulation between the U- and Z-wires is ensured by a small

piece of Kapton tape positioned between the pieces.

In addition to homogeneous and inhomogeneous fields, fast switching times are required

for the various stages of the experiment. The current supplies we use (Agilent) allow

switching times no faster than a few tens of ms; such slow shutting times would result

in giving atoms a “kick” during the trap release stage and must be shortened. In order

to reduce this time we have built current shutters capable of shutting down the currents

in 10 − 200µs, depending on the amount of current initially passing through them and

limited by the coil’s inductance.
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Figure 3-5: The macor piece and copper structures. 1. U-wire - Current is passed from (d)
to (h); the central portion is covered with a thin layer of Kapton tape to ensure electrical
insulation. 2. Z-wire - Current is passed from (f) to (b); in combination with a bias field
along the ŷ-axis this creates a Ioffe-Pritchard magnetic trap. 3. Leg wires - current is
passed in series from (e) to (a) for the left leg and from (g) to (c) for the right one, allowing
an additional inhomogeneous field for changing confinement along the x̂-axis. 4. There
are twenty CuBe pins (i) positioned along the sides of the macor piece for bonding to the
AtomChip. 5. Notches for aligning the AtomChip are machined on both sides of the macor
piece (j). 6. Two additional macor pieces (k) are positioned to restrain the movement of
the Z-wire along the ŷ-axis.

3.3.2 Fine magnetic fields - the AtomChip

Alongside the AtomChip lab at Ben-Gurion University of the Negev (BGU), a fabrication

facility dedicated to the atom optics community was established under the name of The

Weiss Family Nano-Fabrication Center. Our AtomChips (the current version, BGU1, is the

second) are fabricated by depositing a single Au layer on top of a Si wafer using standard

lithographic techniques borrowed from the microelectronics industry. The Si wafer is a

good heat conductor (important for heat dissipation from the current carrying elements),

but is not a perfect electrical insulator. We therefore use substrates with a thin layer

of SiO2 onto which we evaporate a thin layer of Ti to improve the adhesion of Au. The Au

layer is 0.5µm thick, a value which enables on the one hand a large enough current to be

pushed through and on the other a decreased amount of thermally activated (Johnson) noise,

but this will not be elaborated upon here. Gold is selected for its low electrical resistivity

(ρAu = 2.21×10−8Ωm) and high infrared reflectivity (reflectance at 45◦ incidence is > 95%

at 780 nm). We also note that the thinner the wire, the higher the current density which
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may be pushed through before heating causes damage. In the following we elaborate on

this point.

A wire of thickness t and surface area A will generate Ohmic heating as given by

Pheating = tAJ2ρ(1 + α∆T ), (3.1)

where ρ is the resistivity of gold, J the current density pushed through the wire, and the

power Pheating is given in Watts. We have used the temperature coefficient (α = 0.0037K−1

for gold) to account for the variations in resistivity at different temperatures. Also, the heat

conducted to the substrate is given by Fourier’s law:

Pdissipation = κA∆T, (3.2)

where κ is the thermal conductivity per unit length of gold (κ = 4×106Wm−2/K) and ∆T

the temperature gradient between the current-carrying gold element and the substrate. The

maximum temperature increase we allow for safe operation is approximately 50% of the

base temperature [55] (which in our case is taken to be 270K), giving ∆Tmax = 135◦C. This

results in a maximum current density of

Jmax =

√

κ∆Tmax

tρ(1 + α∆Tmax)
. (3.3)

We see that thinner wires allow larger current densities. A lower bound may be given by the

need for a large absolute current. In addition, if one does not utilize a mirror layer, the lower

bound is given by the requirement that the reflectivity of the surface will not deteriorate.

We have chosen a value of 0.5µm for the thickness, providing us with a good reflective

surface, twice the current density and half the total current that was available in the old,

2µm thick BGU0 version. Plugging in the various constants we get a maximum current

density of Jmax = 1.72 × 107A/cm2, resulting in a maximum current of approx. 0.7A for

the 8µm-wide snake wire and 8.6A for the 100µm-wide loading wires (more on these wires

in the following section). Our AtomChip design is the first BGU chip to employ a two-

chip architecture, placing some of the microstructures on a lower chip and thus allowing

for geometries which are otherwise impossible unless one utilizes multi-layer techniques

which are complex (more on the chip in the next section). The two individual chips (each
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300µm thick) composing the composite BGU1 AtomChip are glued to one another using

a UHV-compatible epoxy (Epotek ND353). The composite chip is then glued to the macor;

the UHV epoxy also has good thermal conductivity and allows heat to dissipate from the

chip through the rest of the mount.

BGU1 AtomChip wires

Here we discuss the various wire elements incorporated into our latest double-layered Atom-

Chip, which we have called BGU1. On the top chip we deposited three separate Z-wires

side-by-side. Using the outer two 100µm-wide wires in series (co-propagating currents)

when the atoms are relatively far from the chip effectively generates a Ioffe-Pritchard trap

corresponding to a single 200µm-wide wire. These wires are used for conveying atoms from

the initial magnetic trap (generated by the copper Z-wire) to the inner 8µm-wide exper-

imental wire, and they are called our “loading” wires. As shown in Fig. 3-6 the edges of

the central Z-wire have sinusoidal modulation, and the wire is thus termed the “snake”

wire. This modulation is the main ingredient in our experimental setup aiming at measur-

ing quantum interference effects. A more detailed discussion of this wire is presented in

Chapter 4. For now it is sufficient to state that the final goal of the experiment is to trap

atomic clouds using the snake wire and several bias fields at a height of approx. 5µm above

the AtomChip.

The double-layered BGU1 chip has several advantages over our previous single-layer

chip. Firstly, the magnetic traps for loading and experimentation are located at the

same (x, y)-co-ordinates since their centers are in the same position. This reduces the need

for bias fields along the ẑ-axis which can cause the potential to tilt towards the chip surface,

thus losing atoms especially at small trap distances. Similarly, we have improved the chip

alignment with respect to the copper Z-wire by using alignment marks and by physically

restraining motion of the copper Z-wire along the ŷ-axis. Also, our new bottom imaging

allows us to directly measure the cloud position in the x − y-plane and ensure that it is

located directly above the desired wire (see Chapter 5). This could be done only indirectly

before implementing the bottom imaging, and was very difficult to achieve with BGU0 since

its wires were not properly aligned with respect to each other, nor to the copper Z-wire.

Magnetic field simulations show that transferring atoms from the copper Z-wire trap to

the snake wire trap can be accomplished by a two-step loading scheme, first ramping up the
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current in the 100µm loading wires (while lowering the copper Z-wire current) and then by

ramping down the loading wire current while turning on the snake wire. We have already

accomplished the first step of this procedure and, as hoped, we have found it to be much

easier than with the BGU0 chip.

The three wires of the upper chip comprise the main components required for our exper-

iment, while the ancillary wires are positioned on the lower chip. The ancillary wires which

are rotated by 90 degree relative to the main wires, enable stronger confinement along the

x-axis as the atom cloud is brought closer to the surface. In addition, moving wires from

the top surface to a second (lower) surface gives rise to less diffraction of light which, in the

previous chip, compromised the signal-to-noise in the reflected imaging detection.

Figure 3-6: The two-layered BGU1 AtomChip. On the left is a photomicrograph of the
upper chip, showing the snake wire enclosed by the two 100µm-wide loading wires. The
width of the snake wire is 8µm and the period of its edge modulation is 5µm. Note that
the edge modulation of 2µm amplitude is assymetric. The gold layer is 0.5µm thick. The
middle and right frames show schematic drawings of the upper and lower chips, respectively,
mounted on the macor block (light blue background). On the right a diagram of the bottom
chip shows two wires (blue) designed to generate a constant x̂-bias field at a height of 5µm
above the chip and two pairs of wires (green, four in total) designed to add longitudinal
confinement to the trap. The axes convention used throughout this work is shown on the
right frame.

In the lower chip we have placed the wires shown in Fig. 3-6 on the right. The green

labeled wires provide extra confinement along the longitudinal axis. There are two such

pairs, both 300µm wide and separated by 500µm and 850µm (center of chip to center of

wire) respectively. The blue wires provide an extra x̂-bias field in the center of the trap,

they are 250µm wide and displaced by 185µm from the center of the chip.

The AtomChip pads of the various wires are electrically connected to the CuBe pins

positioned in the macor (see Fig. 3-5 (i)) by 10 Au bonding wires for each contact (this
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overkill is done to ensure operation even in the case some wires break off). As a lesson from

the BGU0 AtomChip we have moved all of the pins to the sides of the macor piece to have

a clear view along the ŷ-axis, which is our main imaging axis.

3.4 Imaging setup and analysis

Our experimental setup supports imaging along several axes during any stage of the experi-

ment. We use the technique of absorption imaging [48], whereby we trigger two consecutive

50µs-long laser pulses (using the AOM’s and the mechanical shutters), 500ms apart, begin-

ning shortly after the atoms are released from the trap. The imaging beam is tuned to be

resonant with the |F = 2 >→ |F ′ = 3 > atomic transition. The first pulse passes through

the atomic cloud with a measurable fraction being absorbed by the atoms. The excited

atoms re-emit light due to spontaneous emission in an isotropic process with a solid angle

of 4π steradians. As long as the solid angle of the cloud seen by the first lens of the imaging

system is much smaller than the full 4π, we can neglect the contribution of fluorescence

altogether and treat the resulting image as a shadow of the atomic cloud. The second pulse

then reaches the CCD camera without any loss since all the atoms disperse in much less

than 500ms.

The two images are used, together with the parameters of the atomic transition and

the laser light, to determine the optical density of the atomic cloud, integrated along the

imaging axis as we now discuss.

A single atom interacting with a beam of intensity I directed along the ŷ-axis will

scatter light proportional to the relevant cross section. An atomic cloud characterized by a

density distribution n(x, y, z), will reduce the intensity of a beam traveling an infinitesimal

distance dy through the cloud by

∆I = −σIn(x, y, z)dy, (3.4)

where the scattering cross section depends on the intensity of the incoming light:

σ =
σ0

1− I/Isat
. (3.5)

In the limit of low light intensity as in our work, I ≪ Isat (where Isat is the saturation
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intensity) and the nonlinear term can be neglected. By integrating Eqn. 3.5 along the

direction of propagation of the laser beam we get the Beer-Lambert law:

I(x, z) = I0 exp(−σ0
∫

n(x, y, z)dy) = I0 exp(−σd(x, z)), (3.6)

where d(x, z) is the column density of the cloud projected on the ŷ-axis and I0 is the intensity

of the incident beam. The product σd(x, z) is often referred to as the optical density (OD)

of the atomic cloud.

For an |F = 2 >→ |F ′ = 3 > transition and linearly polarized incident light1 the

cross section is σ = 1.938 × 10−9 cm2 for 87Rb, and the saturation intensity is Isat =

2.503mW/cm2 [39]. The intensity ratio between the two images obtained above, corre-

sponding to I and I0, can be calculated for each pixel in the image, from which we then

obtain the column density:

d(x, z) = − log(
I

I0
)/σ = − log(

N

N0
)/σ (3.7)

An example of this method is shown in Fig. 3-7.

Figure 3-7: Absorption imaging sequence. a) The shadow cast by the atomic cloud from
the first laser pulse. b) The incident intensity I0 is obtained by taking a second picture
after the atoms have dispersed. c) An absorption image is generated pixel-by-pixel from
the logarithmic ratio of these two pictures.

Imaging along the three axes is done by passing a laser beam through the relevant

1In principle the interaction with circularly polarized light is stronger (higher values of σ and lower values
of Isat) and will thus result in higher sensitivity, but since we are imaging near the surface of the AtomChip,
only linearly polarized light can be adjusted to have the same intensity before and after reflection from the
chip’s mirror surface.
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science chamber ports as shown in Fig. 3-3. The imaging beam along the ŷ-axis is tilted

by 5◦ to reflect off the surface of the AtomChip. This allows us to image clouds very close

to the chip surface and to measure the distance of the cloud from the chip directly. The

other two imaging axes are used for imaging the cloud when its further away from the chip

and for determining the cloud position relative to the AtomChip wires.

The coherent nature of laser radiation can easily cause interference patterns on the

imaging plane. Interference rings such as those visible in Fig. 3-7 can be caused by multiple

reflections from optical surfaces along the imaging laser beam path, or by imperfections in

the optical elements themselves. In principle such interference patterns should not cause

a deterioration of the absorption image; since only relative intensities are important, in-

homogeneous spatial intensity distributions cancel out. However, movement due to the

mechanical shutters, cooling fans or acoustic vibrations can cause the two images to be mis-

aligned and introduces noise into the image (see Fig. 3-8). This problem is aggravated when

reflecting the imaging beam from the AtomChip (for imaging atoms close to the surface).

Shutting down the strong magnetic fields applies a force on the conducting elements rigidly

attached to the AtomChip and moves the whole construction by a few µm.

Other noise sources also add to the noise level: Speckle patterns originating from the

interference of spuriously scattered light with the imaging beam, dust particles that scatter

light and noise originating from the CCD itself such as dark currents (false signals caused

by thermally excited electrons), readout noise (noise originating from the reading and am-

plification processes involved in extracting the image from the CCD), and fluctuations due

to the limited quantum efficiency of the CCD cells. We have minimized the noise level

in our setup by employing various precautions. Stray light is kept out of the experiment

by covering the setup with a black curtain; mechanical shutters are decoupled from the

optical table by hanging them on a separate frame; and the time between the two images

is shortened as much as possible to minimize the displacement of various elements due to

vibrations. Taking these measures brings the noise level to an optical density of slightly be-

low 0.1 which means that our column density detection limit is ≈ 0.5µm−2. A similar setup

built by our group standing right next to our optical bench is constructed more rigidly and

reaches noise levels of 0.03. Noise originating from a relative movement of the two frames

or other variations in the background image can also be reduced by using image processing

methods [56].
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Figure 3-8: Noise due to vibration. The same absorption image as in Fig. 3-7 is shown on
the left. On the right a new absorption image is generated by displacing the second picture
in the absorption imaging sequence by two pixels corresponding to a movement of 3µm on
the image plane. The simulated vibration adds considerable noise to the image due to a
misalignment of interference rings and other features. The increase in noise by a factor of
about 5 is evident by comparing the one-dimensional cuts for the two analyses.

Given that mechanical vibration is a major source of noise in our current imaging setup,

we must evaluate this noise when considering alternative imaging methods. In particular,

two other methods [48, 57], which utilize spatial filters onto which the unscattered light

is focused and blocked (dark-ground imaging) or phase shifted (phase-contrast imaging),

require precise focusing of the beam and may therefore be even more prone to noise due

to mechanical vibrations. In terms of the signal level, we have for the intensity (initially

I0) at a point in the image plane (after traversing a cloud with density n and cross section

σ0) [48]:

< I >= I0τ
2 − I0σ0τ

[

δ

1 + δ2
sin γ +

1

1 + δ2
cos γ

]

n, (3.8)

where τ2 is the transmitted fraction, γ the phase shift and δ the detuning. All three cases

are treated by this equation, absorption imaging (τ = 1, γ = 0), dark-ground (τ = 0) and
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phase-contrast (τ = 1, γ = ±π) are obtained as special cases. The equation shows that the

absolute maximum signal is obtained by choosing δ = γ = 0 and τ = 1 which is the case of

absorption imaging. Dark-ground imaging is far from optimum and phase-contrast imaging

is a factor of two lower. The only consideration left is that of sufficient dynamic range i.e.,

the ability of the CCD chip in the camera to adequately distinguish between the imaging

beam intensity with and without atoms. In this aspect phase-contrast and dark-ground

imaging might have an advantage since they map the atomic density to a signal with a

lower background. In our system we utilize a digital camera (Prosilica GC2450) employing

a CCD detector (Sony ICX625) with a 12-bit sampling. Since we are using the camera

at around 50% of its saturation level, we have a dynamic range determined effectively by

11-bit sampling. This then allows us to distinguish between intensities (and thus optical

densities) on the order of 2−11 ≈ 10−3 which is considerably below the 0.1 noise level we

observe. We conclude that dynamic range is not an issue for our detector and methods

such as dark-ground or phase-contrast imaging, will not improve the signal-to-noise ratio

for detected atoms (though these methods may be advantageous for other reasons, such as

non-destructive imaging [58, 59]).

3.5 Experimental control

In order to control the various parameters in our setup (laser detuning, magnetic fields, pulse

timing, currents, etc.) we have designed an experimental control system based on a PXI unit

by National Instruments (NI). This computer-controlled unit has an independent processor

along with multiple input and output ports that allows one to manage various signals on a µs

time scale. The experimental sequence is controlled using a graphical user interface (GUI)

programmed with Labview 8 (NI). After setting up the various parameters the user executes

the experimental cycle. The sequence is then uploaded to the PXI’s internal memory and

commands are sent to the various devices according to the user’s specification independent

of any other external clock. This by-passes the PC-based clock, whose synchronization can

be lost when other processes are running on the computer. The PXI also has much faster

time resolution, which is necessary for several of the experimental events.

The PXI sequence also triggers the various cameras used in the experiment and the

images thereby acquired are stored on a computer. The software (programmed with Mat-
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lab) then processes the raw images to generate an absorption image and executes fitting

algorithms that calculate the OD, cloud size, position, and other parameters of the trapped

atomic cloud. In addition to this standard operation, the system can also run in a loop

mode in which parameters can be scanned through a predetermined array of values with-

out the need of human intervention for each iteration. This can be especially helpful for

measuring atomic cloud temperature (by time-of-flight methods) or the lifetime of atoms in

the trap. Also, an optimization mode is available, in which the imaging software analyzes

the output of the experiment and determines the values of the next iteration automatically

using a machine learning algorithm as will be discussed in Chapter 6. The operator then

decides which parameters to optimize automatically and the criterion for their optimization

(such as maximizing the atom number, positioning the cloud in a specific location, etc.),

and sets their limiting values.

Fig. 3-9 shows the various software used in our setup.

Figure 3-9: Computer interface. On the left the Labview based interface for the various
channel controls, on the right the image analysis software.
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Chapter 4

Gradual Release

In recent years, the use of BECs as a source of phase coherent matter waves to study basic

phenomena in physics gained much popularity following exciting advances in the field. To-

day the generation of BECs is a standard method employed in numerous laboratories around

the world and has matured into a benchmark for the study of fundamental quantum me-

chanical phenomena such as tunneling, insulating phases, Bloch oscillations, interferometry,

coherence and breakdown of coherence just to name a few. One of the most important tools

for exploring such phenomena is coherent matter trapped in periodic potentials (lattices),

which is usually achieved by counter-propagating laser beams that create a standing wave,

thereby generating a periodic potential for the atoms via the Stark effect. The size of these

traps is determined by the wavelength of the laser field, which is usually smaller than a

micrometer, resulting in a spatial separation of the clouds that render the direct imaging

of the various sites very difficult. Luckily, probing these ordered configurations is made

possible by imaging the interference patterns observed after the release of atoms from the

trap: atoms from adjacent lattice sites interfere with their phase coherent neighbors and the

interference patterns become much larger than the initial trap, rendering their observation

a relatively simple task from an optical standpoint.

The implementation of periodic potentials on AtomChips, by using magnetic fields in-

stead of optical fields, is an intriguing goal that seems to offer additional flexibility for

engineering lattices [60]. The restrictions on the shape and separation of the lattice sites

inherent in optical lattices are not present when the potential is generated by magnetic

fields originating from wires which can be engineered to any desired shape using standard
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lithographic processes. Some progress in this field was already obtained by perturbing

trapped atoms using double well potentials [61, 62, 63]. Coherent evolution from two or

more trapping sites by employing only static magnetic fields (as opposed to methods such

as RF potentials employing varying fields) was achieved only recently [64]. However, an

interference pattern from such an apparatus is yet to be observed.

In this chapter we propose an experiment in which a one-dimensional periodic potential,

with many sites along its length, is created using only the static magnetic field of a single

wire (see Fig. 4-1), with the aim of observing the first matter-wave interference pattern in

such a configuration. One-dimensional BECs are well suited for the study of Bose-Hubbard

type Hamiltonians (a theoretical tool for dealing with interacting particles in a lattice having

a certain probability to tunnel to adjacent sites) [65], as well as for the study of quantum

fluctuations, since the energy associated with order in one dimension is smaller than in two-

and three-dimensional systems, rendering fluctuations more influential in determining the

dynamics of phase transitions. Once an interference pattern is observed, we will move on

to study the above topics.

We generate a periodic magnetic potential by fabricating a Z-wire whose edges are

modulated periodically. We will show that this configuration allows control of the barrier

height between adjacent sites. The unique features of this trap also pose some challenges

concerning how to view the coherent evolution and interference pattern. As we will show,

we have found that by turning off the magnetic trap gradually rather than suddenly during

the trap release, we can control the expansion dynamics of the trapped clouds, thereby

overcoming these problems.

4.1 The snake wire

The magnetic lattice is generated by a sinusoidal corrugation of the edges in the central

wire in the Z-trap of our BGU1 AtomChip (see Fig. 3-6) and has the dimensions shown in

Fig. 4-1. This potential is an example of “engineered fragmentation” allowing us to study

processes originating from the splitting of BECs.

The snake wire has a sinusoidal periodicity of 5µm and an edge modulation amplitude of

approx. 2µm. Note that the edge modulation is asymmetric [66]. In order to calculate the

resulting potential [54] we have used a finite-element method (FEM Lab) to numerically
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Figure 4-1: The “snake” wire middle section. (a) A BEC (shown in red) simulated at small
atom surface separations < 5µm is fragmented by the lattice potential. (b) A photomicro-
graph of the snake wire with its dimensions. (c) The potential energy (relative to the global
minimum) along the minimum-energy path for a few values of the trap height d. Adapted
from [54].

evaluate the current density passing through every point along the wire. The magnetic

potential can then be calculated at any position and for any current. The periodicity of the

wire is the source of a component in the Fourier expansion of the potential with a value of

2π/5µm−1. The amplitude of this component decays exponentially with distance from the

chip [67], which means that at large atom-surface distances (≫ 5µm) the corrugation is

not seen by the atoms. For this reason, potential modulation is significant only for heights

of approx. 5µm and below, therefore requiring the atomic cloud to be trapped very close

to the chip.

With typical currents of about 0.1A, single site trapping frequencies obtained from our

numerical analysis are approx. 1 kHz for the longitudinal axis and 30 kHz for the radial one

(depending on the height above the AtomChip), giving an aspect ratio of around 1 : 30.

This high aspect ratio causes the radial wavefunction to have a Gaussian shaped solution

(see Sec. 2.9), similar to single particle states, while the longitudinal axis simultaneously has

a Thomas-Fermi profile. This state of affairs means that the lowest few radial vibrational

state are occupied and the wavefunction behaves much like a one-dimensional system along

the longitudinal axis.

An important distinction between the situation presented here and that in a typical

optical lattice is the relative orientation of the adjacent atomic clouds. In an optical lattice,

the individual clouds are displaced along their tightly trapped axis (see Fig. 4-2) while in
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our case the clouds are separated along their loosely trapped axis.

After release from the trap, we expect expansion along the longitudinal axis to be much

slower than along the radial axis (this is the origin of the well-known “flip” in aspect ratio,

one of the signatures of BEC). Consequently, it will take longer for the separated clouds to

overlap along the longitudinal axis and the anticipated interference patterns will only occur

at longer expansion times than for optical lattices. Additionally, as we show below, no

interference pattern can form at all if the expansion velocity is too slow. These difficulties

can be overcome by releasing the trap sufficiently slowly, thereby effectively allowing the

longitudinal expansion to “catch up” with the radial expansion of the cloud.

Figure 4-2: Orientations of adjacent clouds in typical lattices (top) and in our magnetic
lattice (bottom). ds is defined as the center to center distance between adjacent clouds.
Taken from [54].

4.2 Sudden release

4.2.1 Fringe velocity

In this section we will discuss the relevant dynamics of interference fringes originating

from an overlap of BEC wavefunctions suddenly released from the snake sites. To simplify

the discussion we note that although the snake wire consists of many sites, many of the

important characteristics of the interference fringes can be studied by analyzing a simple

two-site model. While the width of each fringe depends on the number of sources, their

number and spacing does not, as can be seen in Fig. 4-3.

Using the two-site model for the study of interference patterns between expanding BECs,

we start by writing the total wavefunction as [15]:
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Figure 4-3: Interference pattern from 5,10 and 20 sites calculated by expanding wavepack-
ets from localized sources separated by 5µm. (Top) shows that the fringe separation is
independent of the number of sites once the interference pattern has emerged. (Bottom)
shows that the fringe spacing increases linearly with time, in this case at 0.9µm/ms; the
inset shows the linear relation between expansion time and fringe separation.

Ψ(r̂, t) =
√

N1ψ1(r̂, t) +
√

N2ψ2(r̂, t)e
iφ, (4.1)

where N1 and N2 are the number of atoms in the two sites, ψ1 and ψ2 are the single particle

wavefunctions localized in the respective sites, φ the initial constant relative phase between

the two sites and the wavefunction is normalized to the total atom number. The atomic

density is then given by

n(r̂, t) = |Ψ(r̂, t)|2 = N1|ψ1|2 +N2|ψ2|2 + 2
√

N1N2ℜ(ψ1ψ
∗

2e
−iφ), (4.2)

where ℜ denotes the real part of the multiplication of two sources with a fixed phase relation

(with a quadratic spatial dependence due to their kinetic energy after the release) and thus

has an oscillatory behavior in space and time. This behavior gives rise to an interference

pattern in atomic density similar to the case of a Young double-slit experiment.

Next we will develop the expression for the fringe spacing in the interference pattern

generated by overlapping clouds. In order to have an expression that takes into account

the interaction of the particles we will follow the work of Castin and Dum [68] that showed

analytically that for an expanding cloud in a time dependent harmonic trap the cloud size
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evolves as if it undergoes a scaling transformation (a dilatation) for all three axes (x →
λx(t)x, r → λr(t)r), where x and r are the longitudinal and radial directions respectively

and λi(t) is the time dependent scaling factor for the ith axis. The Castin-Dum derivation

assumes a Thomas-Fermi profile for the expanding cloud (strong interactions) and thus

neglects the kinetic energy term, writing:

Ψ(r, 0) = ψTF =

(

µ− U(~r, 0)

Ng

)1/2

, (4.3)

where µ is the chemical potential, U(~r, t) = 1
2

∑

j=1,2,3mω
2
j (t)r

2
j is the time dependent

harmonic potential, g is the interaction parameter and N is the atom number. To get ψ

as a function of time one cannot use the standard Thomas-Fermi approximation since the

time variation of the trapping potential can convert potential energy into kinetic energy,

which therefore could no longer be neglected. However, by introducing the transformation:

Rj(t) = λj(t)Rj(0) (j = 1, 2, 3), (4.4)

the authors were able to eliminate this extra kinetic energy while obtaining an equation for

the scaling factors λj(t):

λ̈j =
ω2
j (0)

λjλ1λ2λ3
− ω2

j (t)λj , (4.5)

with the initial conditions λj(0) = 1 and λ̇j(0) = 0 (since the cloud is initially at rest). The

form of the time dependent wavefunction after the transformation is:

ψ(~r, t) = e−iβ(t)eim
∑

j r
2

j λ̇j(t)/2h̄λj(t) ×
ψ̃[rk/λk(t)k=1,2,3]√

λ1λ2λ3
, (4.6)

where β(t) is a global phase factor obtained from h̄β̇ = µ/λ1λ2λ3 and ψ̃ is the transformed

Thomas-Fermi solution.

For cigar shaped traps (ωy = ωz ≡ ω⊥ ≫ ωx) and for the simplest case of a sudden

release of the trap at t = 0 the equation (4.5) for the evolution of the scaling parameters

simplifies to:

d2

dτ2
λ⊥ =

1

λ3
⊥
λx
,

d2

dτ2
λx =

ǫ2

λ2
⊥
λ2x
, (4.7)
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where τ = ω⊥(0)t, ǫ = ωx(0)/ω⊥(0) ≪ 1 and λ⊥ and λx are the radial and longitudinal

scaling parameters respectively. Solving up to second order in the small parameter ǫ one

obtains for the expansion parameters:

λx(τ) = 1 + ǫ2[τ arctan(τ)− ln
√

1 + τ2] +O(ǫ4), (4.8)

λ⊥(τ) =
√

1 + τ2 (4.9)

where for long expansion times (t≫ 1/ω⊥) one gets:

λx(τ) ≈
π

2

ω2
x(0)

ω⊥(0)
t, (4.10)

λ⊥(τ) ≈ ω⊥(0)t. (4.11)

One notices by looking at the previous results that the longitudinal expansion rate depends

on both the longitudinal and radial frequencies while the radial expansion rate depends only

on the radial frequency. This can be understood by noticing that the momentum (kinetic

energy) of an atom in the trap has two sources, one is the initial momentum, which is

proportional to the inverse of the initial width of the trapped condensate (and is thus larger

for the radial direction) and the second originating from the gradient of the density (see for

example Eqn. 2.22) and is due to interactions between the atoms (and is thus also larger

for the denser radial direction). For these reasons, for high aspect ratio traps, the radial

expansion is faster than the longitudinal one and the expansion of the radial direction will

constitute the major contribution to the dilution of the density in the cloud and subsequently

reduce also the repulsive force that causes acceleration along the longitudinal axis (notice

that the radial trapping frequency is in the denominator in Eqn. 4.10), while the longitudinal

expansion does not contribute much to the change in density causing the radial expansion

to be independent of the longitudinal one.

Equation 4.10 allows us to plug into Eqn. 4.6 the following expression for λx:

λ̇x
λx

≈ 1

t
, (4.12)

59



and obtain for the interference term in Eqn. 4.2 for the case of two sites separated by a

distance ds:

2
√

N1N2ℜ(ψ1ψ
∗

2e
−iφ) ≈ A(r, t) cos(

mds
h̄

λ̇x
λx
x+ ϕ(t)) = A(r, t) cos(

mdsx

h̄t
+ ϕ(t)), (4.13)

where the prefactor A(r, t) represents the envelope (depending on time and space) of the

expanding condensate and ϕ(t) is a homogeneous phase (with a time dependence). The

distance between adjacent peaks in the interference pattern is given by finding multiples of

2π in the above cosine expression:

mdsx

h̄t
= 2πn→ ∆x =

2πh̄t

mds
=

ht

mds
. (4.14)

We see that for long times, the fringe separation is independent of the initial cloud size,

resulting in a fringe velocity which depends only on the separation of the sites in the lattice:

vx =
h

mds
. (4.15)

Thus the fringe velocity is a system constant, which in our case is 0.92 µm
ms since the snake

lattice periodicity is 5µm. If the expansion velocity is faster than the fringe velocity, more

and more atoms could reach regions of space occupying fringes and the interference pattern

amplitude will increase with time. Later we will see that the longitudinal expansion velocity

of our clouds is smaller than the fringe velocity for an abrupt release from the trap and the

amplitude of the diffraction pattern will decrease with time under these conditions of trap

release.

4.2.2 Expansion velocity

In what follows we will develop an expression for the expansion velocity within the individ-

ual clouds in order to compare it to the fringe velocity (Eqn. 4.15) and see if an interfer-

ence pattern will emerge with time. We will again assume a Thomas-Fermi profile for the

clouds along the longitudinal axis (for reasons described in Sec. 2.9 and as required by the

Castin-Dum treatment). The longitudinal half-length of the cloud in the Thomas-Fermi
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approximation is given at t = 0 by:

X0 =

√

2µ

mω2
x

. (4.16)

Once the cloud is released, it expands according to the Castin-Dum equation discussed

above and, using the expressions for a sudden trap shut-down and the limit of long expansion

times (t >> 1
ωr
), we get for the condensate’s half-width at time t:

Xt = λxX0 ≈
π

2
X0

ω2
x

ωr
t =

π

2

√

2µ

m

ωx

ωr
t =

π

2

(

15Nah̄2

m2

)1/5(
ω2
x

ω⊥

)3/5

t, (4.17)

where in the last step we have used the expression for the chemical potential in the Thomas-

Fermi approximation µ = 1
2 h̄(ωxω

2
⊥
)1/3(15Na

√

m(ωxω2
⊥
)1/3/h̄)2/5 in order to express Xt in

terms of the frequencies alone.

By plugging into the expression for the longitudinal expansion velocity (the derivative of

Eqn. 4.17 with respect to time) typical values for the snake potential (a chemical potential

µ ≈ 1.4µK and aspect ratio ωr/ωx ≈ 30) we get an expansion velocity of ≈ 0.85 µm
ms

which is lower than the 0.92 µm
ms value we got previously for the fringe velocity. Considering

that this expansion velocity is based upon the half-width of the cloud from Eqn. 4.16,

the fringes separate faster than the majority of the expanding atomic density from each

site. Therefore, a substantial optical density for the fringes will not build up. Altering the

trap frequencies during a gradual and controlled trap release, thereby increasing the cloud

longitudinal expansion velocity, would however, provide one possible solution for detecting

an interference signal.

4.3 Controlled trap release

In this section, we propose releasing the trap gradually rather than suddenly. Considering

that our traps have high aspect ratios, we will show that choosing the trap release rate

carefully can ensure adiabatic evolution for the radial direction (thereby preserving optical

density for longer expansion times), while simultaneously maintaining the initial momentum

along the longitudinal direction. Looking at Eqn. 4.17 we notice that doing so will modify

the trap aspect ratio to our advantage since it will increase the longitudinal expansion

velocity while simultaneously slowing it down along the radial direction, which will give
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the longitudinal axis more time to evolve under conditions of high density and increase its

velocity further due to the added interaction energy. We will show that this method will

allow the interference pattern to emerge before the optical density falls below the limits of

our detection system. Using this method we hope to be able to see interference patterns

from released clouds in our experiment.

We start the discussion by finding the relevant time scales. A trapping potential must

change slower than certain time scales. A faster evolution will not allow the system to

evolve adiabatically, where the adiabatic condition is given by:

∣

∣

∣

∣

dνtrap
dt

∣

∣

∣

∣

<< ν2trap, (4.18)

which in general must be maintained for each axis independently for the system as a whole

to evolve adiabatically. As noted, the trapping frequencies of a typical site in the snake wire

potential are on the order of νx = 1kHz for the longitudinal axis and νr = 30 kHz for the

radial one, defining different adiabaticity time scales of tx = 1/νx = 1ms for the longitudinal

axis and tr = 1/νr = 33µs for the radial axis. Atoms in the trap will see perturbations of

the trapping potential that occur faster than these time scales as abrupt changes and will

not be able to follow them, thus for example, shutting down the trap abruptly in 1µs or in

10µs will have the same effect on the atoms. Closing the potential slower than both of these

time scales will cause both the radial and longitudinal trapping frequencies to evolve to a

lower value, but while a lower radial frequency is advantageous (as previously described), a

lower longitudinal frequency will cause a slower expansion along the longitudinal axis, thus

defeating our initial goal. Shutting down the trap in an intermediate time with a value

between tx and tr will, on the other hand, be seen as an adiabatic process for the radial

part of the atomic motion but as an abrupt change for the longitudinal part. The radial

expansion will adiabatically lower the radial trapping frequency until Eqn. 4.18 no longer

holds. Later on the cloud will expand freely in the radial axis as well as in the longitudinal

one, but this time with a reduced radial trapping frequency. Assuming a release time of

250µs for example, Eqn. 4.18 shows that the adiabaticity criterion is satisfied for the radial

direction, but not for the longitudinal one. The cloud will expand until Eqn. 4.18 no longer

holds, i.e., until the frequency of the decaying trap evolves to a value of 1/250µs = 4 kHz.

Fig. 4-4 shows how it is thereby possible to also flip the predominant expansion direction
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from the radial to the longitudinal axis.

Figure 4-4: Gradual Vs. Sudden release of a single site. A BEC trapped with a longitudinal
frequency of 2π×1 kHz and a radial frequency of 2π×30 kHz. On the left a time dependent
Gross-Pitaevskii simulation of a BEC released gradually by shutting down the trapping
potential in 250µs. On the right we show the case of a sudden release of the trap (Castin-
Dum calculation). The half widths of the cloud longitudinal (red) and radial (blue) axes
are plotted vs. time. The solid lines are linear fits to the numerical simulation, the dashed
lines are the Castin-Dum calculated cloud widths. The longitudinal expansion is accurately
described by the Castin-Dum expression since the profile is indeed a Thomas-Fermi one, as
required for such a calculation. The radial expansion does not fit the Castin-Dum expression
since for high trapping frequencies the kinetic term is no longer negligible and assuming
a Thomas-Fermi profile gives incorrect results. Note particularly that the gradual release
preserves the aspect ratio, whereas the sudden release results in a characteristic ”flip” of
the aspect ratio.

We end this section by comparing interference patterns resulting from sudden vs. grad-

ual release of BECs from adjacent sites on the snake-wire potential, as shown in Fig. 4-5.

The expression 4.11 for λ⊥ and the Castin-Dum treatment for the radial direction cannot

be applied in our case to obtain quantitative results, since (as discussed in Sec. 2.9) the

high frequency in the radial direction means that the form of the wavefunction for this

axis cannot be represented by the Thomas-Fermi approximation but is actually closer to a

Gaussian. Thus the scope of the analytical derivation in the radial direction will be lim-

ited in our case to gaining only qualitative insight, and a numerical simulation of the time

dependent Gross-Pitaevskii equation will be used to obtain quantitative results.
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Figure 4-5: Interference patterns from two expanding clouds 10ms after releasing them
from the snake trapping potential. In (a) we show the result of a gradual release occurring
over a period of 250µs. In (b) we show the interference pattern originating from the sudden
release of the trap (we show the atomic column density below and two profiles along the
radial and longitudinal axes passing through the trap center). In (c) we show the 3D profile
of the atomic density for both cases, clearly showing how atomic density is shifted from the
radial direction to the longitudinal one. Note that the gradual and sudden release cases
have different scales in the graphs. Both the zero order and first order interference fringes
have a larger amplitude in the gradual release case. Also, the ratio of amplitudes between
the first-order fringes and zero-order fringe is two times higher in the gradual release case,
indicating that a gradual release indeed allows for a better formation of interference fringes.
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4.4 Expansion from multiple sites

In order to demonstrate the method sketched above for many sites we show in Fig. 4-6 a

simulation of a BEC of 125 atoms per site occupying 8 sites of the snake trapping potential

after a 10ms expansion. The comparison between the sudden and gradual release cases

indicates that the method can indeed be used in our experiment to detect interference

fringes from overlapping clouds. The interference pattern shown is taken after only 10ms

which is not a sufficient amount of time for a full pattern to form, but due to the fast

dissipation of atoms from the trap we are constrained to measurements occurring shortly

after the release, after which the density is too low for detection. The pattern shown however

is sufficient to conclude that a superposition of coherent matter waves should indeed occur.

The images were also processed to simulate our imaging capabilities by taking the Fourier

transform of the image and removing the spatial frequencies which correspond to features

which are smaller than our diffraction limit (≈ 6µm), and then binned to represent our

1.5µm-sized pixels.

We now wish to verify that no other evolution of the system can imitate the signal we

expect to observe. We have thus included a simulation done by expanding a single site

and then copying it eight times, each time displacing it by the snake lattice periodicity

(5µm). We then performed the calculation in two ways: first by squaring the amplitudes of

each site (Fig. 4-7 a) and then adding them all together (thus eliminating any interference

between sites) and secondly by first adding the amplitudes and then squaring the total

wavefunction (Fig. 4-7 b). This calculation is an approximation to the full Gross-Pitaevskii

picture since it neglects interactions between different sites and thus underestimates the

expansion along the longitudinal axis (the interaction term g for 87Rb is positive and thus

represents a repelling force). We adopt this approximate procedure since a method that

does not assume full coherence between different sites is not currently available. In addition

to the comparison of the signal to an incoherent evolution we would like to also analyze the

effect of partial coherence or random phases.

The Gross-Pitaevskii equation assumes full coherence of the BEC a priori and is thus

inadequate for simulating several incoherent sources. In a real experimental setting however,

a variation of the barrier height in the periodic potential will change the tunneling rate

between the sites and consequently alter the coherence of the system. Altering the barrier
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Figure 4-6: Comparison of sudden and gradual release from 8 sites (to be distinguished from
the 2 site results in Fig. 4-5). The graphs describe the evolution of a BEC released from
the snake potential after a 10ms expansion. Box (a) shows the result of the calculation
for the case of a sudden release of the trap while box (b) shows a calculation for a trap
gradually released over a period of 250µs. The boxes (a) and (b) are composed of three
parts: on the top we show the calculated atomic column density of a BEC occupying 8 sites
of the snake trapping potential 10ms after being released. The calculation was performed
by numerically solving the time-dependent Gross-Pitaevskii equation. The bottom part
shows the image as it would be seen by our imaging system (see text). Note that the radial
axis for the sudden release is expanded by a factor 5 relative to the gradual release. The
central part shows a profile of the optical density at the center of the BEC. The interference
pattern in the sudden release case is below our detection limit and will not be observed,
while for the gradual release case it is within our capabilities (≈ 0.1 optical density).

height can be done by changing the current in the snake wire and is thus a tunable parameter

in our system. In the previous calculations we have assumed that the tunneling rate is

sufficient to establish full coherence between the different sites, but in practice this is not

required since interference patterns will be observed even if no coherence relation exists

between the sites. To convince the reader of this point we ran a simulation (Fig. 4-7 c-f) for

a single site, copied it eight times as before, but this time assigning each site a random phase,

thus creating a situation equivalent to an incoherent superposition of wavefunctions. The

simulation shows that interference fringes do occur for each run but with random position.

By averaging over ten such runs the interference pattern vanishes, indicating that this is

indeed a simulation of incoherent sources that display constant phase relations between

sites without having a global phase [69, 70, 71]. This simulation shows that interference

fringes will be visible for any barrier height and a global phase encompassing all sites is
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not required [72]. The signature for having such a global phase (i.e. for barrier heights low

enough to allow for a sufficient tunneling rate) is a reduction in the fluctuations of the fringe

position [72], i.e., of a deterministic fringe pattern remaining visible even after averaging

many runs.

Following this simulation work we have designed and built an electrical shutter for the

controlled closing of the ŷ-bias magnetic field. Enabling synchronized and controlled ex-

tinction of the external coils and trapping wire currents will allow us to realize the method

of controlled release and improve the fringe contrast (visibility) in our interference experi-

ments.
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Figure 4-7: Interference fringes from coherent and incoherent BEC clouds. These six images
show calculations in which the expansion of a single site has been evaluated and then copied
8 times, each time displaced by the snake periodicity (5µm). In (a) the addition was
done after squaring the amplitudes, thus eliminating any interference between sites. In (b)
the individual wavefunction amplitudes were added and then the total was squared, thus
displaying an interference pattern. This illustrates that the source of density modulation
is indeed due to phase relations between adjacent sites. In (c), (d), and (e) each site has
been assigned a random phase prior to adding amplitudes and squaring the total, thus
simulating a situation where no long range coherence exists and the relative phase between
adjacent sites is random. Three different iterations of the same simulation are shown to
demonstrate the resulting fluctuations in the fringe position. This illustrates that even in the
case where the coherence does not extend over the whole snake lattice interference fringes
are still visible. In (f) we see an average of ten runs showing that the interference pattern is
washed away when averaging over many consecutive experimental runs; averaging successive
experiments to improve the signal-to-noise ratio would in this case result in reduced fringe
contrast compared to the case shown in (b).
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Chapter 5

Vertical Imaging

The manipulation of atomic clouds using AtomChip technology requires the positioning of

trapping potentials to within a few µm. As outlined earlier, we rely on absorption imaging

techniques (Sec. 3.4), which yield the atom density integrated along an axis parallel to the

plane of the AtomChip. The position of the atomic cloud along the imaging axis is there-

fore lost, and no information is available on the cloud position relative to structures on the

AtomChip surface. Regaining this information, by using an imaging axis that is perpendic-

ular to the AtomChip, can therefore be very helpful, particularly for precisely positioning

the atomic cloud near specific features of the chip. The presence of the AtomChip itself

obstructs the view from this axis and a special imaging system was designed in order to

overcome this obstacle. The requirements from such a system are purely geometrical, to

allow us to determine the position of the atomic cloud relative to the various AtomChip

wires. Since the size of these elements is typically on the scale of a few tens of µm, it

allows us to sacrifice resolution for simplicity. The standard analysis performed by the x̂-

and ŷ-axis imaging setups is not affected and can run independently. The design process

and construction of such a system is described in this chapter, including examples that show

the various advantages it provides us during daily operation.

5.1 Apparatus

The apparatus is shown in Fig. 5-1. Light emanating from the output of the imaging fiber

goes through a standard microscope setup with a focal length of 200mm for the lens closest

to the chamber and 500mm for a second lens positioned next to it. A further focusing on
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the camera plane is done with a 25mm focusing lens to allow us to position the camera at

an arbitrary position along the optical axis.

Figure 5-1: The vertical imaging setup. The imaging fiber output passes through a
polarizing-beam splitter cube, a λ/4 waveplate and through 2 lenses. It is then inserted
from the bottom window of the science chamber via a 45◦ mirror. The atomic cloud casts
a shadow on the beam as in a standard absorption imaging setup. The light then reflects
back on its path and passes the λ/4 waveplate again, shifting the polarization so that it
will get directed by the polarizing beam-splitter cube into the focusing lens and the camera.
The lens closest to the chamber has a focal length of 200mm and is focused on the Atom-
Chip, while the second lens along the beam path has a focal length of 500mm resulting in
a magnification of approx. 2.

5.2 Test bench

In the initial stages of design we had several concerns regarding the vertical imaging of an

atomic cloud a few wavelengths away from a reflective surface. One such concern was the

effect of diffraction from the surface structures. Hence, although the resolution requirements

were not very strict (we were looking for anything below 10µm), we decided to develop and

test the system in a dedicated manner. In order to experiment with several configurations,

we manufactured a special resolution target by coating an old unusable AtomChip with a
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1µm layer of photoresist (SU8) and deposited a thin layer of gold on top, thus creating a

resolution target elevated 1µm away from the AtomChip. Figure 5-2 displays the end result

and the capabilities of our imaging system in resolving the target. Although quite modest,

this resolution is adequate for our needs and was later incorporated into the main system

as described in the next section.

Figure 5-2: Vertical imaging resolution target. The resolution target on a test chip (on the
left) and how it was seen using our vertical imaging system (on the right). In the resolution
target, the line of rectangle shapes is the added layer above the SU8 layer. The rest of the
structures belong to the old chip used for this test.

5.3 Applications (magnetic trap and chip loading)

Using the previously described system we are able to establish the position of the atomic

cloud relative to the various AtomChip elements. Figure 5-3 shows how we use the vertical

imaging in order to help us optimize the transfer of the MOT to the magnetic trap. The trap

position and size of the compressed MOT and Z-trap must be matched in order to transfer

the atoms without causing any heating or loss. By using the vertical imaging, matching

these parameters for an optimal transfer of atoms is much easier and more accurate than

with imaging systems used previously.

We have used the vertical imaging system to perform two tasks. The first is to assist

us in loading the magnetic trap from the MOT (shown in Fig. 5-3), the second was to

facilitate the loading of specific AtomChip wires when we were still working with the BGU0

AtomChip (an older version) which had the AtomChip Z-wire misaligned with the copper
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Figure 5-3: Magnetic trap using the copper Z-wire and bias fields. There is no current
flowing through the AtomChip Z-wire but it is visible in the image due to scattering of the
imaging beam upon reflection from the AtomChip. The position of the trap is symmetric
around the AtomChip Z-wire without the need to apply a lot of bias field along the ẑ-
axis, indicating a good alignment of the BGU1 chip with the macor piece and the copper
structures. In the previous AtomChip (BGU0), the alignment was poor and required us
to apply a ẑ-bias field which complicated the loading sequence to the AtomChip later on.
Moreover, this misalignment was not readily measurable with the imaging system used
previously.
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Z-wire. Figure 5-4 shows the second application. The images were taken while trying to

optimize the AtomChip BGU0 loading event. On the left we see an atomic cloud trapped

with both the copper Z and the AtomChip Z-loading wire. Due to a misalignment between

the copper Z and the AtomChip loading Z-wire the minima of the two potentials are difficult

to superimpose adequately, resulting in an effective minima positioned a few microns away

from the AtomChip Z-wire. Consequently a complete transfer of the atoms to the AtomChip

potentials was much more difficult. Using the vertical imaging system this problem can be

easily identified and fixed by optimizing the relevant currents through the various wires and

bias fields while observing the position of the cloud. The new imaging system successfully

enabled us to position it on top of the AtomChip Z-trap and subsequently transfer the cloud

to a trap generated by the AtomChip currents alone.

Figure 5-4: Vertical imaging of atomic clouds on top of various locations on the AtomChip.
(a) The cloud is positioned far away from the AtomChip Z trap, the seemingly split cloud
is in fact a single one accompanied by its reflection from the chip. (b) By tweaking the
relevant currents and bias fields the cloud position is optimized towards its desired position.
The cloud and its reflection are now less separated since the height is lower, approaching
complete loading of the atoms on the chip. (c) The atomic cloud is now trapped using only
the AtomChip wires and bias fields at a height of less than 10µm. The visible increase in
the cloud aspect ratio is due to the removal of the copper Z contribution from the potential.
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Chapter 6

Optimization Algorithms

In our experimental setup, both the system’s control and the data analysis are performed

by a computer, resulting in an almost fully automated run of the experimental cycle. In

contrast, the tweaking of the various parameters to fit our demands is still essentially carried

out by trial-and-error, resulting in a lengthy process of parameter selection. In order to solve

this problem we have incorporated a control system that automatically performs the process

of parameter optimization by employing an optimization based on Genetic Algorithms (GA).

By employing these methods in our control system we were able to reduce the amount of

time required to optimize the system for day-to-day operation. More specifically, we have

improved the MOT stage. In the future it is hoped that this system will also be able

to improve the interference signal by optimizing the loading, trapping and releasing of

the snake lattice. In this chapter we will discuss the nature of these methods in detail

with a particular emphasis on their implementation in the settings of an atomic physics

experiment [73], referring to concrete examples where possible.

6.1 Theory of global optimization algorithms

Optimization algorithms are methods for finding optimal solutions for a given problem.

In the context of computer science a “problem” is defined as an objective function f(~x)

that returns a value we are seeking to maximize. The input to the objective function is a

vector ~x that contains a list of input values to the system (such as currents, laser detuning

etc.). The goal of an optimization algorithm is straightforward: to find an input ~x that

maximizes (or minimizes) f(~x) (there is of course no difference, maximizing the function
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f(x̂) is equivalent to minimizing −f(x̂)). Objective functions don’t necessarily have to be

mathematical expressions; as we shall see, they can also be actual experimental processes

or simulations.

Optimizing real-life processes often has the disadvantage of having long execution times,

requiring the user to be careful when choosing the right algorithm and its settings. The

hyperplane that consists of all the possible values that x̂ can attain is called the parameter

space or landscape and is usually very large. Even a small problem may have many thou-

sands of different configurations and an exhaustive search is usually not a viable option for

finding optimal configurations. At first it might seem a simple task: one can start from

an arbitrary point in the parameter space x̂0 and move iteratively in the direction of the

gradient (by what is called the local hill-climbing method) until a maximum is found (see

Fig. 6-1). Such methods are usually not very useful since simple landscapes with few max-

ima are rare and the hill-climbing method can converge to a local maximum that is very

far from the desired global maximum, especially in real-life applications where noise is also

an issue. It is then understood that what we need are methods that will explore large parts

of the parameter space and find global maxima in an efficient manner.

Figure 6-1: A naive approach to optimization. Hill-climbing type algorithms have the
disadvantage of getting stuck on a local maximum or minimum.

6.2 Genetic algorithms

Genetic algorithms are based on imitating the process of evolutionary adaptation by means

of natural selection as first described by Charles Darwin in his influential work from

1859 [74]. In Darwin’s theory, a species is a set of individual organisms (a population)
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that reproduces to form new generations of offspring. These offspring share some of their

traits with their ancestors (heredity) and also display a certain amount of random variation

(mutation). The peculiar characteristics of a certain environment cause some individuals in

the population to be less likely to survive and reproduce. Such unfortunate individuals are

said to be less fit for that particular environment. The fittest individuals are then selected

preferentially for reproduction, allowing them to pass on their traits to their offspring. The

random variations present in the reproduction process diversifies the following generation’s

overall spectrum of traits and subsequently allows for a quicker adaptation of the species

to the environmental constraints. In this way, an improvement in the probability to sur-

vive is produced as we progress through the generations and an evolution of the species is

said to occur. The mechanics of heredity, by which offspring acquire (with variations) the

characteristics of their parents, is controlled by genes which encode the various traits pos-

sessed by an organism; some of these genes are transfered from parent to offspring and some

are randomly generated. The complete set of genes of an organism is called its genotype

and it is precisely this genotype which evolves between generations to adapt to a specific

environment.

The influential work of Darwin inspired computer scientists to design algorithms that

mimic the natural selection process in order to solve various problems. Artificial evolution

became a widely recognized method as a result of the work of Ingo Rechenberg [75] where

he used evolution strategies to solve complicated engineering problems. The application of

artificial evolution to generate useful solutions to optimization and search problems became

popular following the influential work of Holland in 1975 [76] that will be discussed later

on.

In genetic algorithms, the role of the environment is portrayed by the function we

wish to optimize (the “fitness function”) which sets the standard against which proposed

solutions to the problem are compared. The process (see Fig. 6-2 for reference) involves

the random generation of an initial “population” of individuals {~xi}, each one a candidate

for the maximization of the said function. An evaluation process then evaluates the fitness

function for each individual and calculates its fitness, which is nothing but the value of

the function f(~xi) we wish to optimize. Once this is done a new generation of candidate

solutions is formed from the previous one by a process that resembles breeding; Pairs of

individuals are chosen based on their relative fitness and new “offspring” are generated by
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Figure 6-2: The basic cycle of evolutionary algorithms. Taken from [77].

inheriting values from each parent (a crossover operation). Mutation is allowed by having

a small part of the new values generated randomly. In the context of genetic algorithms,

a simplistic (from a biology standpoint) notation is used in which an individual is fully

represented by a “chromosome” which is just a string of numbers, or genes. In this context

an individual and his chromosome are actually the same object.

Let us discuss the details of the method in the context of a concrete example. Fig. 6-3

shows the results of our implementation of a genetic algorithm to maximize the number of

atoms in a magneto-optical trap (MOT). The control parameters (the genes, components of

the chromosome) are the cooler and repumper detuning frequencies and the repumper out-

put power, comprising the x, y and z axes respectively. Each point represents an individual

(a chromosome) composed of these three parameters (genes), and each generation consists

of a population of ten such individuals. For example, the individual {5, 6, 2} is composed

of three genes: the cooler frequency, the repumper frequency and the repumper power with

values 5, 6 and 2 respectively. The 3D plots represent the parameter space of this particular

optimization problem during a period of 4 generations. Initially, the algorithm randomly

generates a set of ten individuals to populate the first generation. The experimental system

is then run once for each individual, updating the lasers frequencies and power to correspond

to the individual’s values. The imaging system then takes an absorption image of the atoms

and calculates the corresponding atom number in the MOT, representing each individual’s

fitness value. The ten individuals are then ranked according to their fitness values, and

the best ones are given a higher probability to breed and create the following generation.

In our system each run takes 1 minute to complete. Since a generation is comprised of
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Figure 6-3: Optimizing the MOT. Optimization of the number of atoms in a magneto-optical
trap (MOT) using a genetic algorithm, showing a population of 10 individuals evolving
for four generations with a total running time of 40 minutes. The spread in repumper
power remained relatively constant throughout the optimization process, indication that
the system is relatively insensitive to this parameter.

ten individuals, the whole optimization task took 40 minutes to complete. During this run

an improvement of 35% is achieved in the number of atoms without human intervention.

Notice also that as the evolution progresses the scatter of the points is reduced, indicating

that the algorithm converges. The improvement referred to here is that of the best overall

individual and not the mean fitness of the population, since what we are looking for is one

set of optimal parameters and not a family of values. The mean fitness of each generation

is provided by the software (which is based on Matlab’s optimization toolbox adapted for

our needs) in order to monitor the convergence of the algorithm.

6.2.1 Selection, crossover and mutation

Selection

The process of selecting a subset of the population for breeding is not as straightforward as

one might expect. The simplest way of performing this operation is to assign a probability

for breeding to each individual based on his fitness, and randomly select parents based on

this weighted distribution. The downside of this approach (especially for small populations)

is that the initial distribution of fitness scores has a large standard deviation and a few

fit individuals are usually much better than the rest. A selection procedure based on a

weighted distribution will then predominantly choose a small subset of the population for

reproduction and will not allow the descendants of less fit individuals a chance to explore

the parameter space more thoroughly. The selection process can then be said to be too
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“elitist”, causing a dilution of diversity and subsequently a premature convergence to a

local optimum. It is then said that the process puts too much emphasis on “exploitation”

over “exploration”, favoring highly fit individuals at the expense of exploring other regions

of the search space. We will see throughout this treatment that a good balance between

these two qualities is basically what is needed in order to have a successful optimization

process.

In order to compensate for this overly elitist selection process several other scaling

methods were developed. One of the most common is the so-called “sigma scaling” method

in which individuals are given an expectation value for selection normalized by the standard

deviation of the population, for example [78]:











1 + f(i)−f̄
2σ if σ 6= 0

1 if σ = 0

(6.1)

where f(i) is the fitness of individual i, f̄ is the mean fitness of the population and σ the

standard deviation. Such a scheme normalizes the selection based on the variation in the

population. At an early stage, the population has a large standard deviation and so the

fittest individuals will not be many standard deviation above the mean and consequently

will not be selected so often. As the algorithm progresses, the deviation becomes smaller

(see Fig. 6-3) and the fittest individuals will stand out more, driving the algorithm towards

convergence. This method is designed to keep a constant “selection pressure” (the amount

of offspring allocated to highly fit individuals) throughout the evolution process.

In addition to selection we also apply an “elitism” operation which keeps a fraction of the

fittest individuals for the next generation, ensuring that the fittest individuals are not lost

due to mutation/crossover or simply because they were not selected, and allows their genes

to propagate to the next generations. Also, since the values assigned to each individual

have a random character (system stability, shot-to-shot noise) this procedure allows for a

better estimation of the fittest individuals since they are re-evaluated several times.

Crossover

The use of a crossover operation is often said to be the distinguishing feature of genetic algo-

rithms since it is precisely this operation which allows the algorithm to propagate successful
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forms of solutions from one generation to the next (more on this later in the section on the

“schema” theorem). Here also, we need to be careful in choosing a proper implementation

of this core process. The simplest form of such an operation is the single-point crossover

function (see Fig. 6-4), in which a point i in the chromosome is randomly selected and an

exchange of genes is performed between two parents such that the offspring is composed of

the genes of parent A up to point i and of parent B from that point onwards. Again, as in

the case of the selection process, we get into trouble by choosing the most straightforward

method. One of the problems with using a single-point crossover is that not all possibilities

are accessible to the offspring. For example, two parents having chromosomes of the form

[1###1] and [##1##] (the wildcard # can take any value, [1###] for example refers

to all the chromosomes starting with 1, this notation defines a hyperplane of chromosomes,

also called a “schema”) will not be able to produce an offspring of the form 1#1#1 with a

single-point crossover mechanism. Also, the first and last bits of the chromosome are trans-

ferred to the offspring in a preferential manner since they always appear in their original

position. Furthermore, long blocks of genes that form successful parts of a chromosome are

more easily destroyed compared to short sequences, causing the process to eventually favor

solutions with short building blocks, which cannot be justified a priori. To overcome these

we use a multi-point crossover scheme (see Fig. 6-4 for an example of a two-point crossover),

in which several points i, j, .. are chosen at random and the chromosomes in between are

exchanged. Some practitioners [79] advocate using “parametrized uniform crossover” in

which an exchange happens at each chromosome position with a probability p (which is

typically 0.5 < p < 0.8). This form of crossover is highly disruptive and can in principle

destroy more easily successful sequences in the chromosome. Which form of crossover to

use is largely a matter of experimentation. Broadly speaking, a more general crossover

mechanism such as parametrized uniform crossover allows an offspring to reach any pos-

sible permutation of his parents, thereby increasing the rate of exploration. This however

comes at the expense of convergence, which typically slows down when the parameter space

accessible to the population increases.

Mutation

The mutation rate is defined as the probability that a gene in a chromosome will be randomly

generated. After the algorithm has assigned values to offspring via the crossover process, it
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Figure 6-4: Single-point Vs. two-point crossover. On the left, the single-point crossover
operation mixes the chromosomes of the parents around a single position. This implemen-
tation has the disadvantage of limiting the number of possible permutations thus reducing
diversity in the following generations. This can be overcome with more elaborate crossover
operations such as the two-point crossover. Taken from [77].

selects a fixed percentage of the offspring’s chromosomes and replaces them with randomly

generated genes. This process allows one to fix a minimum value of the rate of exploration

that is independent of other processes or even the initial population. Usually the mutation

rate is taken to be quite low (< 5%) so as not to disrupt convergence.

6.2.2 The Schema Theorem

Prior to discussing our implementation of Genetic Algorithms in more detail we must first

present Holland’s influential work on artificial adaptation giving us a framework for our

future discussions. The work of Holland [80] is widely considered as the theoretical foun-

dation for understanding the power of genetic algorithms. In it he describes how different

characteristics of genotypes propagate during the evolution process.

The fundamental assumption of Holland was that genetic algorithms work by discover-

ing, emphasizing, and recombining good “building blocks” of solutions in a highly parallel

fashion [78]. The idea is that successful individuals tend to be composed of successful con-

figurations of genes, and that there is an underlying structure to the chromosomes that is

being propagated through the generations. The formal structure of Holland’s theory is based

on “schemas”, previously mentioned, which are simply structural blocks that define hyper-

planes of chromosomes. For example, the schema H = [1###] defines a hyperplane (thus

the capital H) that groups all chromosomes with the value 1 assigned to their first gene,

followed by any allowed combination of genes. We then say that the chromosome [1000]
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is an instance of H. If an individual is an instance of two different schemas we say that

the two schemas are “compatible”. We then notice that any chromosome of length l is an

instance of 2l different schemas (we here take the genes to be binary variables for simplicity;

for a general k-bit gene replace all occurrences of 2 with k). A population of N individuals

then represents anything between 2l and N × 2l schemas (for example [10] is an instance of

the four schema: [1#], [#0], [10] and [##], although some individuals may represent the

same schema). This means that although each evaluation of a population only evaluates N

individuals, it nevertheless simultaneously evaluates all compatible schemas, a much larger

number of configurations, where the fitness of a schema is defined as the average fitness of

all the chromosomes that are instances of that schema. By evaluating single individuals we

are gradually obtaining information on the fitness of their related schemas, a feature that

Holland has termed “implicit parallelism” and that is the fundamental advantage of genetic

algorithms.

A genetic algorithm will discover schemas which have a good influence on the overall

fitness of the solution candidates. The genetic algorithm is then seen as a search algorithm

for schemas and not for optimal individuals. A successful schema will increase the fitness

of the individuals which are a part of it and they will subsequently survive with a higher

probability, transferring the schema to the next generation. Stated more precisely the

schema theorem shows that schemas found in individuals with above average fitness scores

propagate to the next generation in an exponential way, given by the equation:

E(m(H, t+ 1)) ≥ m(H, t)f(H)

at
[1− p], (6.2)

where m is the number of individuals which share the schema H, E(m(H, t + 1)) is the

expectation value ofm in the following generation, at is the average fitness of the population

and f(H) the average fitness of the schema H. The term [1− p] is called the disturbance,

and it represents the probability that crossover or mutation will destroy the schema H.

Eventually we hope that a greater number of compatible schemas will be discovered in such

a way, leading us to an optimal configuration.

The schema theorem helps us answer another important question relevant to our par-

ticular situation: given a fixed amount of time available to us (since each evaluation costs

a dear one minute), should we run the system several times for each individual in order
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to have a better evaluation of its fitness (due to shot-to-shot fluctuations)? or should we

rather compromise on the precision of the fitness score and use the time saved in order to

evaluate more individuals? It turns out [81] that the latter option is generally better, the

schema theorem shows that what is actually being evaluated from generation to generation

is the various schemas, which are anyway being evaluated several times for each population

since the successful ones appear more frequently. In other words, the implicit parallelism

of genetic algorithms allows us to find patterns in the parameter space even in the pres-

ence of considerable noise in the fitness evaluation, one of the major reasons why we have

chosen genetic algorithms for system optimization in our experiment. We will later use the

implications of the schema theorem to better understand how one should tweak the various

parameters of the algorithm.

6.3 Applications (MOT, offline trap hunting)

In what follows we will go through two applications of genetic algorithms to our experimental

challenges, throughout which our common goal is finding a balance between exploration and

exploitation, namely, balancing the quality of the most successful individual with the speed

of search. As previously mentioned, the importance of striking a good balance between

the two is emphasized in our case by the fact that we pay expensively for each iteration (1

minute) and not many iterations of the algorithm are feasible.

Figure 6-5 displays an optimization process that maximizes the atom number in a MOT.

Prior to running the algorithm we manually found a set of parameters that provided us

with an initial vector. We fed that vector into the algorithm as one of the individuals in

the first generation. After seven generations we were able to improve our MOT size by

approximately 40%. The population size chosen was 12, a size that seemed to balance the

speed of convergence with the quality of the final solution. The mutation rate was set at 1%

and we used a scattered crossover function that generates a random 3-bit sequence, taking

genes from one parent for each position where the outcome was 1 and the genes from the

other parent where the outcome was 0. After 7 generations with a total run time of 108

minutes the algorithm converged to a solution as can be seen by the increase in clustering

in the last generations relative to the first. Convergence is also evident as a decrease in

standard deviation for the mean fitness of the various generations. The population scatter
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Figure 6-5: Optimization of the number of atoms in a magneto-optical trap (MOT) using a
genetic algorithm. A population of 12 individuals evolves for seven generations with a total
running time of 84 minutes. The control parameters used are the magnetic bias fields along
ŷ and ẑ and the current through the U-wire. These parameters are chosen since they are
the ones which define the shape and position of the trap. The last plot shows the evolution
of the mean and maximum number of atoms in the population as the generations progress.

is relatively large in the first four generations indicating that the algorithm explores a large

region of the parameter space. In the fourth generation a successful individual (relative to

the population mean) is found, causing the algorithm to start converging toward the sub-

region containing that individual. The evolution in the following generations is then mainly

directed towards exploiting this sub-region of parameter space, indicated by the sharp drop

in the population standard deviation (some 25% of the scatter in the first four generations).

This exploitation finally finds a slightly better individual in this sub-region at the seventh

generation. The fact that the algorithm automatically strikes a balance between exploring

and exploiting the parameter space is due to the fact that the propagation of successful

configurations has an exponential dependence on fitness (the schema theorem), thus causing

the algorithm to exhibit these kinds of transitions from an exploring phase (generations 1-4)

to an exploiting phase (generation 5-7) once an individual with a fitness considerably higher

than the population mean is found.

Figure 6-6 shows the offline optimization process of a trapping potential. By modeling

the AtomChip elements in a simulated environment we can input values for the currents

pushed through the different wires and the bias fields along the three axes. The software
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Figure 6-6: Off-line optimization using a genetic algorithm. Optimizing the trap size using
8 parameters: The x̂-bias wires, the inner and outer confining legs, the two Z-wires, and the
three bias fields (the wires and bias fields pertaining to these 8 parameters are shown in the
figure below). The algorithm was given a large parameter space and thus started converging
only after around 10 generations but then quickly found a parameter set corresponding to
a tightly confining potential. Notice that the leftmost trap has a different energy scale for
the trapping potential and is in fact much wider than the other two.

then calculates the various trap parameters using a finite-element method (if a trap is

formed at all) corresponding to the input values. By letting a genetic algorithm optimize a

certain trap parameter we are able to find useful current configurations without much trial

and error. The offline optimization process is of course much faster since it does not require

minute-long experimental cycles and thus allows for larger populations. In this process we

have optimized the size of the trap (as defined by the Thomas-Fermi lengths along the

three axes) by tweaking 8 parameters. The population size used was 50 and the algorithm

converged to our requirements after 55 generations with a total run time of a couple of

hours.
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Aside from using genetic algorithms to optimize the real time execution of the experi-

mental cycle we have shown how the method can be used to assist the researcher in finding

new configurations of his system. By first creating a simulation of the experimental system

in a computer, and later applying a genetic algorithm to test various configurations of the

simulated environment, one can use the method in order to find parameter configurations

that will optimize a high level goal, such as to find exotic trapping geometries or extreme

values for various trap properties. We hope that this method will allow us in the future

to design interesting trapping potentials by focusing on the final desired result instead of

the standard method of parameter tweaking that in the end may limit the designer to a

subspace of previously known geometries.
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Chapter 7

Summary

In this work we have analyzed issues concerning the expansion and subsequent interference

of BECs originating from adjacent sites of the 1D magnetic lattice created by our AtomChip

wires. We have analyzed the specific features of our trapping potential, namely, that adja-

cent sites are aligned along their weakly confined longitudinal axis, and have found that the

longitudinal expansion is too slow to allow adjacent sites to overlap sufficiently and form

interference patterns with an optical density that will allow detection. We described how

we may overcome these difficulties by gradually turning off the trapping potential rather

than releasing the atoms suddenly and have shown that this gradual release method specif-

ically alters trapping frequencies and expansion velocities of a BEC released from the snake

potential. This mechanism can be exploited so that after an expansion period an overlap of

adjacent sites will cause an interference fringe pattern to emerge. We have analyzed both

analytically and numerically the situation for various scenarios and found optimal values

that will enable fringe visibility to be within reach of our imaging system. Following this

theoretical work we have designed and built dedicated electronics hardware that will allow

us to perform the gradual release scheme. Being able to detect interference patterns from

overlapping wavefunctions opens the way to probing coherence properties of a BEC in a 1D

lattice. Since the height of the barrier depends on the current passed in the snake wire (a

controlled quantity), the effect of trapping frequencies and tunneling rates may be studied.

Success in this experiment will provide the first observation of matter-wave interference

formed by a static magnetic trapping potential on an atom chip. It will also be the first

controlled interference originating from a potential positioned only a few microns from the
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chip surface. This will allow us to create and test interesting effects such as the super-

fluid to Mott-Insulator transition, phase diffusion and decoherence and models based on

Bose-Hubbard type Hamiltonians under new conditions.

We have also shown in this thesis, how imaging from the reflective surface of the Atom-

Chip is possible with a resolution adequate for the determination of the position of atomic

clouds above specific AtomChip wires. We have shown images of atomic clouds taken above

the chip and demonstrated how this vertical imaging system has helped us to better posi-

tion the cloud. Imaging issues such as diffraction from the chip wires and resolution limits

were shown not to be detrimental for these tasks. The imaging system helped us analyze

the misalignment of the various structures. By trapping an atomic cloud with the copper

structure alone and imaging it with the vertical imaging we could detect that the center of

the copper Z-wire was shifted relative to the AtomChip Z-wire. This inaccuracy was fixed

in our new version by incorporating alignment marks on the AtomChip. All in all, our

current imaging systems allows us to resolve the cloud position on all three axes in every

shot.

In order to further optimize the signal by improving the loading, trapping and releasing

of the snake lattice, we have also implemented a control system that utilizes a machine

learning algorithm for the optimization of various tasks in the lab whether on-line or off-

line. The system was embedded into our experimental setup and allows us to optimize user-

defined specific goals (such as maximizing the number of atoms in a MOT) by automatically

generating experimental parameters, evaluating them and reformulating new parameters

based on previous results. The method was also employed off-line by running it on a

simulated environment of the various wires and bias fields present in our lab. The user

of the software can input parameters desired for the magnetic potential (e.g., minimum

position, frequencies, etc.) and have the algorithm find optimal configurations of currents

and bias field that will generate such a field.

As interference experiments with cold atomic clouds continue to be a topic of intense in-

terest, the methods developed and optimized in this thesis could help experimenters achieve

stronger interference and diffraction signals and hopefully improve the feasibility of future

quantum devices.
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