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Abstract

Recent developments in spatial atom interferometry have stimulated new fields in atomic

physics and quantum optics, opening up new areas in fundamental research. Moreover, there

are ideas for many practical applications for atom interferometry, such as highly sensitive,

miniaturized, rotations sensors, accelerometers, and gravitational detectors, based on the

Sagnac effect. The small de Broglie wavelength of atoms may improve the sensitivity of

atom interferometers by several orders of magnitude compared with optical interferometers.

Similar to quantum electronics where electrons are manipulated inside semiconductor struc-

tures, in atom optics, atoms may be made to move inside waveguide structures and are

manipulated using potentials where at least one dimension is comparable to the de-Broglie

wavelength of the atoms. With the use of guided atoms, miniaturized setups for matter wave

interferometry with increased stability, large beam separation, and large enclosed areas be-

come possible. The combination of well-established tools for atom cooling and manipulation

with state-of-the-art microfabrication technology has led to the development of the atom

chip, a micro fabricated, integrated devices in which electric, magnetic and optical fields can

confine, control and manipulate cold atoms.

In this work we present a theoretical model for a Sagnac interferometer. The model relies on

the analogy between a massive particle travelling in a rotating frame and a charged particle

travelling in a ring with a magnetic flux, where atom-atom interactions and impurities

in the system have been neglected. The scattering matrix formalism is used to predict

the transmission and the sensitivity of revolving atom interferometer, based on double Y

beamsplitters. The affect of temperature is analyzed to show that the sensitivity is improved

with decreasing momentum bandwidth (an incident particles flux which is partially coherent,

with spectral width ∆k, may be viewed as a statistical mixture of wavepackets), i.e. the

the sensitivity improves with decreasing temperature. As the required temperature for a

narrow momentum bandwidth is much lower than an experimentally feasible temperature,

this work focuses on the large spectral width regime which is experimentally feasible.

In addition to varying temperatures, we also analyze the effect of different finesse regimes.

For example, we show that in the low finesse limit, where the particle has a small prob-
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ability to complete many cycles inside the interferometer and therefore the accumulated

Sagnac phase difference between counterpropagating trajectories is also small, the predicted

sensitivity for rotations is lower compared to the high finesse regime. In the latter regime

the particle has a high probability to complete many cycles inside the interferometer and

therefore the accumulated Sagnac phase difference is large. Relying on these results we

obtain the main result of the thesis - an expression for the sensitivity as a function of the

finesse. Finally, the sensitivity of interferometers based on semi-X beamsplitters (one of the

ports functions as a mirror), is also analyzed. Such a configuration may be experimentally

easier to realize relative to the Y beam splitter.

For the double Y interferometer in the low finesse regime, we found the maximal sensitivity

to be ∆ Ωmax ≈ 10−10 rad
sec
/
√
Hz. This sensitivity is of the same order of magnitude as

that achieved by present day low finesse freely propagating atom interferometers. For the

double Y interferometer in the high finesse regime, we found the maximal sensitivity to

be ∆ Ωmax ≈ 10−12 rad
sec
/
√
Hz. This result is better by two orders of magnitude than any

realized rotation sensor, in particular low finesse atom interferometers, and may therefore

motivate additional work for the realization of multipass (high finesse) interferometers.
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1. INTRODUCTION

An Interferometer is a physical device that splits single particles or their complementary

waves into two different paths, which are then recombined, not before each path accumulates

a phase related to the effective length of its trajectory and an optional phase added during

the splitting and recombination. A phase difference of an integer product of 2π means

constructive interference, where the intensity of the resultant interferometer output beam

is higher than the sum of the intensities in the two paths. A phase difference of (2n + 1)π

means destructive interference, where the intensity of the resultant beam is less than the

sum of the two intensities. For any other phase difference the intensity is in between these

limits.

The wide variety of internal degrees of freedom of an atom opens up new possibilities for

interferometry which do not exist in the more traditional types of interferometry using

photons, electrons and neutrons. In addition, the large atomic mass gives rise to high

sensitivity concerning measures of rotation, acceleration and gravitation. In recent years,

several groups reported work on atom interferometers where the atoms freely propagate

between the interferometer components (beam splitters) [1]-[5]. Recently, Ketterle and his

group [6] realized a trapped atom interferometer where the trapped atoms were coherently

split by deforming an optical single-well potential into a double-well potential. Furthermore,

Schmiedmayer and his group [7] realized a trapped atom interferometer on a chip, based on

a combination of static and radio-frequency magnetic fields. These scientific achievements

are in fact making the first steps toward guided atom interferometry, where the motion of

the atoms in the interferometer arms will be fully controlled, similar to light interferometers

based on optical fibers. Furthermore, multi-pass guided path allows to diminish the size

of the interferometer down to micro-meter scale without reducing its sensitivity, as the

phase difference between the ports of the interferometer accumulates due to the multi-pass

trajectory instead of the large area of the interferometer.

The Sagnac effect is a phase shift which accumulates along the arms of a revolving closed loop
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interferometer [8], the shift being directly proportional to the angular velocity of rotation,

the area enclosed by the interferometer, and the wave frequency.

FIG. 1: Rotating circular interferometer. The beam-splitter starts from the point A at time t = 0, and

rotates at angular frequency Ω. The two waves circulate in opposite senses and reach the Point B at different

times t+ and t− (represented by the dashed lines). Taken from Ref. [10]

Let us consider the Sagnac effect in a general form, that is for arbitrary waves with phase

velocity vph that propagate in a ring shaped interferometer, as shown in Fig.(1). A wave

that enters the interferometer at point A splits into a wave that propagates clockwise and

a wave that propagates counter clockwise. In the case where the interferometer does not

revolve, the waves arrive at point B in a time

τ =
πρ

vph
, (1.1)

where ρ is the radius of the interferometer. If the interferometer revolves clockwise with

rotation rate Ω, the effective segment AB is larger than πρ for the clockwise propagating

beam and smaller than πρ for the counter clockwise propagating beam. The expressions for

the path length l± in a laboratory (stationary) system is given by
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l± = π ρ± ρΩ τ± , (1.2)

where τ± are the arrival times of the counterpropagating wavefronts at point B. Using the

relativistic law of velocity composition we obtain the modified phase velocities

v±ph =
vph ± ρΩ

1 ± vph ρΩ/c2
, (1.3)

where c is the speed of light in vacuum.

Now we can substitute the identity τ± = l±/v±ph into Eq.(1.2), and solve Eq.(1.2) and Eq.(1.3)

for τ±

τ± =
π ρ(1 ± vph ρΩ/c2)

vph (1 − ρ2 Ω2/c2)
. (1.4)

The time difference between counterpropagating waves is found as

∆ τ = τ+ − τ− =
2 π ρ2 Ω

c2 (1 − ρ2 Ω2/c2)
=

2 sΩ

c2 (1 − ρ2 Ω2/c2)
, (1.5)

where s is the area enclosed by the interferometer (note that ∆ τ is independent of the phase

velocityies). The Sagnac phase can be calculated from the quantity

Φ = k r ± ω t , (1.6)

where k = kxx + kyy + kzz is the vector formed by wave numbers kx, ky, kz, ki = 2 π/λ, λ

is the wavelength; r = xx + yy + zz, x ,y , z are the orthogonal unit vector; t is the time

and ω is the wave frequency. Now we transform to the rotating frame of reference. Since

the phase Φ is invariant under this transformation the Sagnac phase can still be calculated
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in the same way in the new frame of reference. In the rotating frame the length of the

interferometer arm is exactly the same for both counterpropagating waves and therefore the

time delay is the only source for phase shift between the arms. Multiplying Eq.(1.5) by the

wave frequency ω0, we obtain the phase difference between the two arms,

∆φ =
2 s ω0Ω

c2 (1 − ρ2 Ω2/c2)
≈ 2 s ω0Ω

c2
, (1.7)

where we assume that ρ2 Ω2/c2 � 1. For photons, ω0 is the photon frequency and for matter

wave we substitute its angular frequency

ω0 =

√

m2c4 + p2c2

~
≈ mc2

~
, (1.8)

where ~ is Planck constant and m is the particle rest mass, into Eq.(1.7), to obtain the

Sagnac phase shift for a massive particle,

∆φmatter =
2ms

~
Ω ≡ αΩ . (1.9)

In chapter 3 we give another derivation which is appropriate only for massive particles.

Comparing the phase shift of a massive particle and a photon we obtain[10],

∆φmatter

∆φphoton

=
2ms

~
Ω

2sω0

c2
Ω

=
mc2

~ω0

� 1, (1.10)

For a typical atom, the quantity mc2 is of the order ∼ 10−9 J , while for visible light

the quantity ~ω0 is of the order ∼ 10−19 J . For an equal interferometer area and similar

coherence properties, one can expect a ratio of ≈ 1010 per particle between a Sagnac phase

shift, accumulated in a revolving atom interferometer and one that has been accumulated

in a revolving light interferometer. The meaning of this ratio is that the transmission of
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an atom interferometer is much more sensitive to small changes in the rotation rate than

the transmission of a revolving light interferometer, i.e. atom based rotation sensors would

be much more sensitive to rotations. In practice, the sensitivity of a rotation rate sensor

depends also on other parameters (see section 3.6) such as the signal to noise ratio, which

is better for the photon interferometer due to higher particle flux. Furthermore, the usage

of a long optical fiber with multiple windings allows for constructing of effectively large

area interferometers, rendering the sensitivities ratio between atom interferometer and light

interferometer much smaller.

Many research groups around the world are making progress in the area of guided atom

interferometry, but the goal of constructing a guided Sagnac atom interferometer has not

been achieved yet and the feasibility of high finesse (many cycles) guided atom interfer-

ometry is still unclear. In this work we present a simple theoretical model that describes

the behavior of a particle in a Sagnac atom interferometer. The model does not take in

account non-linear effects resulting by atom-atom interactions, and magnetic impurities in

the atomic waveguide are also neglected. The model is based on the analogy between a

massive particle travelling in a rotating frame and a charged particle travelling in a ring

with magnetic flux. We make use of scattering matrix formalism in order to obtain the

transmission of a revolving atom interferometer. The transmission is a key element in the

calculation of the interferometer sensitivity. The model can be applied for many geometries

and in this work we investigate three different geometries in different finesse regimes.

The outline of this work is as follows. In chapter 2 we briefly review the latest experiments

in the area of atom interferometry and atom ring traps. In chapter 3 we give a theoretical

background and introduce the physical model. Then in chapter 4 we explain our calculations

and present our results for interferometer transmission and interferometer sensitivity for

different geometries. A summary, conclusions and future work are presented in chapter 5.
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2. REVIEW OF EXISTING EXPERIMENTS

Matter-wave interference experiments enable us to study matter at its most basic quan-

tum level, and form the basis of high-precision sensors for applications such as inertial and

gravitational field sensing. Success in both of these pursuits requires the development of

atom-optical elements that can manipulate matter waves while preserving their coherence

and phase [7]. In this chapter we will review some of the latest experimental methods re-

lated to atom interferometry and its components. The chapter is organized as follows. In

section 2.1 we describe a few of the latest experimental methods to split and guide atoms.

In addition we describe trapped atom interferometers. In section 2.2 we review the state

of the art in the area of atomic ring traps. This element is likely to be a key element in

multi-pass atom interferometry. In section 2.3 we review the latest experiments in the area

of free space beam-splitters and Sagnac atom interferometry.

2.1. Wave Guides, Beam Splitters and Trapped Atom Interferometers

Wave guides and beam splitters are key elements in optics and its applications. In atom

optics beam splitters were, up to the recent years, demonstrated only for atoms moving

in free space, interacting either with materials gratings [1], periodic potentials [3], or

semi-transparent mirror formed by a sheet of light[5]. In this sub-chapter we will review

the most progressive scientific achievements in the area of guiding atoms, beam-splitters

and trapped atoms interferometers.

1) Atom Interferometry on a Chip with RF Magnetic Potentials.

J. Schmiedmayer Group, University of Heidelberg, Germany [7, 11–14]

Neutral atoms can be manipulated by means of their interactions with magnetic, electric

[11, 12]and optical fields. Similarly to mesoscopic quantum electronics, where electrons

move inside semiconductor structures and are manipulated using potentials, neutral atoms

can move microns above surfaces, in potentials originating from micro-fabricated charged
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and current carrying structures on the surface.

The group of Schmiedmayer from the university of Heidelberg is one of the pioneering

groups in theoretical and experimental research of the wide field of microscopic guided

atom optics. This group introduced a few traps and guides using micro-fabricated charged

and current carrying structures. Surfaces carrying such structures, form the so-called atom

chip [13], which may form the basis for a variety of applications and research tools for

coherent matter wave optics, similar to what integrated circuits are for electronics. In

2005 this group reported on the first ever coherent splitting of a cloud of atoms, or more

precisely of a Bose-Einstein Condensation (BEC), without optical means. By coherent

splitting we mean that the phase of the interference pattern is preserved over many

experimental repetitions. In the following, we briefly introduce the basic principle of neutral

atoms manipulation with electro-magnetic fields following which we describe the experiment.

A particle with total spin F and magnetic moment µ = gFµBF experience the potential

Vmag = −µ · B = −gFmFµBB (2.1)

where µB is the Bhor magneton, gF the Landé factor of the atomic hyperfine state, and mF is

the magnetic quantum number. In General, the vector product µ ·B results in complicated

motion of the atom. However, if the Larmor precession, ωL = µBB/~, of the magnetic

moment is much larger than the apparent change of direction of the magnetic field, an

adiabatic approximation can be applied. The magnetic moment then follows the direction

of the field adiabatically, mF is a constant of motion, and atom is moving in a potential

proportional to the modulus of the magnetic field B = |B|.
The orientation of µ relative to direction of the static magnetic field distinguishes between

two cases (these definitions are reversed for a reversed sign of gF ):

(1) if the magnetic moment is pointing in the same direction as the magnetic field, i.e.

Vmag < 0, the minima of the potential energy are found at maxima of the field and an atom

is attracted towards increasing fields. This state called high field seeking state.
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(2) if the magnetic moment is pointing in the direction opposite to the magnetic field, i.e.

Vmag > 0, the atom is repelled from region with high magnetic field. It is then in the low

field seeking state.

As noted previously, in 2005 a matter wave interferometer in a double well was realized on

an atom chip. This of course means also that a scheme for a phase preserving matter-wave

beam splitter was realized. This scheme is based on a combination of static and radio-

frequency (RF) magnetic fields forming an adiabatic potential. The operation principle of

the beam splitter is illustrated in Fig.(2).

FIG. 2: Operation principle of the beam splitter. (a) A straight wire carrying a static (d.c.) current (∼ 1A)

is used to trap a BEC on an atom chip directly below a second wire carrying a RF current (∼ 60mA at

500kHz). The d.c. wire has a width of 50µm, and is separated by 80µm from the RF wire (width 10µm).

Placing the trap 80µm from the chip surface at the indicated position allows for symmetric horizontal

splitting. (b) Top view onto the atom chip: an elongated BEC is transversely split. (c) Left: the RF

magnetic field couples different atomic spin states (only two shown for simplicity). Right: the initial d.c.

trapping potential is deformed to an effective adiabatic potential under the influence of the RF field with

a frequency below the Larmor frequency at the trap minimum (∼ 1G). In the vertical (y) direction, the

spatially homogeneous RF coupling strength leads to a slight relaxation of the static trap (dashed green

line). Along the horizontal (x) direction, the additional effect of local variations of the RF coupling breaks

the rotational symmetry of the trap and allows for the formation of a double-well potential with a well

separation d and potential barrier height Vbar (solid blue line). Taken from Ref. [7].
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A standard magnetic micro trap [11] is formed by the combined fields of a current-carrying

trapping wire and an external bias field. A static magnetic field minimum is then formed

and atoms in low field-seeking states can be trapped. An RF field generated by an

independent wire carrying an alternating current couples internal atomic states with

different magnetic moments. Owing to the strong gradients in a micro trap, the angle

between the RF field and the local static magnetic field varies significantly over short

distances, resulting in a corresponding local variation of the RF coupling strength. By

slowly changing the parameters of the RF current the adiabatic potentials smoothly

change as well and transform a tight magnetic trap into a steep double well, thereby

dynamically splitting a BEC without exciting it. The splitting distance may be accurately

controlled over a wide range. The potential barrier between the two wells can be raised

gradually with high precision, thus enabling access to the tunnelling regime as well as to

the regime of entirely isolated wells. The beam splitter is fully integrated on the atom

chip, as the manipulating potentials are provided by current-carrying micro fabricated

wires. The use of chip-wire structures allows one to create sufficiently strong RF fields

with only moderate currents and permits precise control over the orientation of the RF field.

FIG. 3: (left) The cloud separation is derived from in situ absorption images. (right) The interference

patterns are obtained after 14ms potential-free time-of-flight expansion of the two BECs. Taken from Ref.

[7].

After the preparation of BECs of up to ∼ 105 rubidium atoms in the F = mF = 2 hyperfine

state the amplitude of the RF field is ramped, in order to smoothly split the BEC confined

in a single trap into two (Fig.(3) left). The split clouds recombined together in time-of-flight
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expansion after a non-adiabatically fast (< 50µs) extinction of the double-well potential.

Typical matter-wave interference patterns obtained by taking absorption images 14ms after

releasing the clouds are depicted in Fig.(3) (right). The transverse density profile derived

from these images contains information on both the distance d of the BECs in the double

well potential and the relative phase φ of the two condensates. A cosine function fit with a

Gaussian envelope to the measured profiles determines the fringe spacing ∆z and the phase

φ. Fig.(4) shows the results for 40 repetitions of the interference experiment performed

directly after the two condensates are separated (Fig.(4)a) and after they have been taken

farther apart (Fig.(4)b), respectively. A very narrow phase distribution was found, with

a Gaussian width of σ = 130 and σ = 280, respectively. Hence, the splitting process is

phase-preserving and the beam splitter is coherent.

FIG. 4: The coherence of the splitting is examined by analyzing the interference patterns. (a) After 0.1ms

at which time the BECs have been split far enough (d = 3.4µm) to inhibit tunneling completely. (b)

After 0.8ms at which time the clouds have been taken even farther apart (d = 3.85µm). Left: a cosine

function with a Gaussian envelope is fitted to the profiles derived from the two-dimensional images (insets).

This yields information on fringe spacing, contrast and phase. Right: contrast and relative phase for 40

realizations of the same experiment are plotted in a polar diagram (inset). A histogram of the same data

shows a very narrow distribution of the differential phase (σ = 130) directly after separating the clouds and a

slightly broadened distribution (σ = 280) later in the splitting process. Both phase spreads are significantly

smaller than what is expected for a random phase. Taken from Ref.[7].
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2) Atom Interferometry on a Chip with Static Potentials.

W. Ketterle and D. E. Pritchard Group, MIT, Cambridge, Massachusetts. [6]

Ketterle’s group demonstrated a trapped-atom interferometer with Bose-Einstein conden-

sates confined in an optical double-well potential [6]. Condensates were coherently split by

deforming an initially single-well potential into two wells separated by 13 µm. The relative

phase between the two condensates was determined from the spatial phase of the matter

wave interference pattern formed upon releasing the atoms from the separated potential

wells. This recombination method detects applied phase shifts on a single realization of the

experiment.

FIG. 5: (a) Schematic diagram of the optical setup for the double-well potential. An acousto-optic modula-

tor (AOM) was driven by two frequencies, f1 and f2, and diffracted a collimated beam into two beams. The

AOM was placed in the focal plane of a lens of focal length F so that the two beams propagated parallel

to each other. The radial separation of the potential wells, d, was controlled by the frequency difference,

∆f = |f1 − f2| . The absorption image shows two well-separated condensates confined in the double-well

potential diagramed in (c). Energy diagrams describe the initial single-well trap with d = 6 µm (b) and the

final double-well trap with d = 13 µm (c). In both (b) and (c), U0 = h × 5kHz. The potential ”dimple”

in (b) was < h × 500Hz which was much less than the peak atomic mean field energy allowing the trap to

be characterized as a single-well. The potential ”barrier” in (c) was h × 4.7kHz which was larger than the

peak atomic mean field energy allowing the resulting split condensates to be characterized as independent.

Taken from Ref. [6].

The large separation between the split potential wells allowed the phase of each condensate

to evolve independently and either condensate to be addressed individually. An ac Stark

phase shift was applied to either condensate by temporarily turning off the optical fields
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generating its potential well. The spatial phase of the resulting matter wave interference

pattern shifted linearly with the applied phase shift and was independent of the time of its

application. This verified the phase sensitivity of the interferometer and the independent

phase evolution of the separated condensates. The measured coherence time of the separated

condensates was 5 ms.

FIG. 6: Matter wave interference. (a) Absorption image of condensates released from the double-well

potential in Fig. 5(c) and allowed to overlap during 30 ms of ballistic expansion. The imaging axis was

parallel to the direction of gravitational acceleration, ~g. The field of view is 600µm × 350µm. (b) Radial

density profiles were obtained by integrating the absorption signal between the dashed lines, and typical

images gave > 60% contrast. The solid line is a fit to a sinusoidally-modulated Gaussian. Taken from

Ref.[6].

A schematic diagram of the setup for the interferometer’s optical trap is shown in Fig.(5)a.

The optical potentials were derived from a collimated laser beam that passed through an

acousto-optic modulator (AOM) and was focused onto the condensate with a lens. The

AOM was driven by two radio frequency (rf) signals to create the double-well potential. The

separation between the potential wells was controlled by the frequency difference between

the rf drives. The condensate was initially loaded into the single-well trap shown in Fig.(5)b.

The cloud was held in this trap for 15 seconds to damp excitations. The single-well trap

was deformed into the double-well potential shown in Fig.(5)c by linearly increasing the

frequency difference between the rf signals driving the AOM.

The condensates were sufficiently separated that their phases evolved independent of each

other to the extent that no coupling between the potential wells could be detected. This
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claim is supported qualitatively by the absorption image in Fig.(6)a and the observation

of high contrast matter wave interference patterns that penetrated the full atomic density

profile with uniform spatial period and no thick central fringe.

The coherent phase evolution of the split condensates is displayed quantitatively in Fig.(7).

The relative phase, φr, between the separated condensates was observed to evolve linearly

in time and the standard deviation of eight measurements of φf (The phase of the inter-

ference pattern with respect to a chosen fixed x0) was < 90 degrees up to 5ms after splitting.

FIG. 7: Phase coherence of the separated condensates. The spatial phase of the interference pattern is

plotted versus hold time after splitting. Each point represents the average of eight measurements, and the

error bars are one standard deviation. The phase evolution was due to unequal trap depths for the two

wells, which was determined from the linear fit to be h× 70Hz or ∼ 1% of the trap depth. Taken from Ref.

[6].

3) Proposals for Guided Atom Interferometry with Optical Potentials.

W. Ertmer Group, University of Hannover, Germany. [15]

Ertmer and his group from the university of Hannover introduced a new direction in the

field of atom optics and atom interferometry. It is based on the use of micro fabricated

optical elements to manipulate neutral atoms. The optical manipulation of neutral atoms

is based on the electric dipole interaction of atoms with laser light. In general, light may be

used for cooling of atoms, state preparation and detection of atoms, and for trapping due

to an energy shift experienced by the atoms, which gives rise to the dipole potential. In the

following, we briefly introduce the basic principle of optical manipulation of neutral atoms

and in due course we describe some the suggestions for beam-splitters and wave-guides.
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For a basic understanding of this method, it is sufficient to assume the atom to act as a

two-level system ignoring the details of its internal sub-structure. The rate of spontaneous

scattering processes is given by

Γsc(r) =
3πc2

2~ω3
0

(

ωL

ω0

)3(
Γ

ω0 − ωL
+

Γ

ω0 + ωL

)2

I(r) , (2.2)

where ωL and ω0 are the laser frequency and the atomic resonance frequency respectively,

Γ is the natural decay rate of the population in the excited state and I(r) is the position

dependent laser intensity. This result is valid for negligible saturation (Γsc � Γ) and large

detuning |∆| ≡ |ω0 − ωL| � Γ. A conservative, non-dissipative force acting on the atoms is

derivable from the dipole potential

U(r) =
3πc2

2ω3
0

(

Γ

ω0 − ωL
+

Γ

ω0 + ωL

)

I(r) , (2.3)

The direction of the dipole force depends on the sign of the detuning ∆. The dipole force

is attractive if the frequency of the laser light lies below an atomic resonance (∆ > 0 - red

detuning), and repulsive if the frequency of the light lies above an atomic resonance (∆ < 0

- blue detuning). For typical experimental conditions, the detuning is much smaller than

the atomic resonance frequency (|∆| � ω0). In this regime the dipole potential scales as

I/∆, whereas the rate of spontaneous scattering scales as I/∆2. If decoherence caused by

spontaneous scattering has to be suppressed, the detuning should be as large as possible.

By using cylindrical micro-lens, one-dimensional guiding structures for atoms can be de-

veloped (Fig.(8)). The light that is sent through such a system forms a single line-focus

above the lens system. By focusing a red-detuned laser beam with homogeneous intensity

distribution an atomic waveguide is formed. Atoms are confined in the two dimensions

perpendicular to the lens axis but are free to propagate along the axis.

A combination of the light fields of two curved cylindrical micro-lenses, each micro-lens

illuminated by a light beam under a different angle, yields a beam-splitter (Fig.(9)). In this

configuration, the laser foci laterally displaced with respect to the center of the lenses. By

an appropriate choice of the displacements, the guiding potentials of the waveguides can be

made to overlap at the closest approach. Input wave packets propagating along one of the
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FIG. 8: Left: Section of an image of the intensity distribution in the focal plane of a cylindrical micro-lens

array (lateral lens size and separation: 400 µm); Right: Atomic waveguide created by focusing a red-detuned

laser beam with a cylindrical micro-lens. Taken from Ref.[15].

waveguides are split into up to four output wave packets propagating along both waveguides

in both directions. Since the full structure is completely based on conservative potentials,

the beam splitting process should be non-dissipative, so that coherent beam splitting of

atomic matter waves is achievable.

FIG. 9: (a) Beam splitter for atomic matter waves based on two micro-lens waveguides. (b) The micro-

lenses are illuminated under different angles in order to make the laser foci overlap at the center of the beam

splitter. Atomic wave packets entering along one waveguide are split into up to four output wave packets.

Taken from Ref.[15].

This beam splitter can easily be extended to a micro-fabricated interferometer for atomic

matter waves: Combining two beam splitters creates a Mach-Zehnder-type interferometer

(Fig.(10)).

The two wave packets propagating along the output waveguides of the first beam splitter

can be recombined in a second beam splitter and made to interfere. With typical laser

powers guiding of ultra-cold atomic matter waves along micro-lens based waveguides over

distances of several 10 mm is possible. This allows the realization of interferometers with

an enclosed area of ≈ 1 cm2. With microfabrication such a large area can be achieved

in a system with dimensions that are significantly smaller than those of setups based on

conventional methods. The Mach-Zehnder interferometer presented in Fig.(10) can be used
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FIG. 10: Mach-Zehnder type interferometer based on a combination of two beam splitters. Taken from

Ref.[15]

as a Sagnac interferometer.

2.2. Ring Traps

Guiding a matter wave on a torus is now being investigated by several groups. The

motivation is clearly towards the realization of inertial sensors and gyroscopes, since, as

analyzed in this thesis, a torus geometry is advantageous for the measurement of quantal

phases. In addition, a torus trap filled with a degenerate atomic gas is also a source of inspi-

ration for fundamental questions related to the coherence and super fluid properties of this

trapped atomic wave. In this subsection I review some of the latest experiments in this area.

1) Ring Trap with Light Potentials Based on Microlens Arrays.

W. Ertmer Group, University of Hannover, Germany. [16]

Recently, Ertmer [16] and his group reported on the realization of an optical storage ring

above a cylindrical ring lens and based on the same principles introduced in the previous

sub-chapter (see Fig.(11)-left). The image on the right side of Fig.(11) is a fluorescence

image of atoms which are trapped in a ring focus. To obtain this, a ring lens with a ring

diameter of Dring = 1.5 mm was illuminated with light from a Titanium-Sapphire laser,

running at a wavelength of 780.7 nm, and the focus was superposed onto an atom trap,

such that the upper part of the ring focus was overlapping with the trap. The trap was
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then switched off to let the atoms un-trapped by the ring dipole trap leave the experimental

region. The remaining atoms propagate in the ring structure.

FIG. 11: Schematic of the ring lens (left) and fluorescence image of the atoms in the storage ring (right).

Taken from Ref. [16].

2) Magnetic Ring Trap Using Current-Carrying Wires and Permanent Magnetic Structures

R. J. C. Spreeuw Group, University of Amsterdam, The Netherlands [17]

Spreeuw and his group presented a trapping configuration that enables the confinement of

gases in a variety of multiply connected topologies. They used a combination of static and

oscillating magnetic fields that give rise to adiabatic potentials. The trapping configuration

is based on magnetic micro-structures and permanent magnetic structures. In order to

ensure high field gradients (up to 103T/m), and the absence of lead wires that break the

symmetry of the trap, a ring-shaped magnetic quadrupole field, generated by two concentric

rings of magnetized material with out-of-plane magnetization M , was produced. A scheme

of the ring shaped quadropole field is shown in Fig.(12). For small heights h of the magnetic

layer, the field sources become equivalent to two pairs of concentric, counter-propagating,

line-like currents I = Mh around the edges of the material. They produce a magnetic

quadrupole field with a ring-shaped line of zero field.

In order to avoid losses due to non-adiabatic spin flip transitions near the line of zero field,

adiabatic radio-frequency (rf) induced potentials were utilized. Resonant coupling between

Zeeman levels produces local potential minima near positions where the coupling field is

resonant with the atomic Larmor frequency. A visualization of the trapping potential is
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FIG. 12: Schematic view of a ring-shaped quadrupole field produced by two rings of uniform magnetization

M · ẑ, mean radius R, widths w, distance d, and height h. Additional coordinates are given by the distance

r from the ring of zero field, and the toroidal and poloidal angles θ and ϕ, respectively. Taken from Ref.

[17].

shown in Fig.(13).

FIG. 13: Visualization of the adiabatic trapping potential. The potential on the resonant torus for vertically

split rings is shown together with a cut parallel to a ρ, z-plane. Taken from Ref. [17].

3) Circular Waveguide Based on Coaxial Electro-magnetic Coils

D. M. Stamper-Kurn Group, University of California, Berkeley, California, USA [18]

Stamper-Kurn and his group from Berkeley reported on the creation of a smooth, stable

circular waveguide for ultracold atoms. A simple arrangement of coaxial electro-magnetic

coils was used to produce a static ring-shaped magnetic trap (Q ring), in which strong

transverse confinement is provided by a two-dimensional quadrupole field.
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FIG. 14: Forming a circular magnetic waveguide. (a) Four coaxial circular electromagnets are used to

generate both the static and rotating fields needed for the waveguide. (b) The field (arrows) from just the

two outer coils (curvature coils, outer pair) points axially in the midplane between the coils, with largest

fields at the axis. (c) Adding a uniform opposing bias field (using antibias coils, inner pair) produces a ring

of field zeros (×) in the x̂− ŷ plane around which weak-field seeking atoms (shaded region) are trapped. (d)

Rapidly rotating the field zeros around the trapped atoms produces a time-orbiting ring trap. Taken from

Ref. [18].

The Q ring is formed using a set of four coaxial circular electromagnets (see Fig.(14))

generating both the static and rotating fields needed for the waveguide. The trapping

lifetime of atoms in the Q ring is limited by spin flips (Majorana) losses. In a balanced Q

ring, trapped atoms passing close to the line of zero field, which extends all around the ring,

may flip their spins and be expelled from the trap. The high loss rates in the Q ring can

be mended by rapidly rotating it around the trapped atoms, to create a time-orbiting ring

trap (TORT) with nonzero bias field (Fig.(14)d).

As shown in Fig.(15) the trap lifetime dramatically increases by application of the TORT

trap. Switching on the TORT, causes a fast loss of atoms and a simultaneous drop in their

temperature. These loss and cooling are due to the evaporation of atoms from the trapped

cloud. As the temperature dropped, the evaporation rate diminished and the lifetime of

trapped atoms became vacuum limited at 90 s.

In order to assess the suitability of the TORT as an atomic waveguide for interferometry,

the trapped BECs were launched into closed-loop circular motion along the guide. This

was accomplished by reorienting the sideways bias field Bs, inducing the trapped BEC to

accelerate toward the newly positioned tilted TORT trap minimum, while simultaneously

reducing the magnitude of Bs to Bs ∼ 0 and increasing the magnitude of the rotating field
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FIG. 15: Elimination of Majorana losses in the TORT. The measured number of trapped atoms in a Q ring

(open circles) or TORT (solid circles) trap is shown vs residence time in the trap. Taken from Ref. [18].

seen at the trap minimum, to produce a well-balanced TORT trap.

FIG. 16: Circular motion of a quantum degenerate atomic beam in a waveguide. A Bose-Einstein condensate

was launched into a balanced TORT and allowed to propagate. (a) Top view in-trap absorption image during

the propagation. The mean azimuthal position of the BEC measured from such images is shown in (b).

Annular portions (indicated by dashed circles) of top-view images taken at different guiding times are shown

in (c) displayed in polar coordinates (radius vs azimuthal angle). The beam advances at an angular velocity

of 40.5 rad/s while expanding due to an rms azimuthal velocity spread of 1.4 mm/s. After 1 s, the beam

fills the entire guide. Taken from Ref. [18].

The atoms were allowed to propagate freely around the guide for various guiding times

before being observed by absorption imaging. As shown in Fig.(16), the ultracold atomic

beam propagated around the circular waveguide at an angular (linear) velocity of 40.5rad/s
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(50.6mm/s). The pulsed atom beam was characterized by an azimuthal rms velocity spread

of 1.4mm/s, as measured from the azimuthal extent of the atoms for different guiding times.

This velocity is equivalent to a longitudinal kinetic temperature of 22nK. After about 1s

of guiding, the velocity variation caused the atomic cloud to spread throughout a distance

of L = 51mm along the waveguide, encompassing an area of A = 32mm2. However, the

expected fringe periodicity for a spatial interference, between the front and back ends of the

expanding BEC, is well below the imaging resolution, and such interference was not observed.

4) Ring Trap Based on a Combination of RF Magnetic Trap and a Standing Wave of Light.

H. Perrin Group, CNRS, France [19]

The group of Perrin proposed a toroidal trap geometry based on an adiabatic transformation

of a radio-frequency two-dimensional trapping potential by the addition of a standing optical

wave. Namely, this trap is the superposition of two different traps, an egg shell trap relying

on a magnetic trapping field and rf coupling, combined with a standing wave of light.

FIG. 17: Energy of the dressed levels in the magnetic quadrupole trap, plotted along the radial coordinate.

The five dressed sub levels for a F = 2 spin state are plotted, as well as two bare states for comparison (bare

state mF = −1 is shown dashed and mF = 2 dash-dotted). The ring trap is based on the upper dressed

potential mF = F = 2, for the radial trapping (bold solid line). Taken from Ref. [19].

In order to understand the principle of the rf-dressed potentials, let us examine the case

of 87Rb, F = 2 ground state. An inhomogeneous magnetic field of norm B(r) presenting a

local minimum (the base of a magnetic trap) is used together with a rf coupling between
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mF Zeeman sub-states created by an oscillating magnetic field Brf cos(ωrf t). This results

in a dressing of the mF states, as represented on Fig.(17), and the potential experienced by

the upper adiabatic state reads:

Vd(r) = F ((VB(r) − ~∆)2 + (~Ω)2)
1
2 , (2.4)

where, mF = F = 2 for 87Rb and VB(r) = gLµBB(r) is the potential created by the magnetic

trap alone for F = 2, mF = 1, where gL is the Landé factor and µB the Bohr magneton,

∆ = ωrf −ω0 is the detuning between the rf applied frequency and the resonant frequency at

the magnetic potential minimum, and Ω = gLµBBrf/2~ is the Rabi frequency of rf coupling.

Vd(r) has a minimum for VB(r) = ~∆ (a surface defined by gLµBB(r) = ~∆.

FIG. 18: Coils and laser configuration for producing and exciting the ring trap. The trap is the combination

of a vertical light standing wave (blue beam on the figure) and an egg shell rf trap. This egg shell trap relies

on a magnetic field gradient (produced by the quadrupole coils) and rf coupling between Zeeman sub levels.

The additional spinning coils could be used for exciting the rotation of the atoms inside the ring trap. Taken

from Ref. [19].

Regarding the case of a quadrupole trap with z as its symmetry axis, the magnetic field in

the center is zero, so that ∆ = ωrf . Denoting the field gradient in the radial direction by b,

and defining α as α = gLµBb/~, we obtain the potential of an atom in a dressed state

Vd(ρ, z) = F~((α
√

ρ2 + 4z2 − ∆)2 + Ω2)
1
2 , (2.5)

where ρ2 = x2 + y2. In the presence of gravity, the atoms fall to the bottom of this shell and
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the resulting trapped cloud is in a quasi 2D geometry.

An additional optical standing wave, blue detuned (by δ > 0 with respect to an atomic dipole

transition), elongated to the vertical z direction, and with identical linear polarization for

the two laser beams (Fig.(18)), will create a light shift. This light shift creates in its turn,

a periodic potential of period λ/2 where λ is the light wavelength. Along z, the atoms are

then confined in a series of parallel planes. As a result, if they also experience the adiabatic

rf potential in a quadrupole trap, the atoms sit on a circle, the intersection of that plane and

the ellipsoid, defined by ρ = R of radius R =
√

r2
0 − 4z2

0 much greater than λ (Fig.(19)).

FIG. 19: A view of the ring trap. An isopotential surface is plotted for the given parameters: laser

power-P = 0.5 W , laser wavelength-λ = 771 nm, rf frequency-∆/2π = 2250 kHz and magnetic field

gradient-b′ = 150 G/cm. The length unit is 1µm. The vertical direction is amplified 10 times for clarity.

Taken from Ref. [19].

5) Atomic Micro Traps Generated by Multi-Frequency Magnetic Field Modulation

C. Zimmermann, University of Tubingen, Germany. [20]

Zimmermann and his group proposed a realization of a versatile atomic micro trap for

cold atoms based on multimode radio frequency radiation in combination with static

inhomogeneous magnetic fields. The use of radio frequency combs (the radio frequencies

are of the form ωn = 2π(c1 + c2n), where c1 and c2 are constants) gives rise to periodic

potentials acting as gratings for cold atoms. In strong magnetic field gradients the lattice

constant can be well below 1µm. By changing the frequencies of the comb in time, the
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gratings can easily be propagated in space.

FIG. 20: (a) 2D quadrupole magnetic field with gradients bz = 200G/cm and bx = 140G/cm. (b) Cor-

responding adiabatic potentials for the 6Li two-level system F = 1
2 . (c) Adiabatic potentials for a system

with five Zeeman substates, F = 2. (d) Adiabatic potentials for a frequency comb and the 6Li two-level

system. Taken from Ref. [20].

An incident microwave or radio frequency radiation can have a strong impact on a

magnetic trapping potential. This is due to the fact that the potential depends on the

magnetic substate of the trapped atoms. The energy of this substate can be manipulated

by admixing other substates via resonant radio frequency radiation. In inhomogeneous

magnetic fields this coupling is local and leads, within a dressed states picture, to avoided

level crossings. Atoms moving across an area where the coupling is strong, follow adiabatic

potentials by avoiding the crossings. Using this technique allows for an almost complete

control over the spatial shape and the temporal evolution of the potentials. In particular,

irregular patterns may be formed, and very small structures, only limited by the size of the

technically feasible magnetic field gradient, may result in gratings with very small lattice

constants. Fig.(20)a,b visualizes the case of a two-dimensional quadrupole magnetic field

with three frequencies irradiated. Fig. 20(c) shows the adiabatic potentials for five Zeeman

substates, as in the case of the 7Li ground state hyperfine level F = 2. Finally, Fig.(20)d

represents the adiabatic potentials for the case of a frequency comb ωn = 2π×(3+1.5n)kHz.
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6) Atomic Ring trap Based on Four Circular Water-Cooled Current Carriers

A. S. Arnold Group, University of Strathclyde, Scotland. [21, 22]

Arnold and his group from the university of Strathclyde in Scotland reported on the real-

ization of a magnetic storage ring for cold atoms and a localized formation of Bose-Einstein

condensate in a section of the torus. The magnetic coil design can be utilized as a magneto-

optical trap or a storage ring. A large number of atoms can be confined in the ring and it

has a long magnetic trap lifetime compared to other rings. Additionally, its large (10 cm)

diameter and high level of optical access should facilitate atom interferometry.

FIG. 21: Four circular coils with average diameter 10 cm make up the storage ring (thin circle) to which

the axial wire adds an adjustable azimuthal magnetic field. The square coils localize the atoms (small cigar)

in either a magneto-optical or magnetic trap depending on the current direction in the right square coil pair.

Taken from Ref. [22].

Before loading into a Ioffe-Pritchard magnetic trap [23], the atoms are trapped in a double

magneto-optical trap (MOT) system, in which the low pressure MOT contains around N =

1 109 87Rb atoms. Four circular coils form a toroidal quadrupole field, where each coil

consists of two water-cooled loops carrying a current of 500A and the geometric center of

the coils has a diameter of 10cm. Additional pinch coils at the top of the storage ring enable

the formation of MOT and Ioffe-Pritchard field configuration [23] in a section of the torus.
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This coil design allows cold atoms or condensates to be formed inside the storage ring. A

scheme of the coil design is shown in Fig.(21)

FIG. 22: Cold atoms with a temperature of 1 mK confined in the storage ring. They disappear after

200 ms and reappear after 600 ms. Each absorption image is 6.4 mm wide, and the spots on either side of

the trapped atoms are due to imperfections in the CCD camera. Taken from Ref. [21].

While the first storage rings contained 106 atoms/molecules with lifetimes of less than half

a second, this storage ring contains more than 108 atoms and has a lifetime of 40sec. The

next step is the formation of Bose-Einstein condensates in a localized section of the ring by

evaporatively cooling atoms in the storage ring’s Ioffe-Pritchard magnetic trap configuration.

The condensate fraction contains up to N = 5 105 atoms. Up till now, experiments utilising

the full extent of the storage ring have been performed only with cold atoms (see Fig.(22)),

but very recently this group performed such an experiment with BECs [22]. In the near

future there is an intention to perform Sagnac interferometry by locating the condensate at

the exact top of the ring, and coherently splitting the sample by simply releasing it.

2.3. Free Space Beam Splitters and Atom Interferometers

As explained in the following, present day Sagnac free-space atom interferometers, are

mostly based on two-photon Raman transitions to manipulate atoms. This way of operation,

like any other free-space interferometer, imposes a single pass trajectory and therefore a

large size interferometer in order to achieve a large area leading to high rotation sensitivity.

To the best of my knowledge, the only usable Sagnac matter wave interferometer and the

most sensitive known gyroscope is the free-space atom interferometer demonstrated by M.
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A. Kasevich and his group.

1) Rotation Measurements with a Cesium Interferometer Gyroscope

M. A. Kasevich Group, Stanford University, California, USA [24–26]

A remarkable set of experiments was performed in the recent years by M.A. Kasevich and his

group from Stanford University. This group developed an atomic state interferometer which

uses two-photon velocity selective Raman transitions to manipulate atoms while keeping

them in long-lived ground states. This device has a short-term rotation-rate sensitivity of

6 · 10−10rad/sec over one second of integration. This result is the best publicly reported

value to date. A schematic of the interferometer configuration used for the gyroscope is

shown in Fig.(23).

FIG. 23: Interferometer configuration. Three pairs of Raman beams are used to divide, deflect and recom-

bine atomic trajectories. Taken from Ref. [25].

Briefly, counter propagating cesium atomic beams in an ultra-high-vacuum (UHV) chamber

are transversely cooled, and optically pumped into a particular ground state before entering

the interferometer region. There, three pairs of stimulated Raman transition lasers serve

to divide, deflect, and recombine the atomic wavepackets. Interference between the two

paths through the interferometer allows the rotation-rate dependent phase shift between

the paths to be observed by detecting the number of atoms exiting the interferometer in

a particular hyperfine electronic state, as measured by fluorescence from a resonant probe

laser. The apparatus measures the relative angular velocity between the inertial frame of

the freely falling atoms in the atomic beam, and the lab frame containing the optical table.
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A uniform magnetic bias field is applied along the axis of the Raman beams throughout the

length of the interferometer region, and a two-layer magnetic shield is used to protect this

region from stray magnetic fields. Atoms in a thermal beam are pumped into the hyperfine

F = 3 state, and then pass through a sequence of three Raman laser beams. The first beam

(π/2 pulse) puts the atoms in a coherent superposition of the F = 3 and F = 4 ground

states. Due to conservation of momentum with the laser interactions, each internal state is

associated with a particular transverse momentum. Thus, this first pulse serves as a beam

splitter, causing the atomic wavepackets to divide into two trajectories. The second beam

(π pulse) acts as a mirror by exchanging the atomic states and momenta, deflecting the

trajectories back towards each other. The third beam (π/2 pulse) acts as a beam-splitter

that recombines the two trajectories so interference can occur. Rotation induces a relative

phase-shift between the two paths of the interferometer, and the interference signal can be

observed by measuring the number of atoms in the F = 4 state. Since atoms from the atomic

beam have random relative phase, the interference effect is a single particle phenomenon

with coherence length given by the de-Broglie wavelength. For initial verification of the

sensitivity of the interferometer to rotations, the optical table is rotated mechanically, and a

seismometer was used to determine the center of rotation and to calibrate the table motion.

The table revolved at 4.5Hz, near its resonance, and observed interference fringes using a

single atomic beam as shown in Fig.(24).

A signal-to-noise ratio of 400 : 1 for 800msec of integration per point, was measured, both at

the center of the fringe and on the tails. A shift between the rotation zero measured by the

seismometer and the contrast envelope center, was observed which indicates zero rotation

as measured by the atoms. The offset arises because the seismometer is not sensitive to the

constant rotation rate of the Earth but the gyroscope is, and measuring the offset gives the

Earth rotation rate. A rotation rate of 45± 3 µrad/sec was found, which is consistent with

the expected value of 44.2 µrad/sec for Stanford’s latitude.

In the next step, an additional counter-propagating atomic beam used to determine absolute

zero rotation rate (without using a seismometer). The Sagnac phase shift depends on the

Coriolis acceleration, aCor = −2Ω × v (see chapter 3) which is proportional to the vector

velocity, v, and therefore has opposite sign for the two atomic beams. In the limit of perfect
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FIG. 24: Measurement of an atom interference pattern versus rotation rate. Black dots: experimental data.

Open circles: calculated signal. The shift of the contrast envelope provides a measurement of the Earths

rotation rate. Taken from Ref. [3].

contrast, the probability for an atom exiting the interferometer in the F = 4 state used for

detection is equal to

P (F = 4) =
1

2
[1 − cos(φΩ + φarb)] , (2.6)

where φΩ is the Sagnac phase shift, and φarb is the sum of acceleration and the arbitrary

laser phase. Therefore, the gyroscope signals corresponding to counter-propagating atomic

beams have the form

Snorth ∼ cos(φΩ + φarb)

Ssouth ∼ cos(−φΩ + φarb)
(2.7)

where S represents the detected signal of the north or south atomic beam (north and south

are arbitrary labels for the counter-propagating atomic beams). Using trigonometric iden-

tities, one can rearrange these equations as follows:

Snorth − Ssouth ∼ sin(φΩ) cos(φarb) (2.8)

Due to the sine factor, the difference signal has a zero crossing for zero rotation rate, and

the amplitude factor (cosine) can be maximized by adjusting the arbitrary phase, as seen in
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Fig.(25).

FIG. 25: Earth rotation rate measurement. The north and south rotation fringes are the symmetric signals

shown with thin curves, the difference north - south is labeled N-S, and the fit to the center of the difference

curve is shown with a heavy black curve. The arbitrary phase was chosen so that the north and south signals

have opposite sign, maximizing the contrast of the difference signal. Taken from Ref. [25].

This method allows precise determination of the zero rotation rate relative to the non-

rotating inertial frame, and does not depend on knowledge of the gyroscope area or

arbitrary phase. To implement the counter-propagating atomic beams, Cesium sources

were mounted at each end of the vacuum chamber and aligned to overlap spatially so that

the beams would sample the same magnetic bias field (collisions are negligible). The atoms

from each atomic beam are transversely cooled in two dimensions using red-detuned laser

light, and are optically pumped into the F = 3 ground state before passing through the

detection laser for the opposing atomic beam. Since the detection light was tuned to the

F = 4 → F ′ = 5 resonance, the only atoms detected are those that end up in the F = 4

state after the interferometer interaction pulses.

2) On-going Cesium Interferometer Gyroscope construction

C. J. Borde Group, Laboratoire de Physique des Lasers - CNRS, France. [27, 28]

A gyroscope based on de-Broglie wave interferences of cold Cesium atoms is under construc-

tion at the Observatoire de Paris. It consists of a rotating interferometer, using stimulated
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Raman transitions to manipulate the atomic wave packets. When the setup rotates around

its axis, a phase shift appears between the two interferometer arms, owing to the Sagnac

effect. The number of atoms detected on one of the two outputs of the interferometer de-

pends on this phase shift, which is proportional to the rotation rate of the gyroscope. The

configuration used is similar to an optical Mach-Zehnder interferometer, as seen in Fig.(26).

FIG. 26: Scheme of an atom interferometer providing large interferometer area. Taken from Ref. [28].

First, Cesium atoms are cooled with lasers in the three spatial directions, the temperature in

the magneto-optical trap is as low as several µK. Then, atoms prepared in the (6S1/2, F =

3, mF = 0) state are launched at about 3m/sec toward the zone in which Raman lasers are

used for the atomic wave packet manipulations. In this interaction zone, atoms are submitted

to three stimulated Raman transitions which realize a π/2 − π − π/2 sequence. The time

between consecutive laser pulses is 50 msec. The first pulse splits the atomic wave packet

into two different states, (6S1/2, F = 3, mF = 0) and (6S1/2, F = 4, mF = 0), spatially

separated. The second pulse acts as a mirror for both arms, then the third pulse recombines

them. The Sagnac effect results in a phase shift between the two arms of the interferometer,

which is proportional to the rotation rate of the gyroscope. Atomic interferences are then

detected on one of the interferometer outputs, from which the phase shift is determined.

The atom interferometer is sensitive both to rotations around the axis perpendicular to its

plane and to accelerations in the direction of the Raman lasers. To discriminate between

these phenomena, two counter-propagating atomic beams which share the same Raman

lasers were used. Any acceleration results in the same phase shift for both interferometers,

whereas any rotation results in opposite phase shift. The rotation rate is deduced from
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the difference of the two signals and the acceleration information from their sum. The two

trajectories have to be superimposed to see the same phase shifts. This is the reason why

atomic packets are launched with an angle of 8o from the vertical axis defined by gravity.

The trajectory is then a parabolic flight, as seen in Fig.(27).

FIG. 27: Principle of the cold cesium gyro-accelerometer developed at the Paris Observatory. Taken from

Ref. [28].

A sensitivity of 3 · 10−8rad/sec/
√
Hz is expected for rotation measurements, and

4 · 10−8m/sec2/
√
Hz for accelerations. At the moment, the gyrometer is being improved

and characterized and the optimum sensitivity of this setup should be reached soon.

3) On-going Rubidium Interferometer Gyroscope construction

W. Ertmer and E. Rasel Group, University of Hannover, Germany. [29]

Another gyroscope based on two-photon Raman transitions to manipulate atoms is under

construction at the Hannover university. This experiment investigates different strategies for

the realization of a transportable matter-wave sensor. It uses two counter-propagating pulsed

or continuous beams of cold 87Rb atoms to measure rotations thanks to the Sagnac-effect

in a Mach-Zehnder type atom interferometer. The use of cold atoms makes it possible to

realize compact devices with sensitivities competitive with classical state-of-the-art sensors.

The heart of the set-up will be a 15 cm-long Mach-Zehnder interferometer in spatial and/or
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temporal domain consisting of 3 atom-laser interactions. The length of the complete sensor

will be about 90 cm. Each of the 2 atom sources consists of 2 magneto-optical traps (MOT):

A 2-dimensional MOT, which forms a bright atomic beam, that is loaded into a 3D MOT to

prepare a cold and intense atomic ensemble. A major goal is the transportability of the entire

experiment. This has two reasons: First for a possible comparison of two atomic rotation

sensors (such as the cold cesium atom gyroscope at the Observatoire de Paris), and also as

a ground based test facility for future satellite missions. At the moment, the experiment

is still under construction, but several experimental steps have already been realized. A

Double MOT-system has been built and the most important experimental parameters were

characterized. To realize a vacuum setup, that is as compact as possible, several new sealing

techniques were employed and the final vacuum chamber has been completed.
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3. THEORY

In this chapter we will stepwise introduce the physical model suggested in this thesis. In

order to do so we will explain the basic terminology and derive the equations that are

needed for understanding the model and its results as presented in chapter 4. The chapter

is organized as follows. In Section 3.1 we describe the analogy between a neutral particle

travelling in a rotating frame and a charged particle travelling in a ring with a magnetic

flux. The physical model, based on the scattering matrix formalism is described in section

3.2. The model relies on the analogy introduced in section 3.1. In sections 3.3−3.5 we apply

the scattering matrix formalism to three special cases and obtain three sets of equations. A

solution for each set describes the interferometer transmission for the given case. In section

3.6 we derive the expression for the interferometer sensitivity and describe its relation to

noise. The coherence length for a none interacting particle in a rotating frame is derived

in section 3.7. Sections 3.8 − 3.9 are devoted to the relation between the finesse and the

average number of cycles that a particle completes in the interferometer and to experimental

limitation on the interferometer parameters.

3.1. The Analogy Between a Massive Particle in a Rotating Frame and a Charged

Particle in a Ring with an induced Magnetic Flux

The phase shift derived in Eq.(1.9) could be also derived by making an analogy between a

massive particle travelling in a rotating atom interferometer and a charged particle travelling

in an interferometer with a magnetic flux [30]. The quantum mechanical phenomenon by

which a charged particle is affected by electromagnetic fields in regions from which the

particle is excluded is known as the Aharonov-Bohm effect [31]. A commonly described

case is when the wave function of a charged particle passing around a ring experiences

a phase shift as a result of the enclosed magnetic field, despite the magnetic field being

zero in the region through which the particle passes. This phase shift has been observed

experimentally by its affect on interference fringes.
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The magnetic force applied on a charged particle is given by

FLor =
e

c
v ×B =

e

c
v × (∇×A) , (3.1)

where v is the particle velocity, B is the magnetic field and A stands for the vector potential.

The Lorentz force is analogous in form to the Coriolis force which acts on a particle in a

rotating frame,

FCor = 2mv × Ω , (3.2)

where the direction of Ω is perpendicular to rotating frame. From this analogy one can

describe a massive neutral particle which feels a Coriolis force in terms of an electron in

presence of effective magnetic field

Beff =
2mc

e
Ω . (3.3)

If a beam of charged particles in a presence of A is split into two paths and then recombines,

the resulting phase difference between the two paths is proportional to the magnetic flux

enclosed by the interferometer

φ =
e

~c

∮

A · dl =
e

~c

∫

B · dσ . (3.4)

Substitute Eq.(3.3) into Eq.(3.4) (Ω is spatially uniform) we obtain

φ =
2m

~

∫

Ω · dσ =
2ms

~
Ω , (3.5)
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as was derived in Eq.(1.9) and the magnitude of Aeff is given by

|Aeff | =
2mcs

eL
Ω , (3.6)

where L is the interferometer perimeter and the direction of Aeff is parallel to the particle

trajectory. According to this analogy, the Hamiltonian of a massive particle in a rotating

frame is given by

Ĥ =
1

2m
(P̂ − e

c
Aeff)

2 =
1

2m
(P̂ − ~

φ

L
)2 , (3.7)

where its eigenstates are the momentum (P̂) eigenstates. In a closed rotating ring the

momentum operator eigenvalues are given by P = ~(2 n π
L

− φ
L
) and therefore the eigen

energies are given by

En =
~

2

2m
(
2nπ

L
− φ

L
)2 . (3.8)

In chapter 4 we will see that the eigenenergies define the transmission resonance location in

an open ring geometry at the limit in which the particle has high probability to complete

many full cycles.

3.2. Scattering-Matrix Formalism

Similarly to quantum electronics where electrons are manipulated inside semiconductor

structures, in atom optics, atoms move inside waveguide structures and are manipulated

using potentials where at least one dimension is comparable to the de Broglie wavelength

of the atoms. Let us denote a guiding potential where a particle moves in by U(y, z), where

the particle is free to propagate in the longitudinal (x) and it is confined in the transverse

dimensions (y, z). Since the transverse dimensions have a finite size the transverse energy
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is quantized and each state of the energy defines a transverse mode. The wavefunction of a

transverse mode j and energy Ej can be written as a product of ψj(y, z)e
ikx, where ψj(y, z)

is the eigenstate of the transverse Hamiltonian.

A symmetrically splitting of the atom guiding potential into two identical output guides

forms a Y beam splitter, as seen in Fig 28, where a coherent beam-splitter can be charac-

terized by a scattering matrix that relates the outgoing wave amplitudes to the incoming

wave amplitudes at the different channels [32]. More specific, if there are three single-mode

channels, we can write











b1

b2

b3











=











s11 s12 s13

s21 s22 s23

s31 s32 s33











.











a1

a2

a3











, (3.9)

where ai are the amplitudes of the incoming wave, bi are the amplitudes of the outgoing

wave and sij is the transmission amplitude between aj and bi. At any given energy E, we

will denote the number of propagating modes at channel p by Mp(E). The total number of

modes is obtained by summing the number of modes in each channel

a1

a2

a3

b1

b2

b3

x

a1

a2

a3

b1

b2

b3

a1

a2

a3

b1

b2

b3

xx

FIG. 28: A scheme of a one dimensional beam-splitter. In such a beam-splitter there is only single mode

of the energy in each channel
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MT (E) =
∑

p

Mp(E). (3.10)

The scattering matrix is of dimensions MT ×MT .

In principle we can calculate the S-matrix starting from the Schrödinger equation

[

(i~∇ + e
c
Aeff)

2

2m
+ U(x, y, z)

]

Ψ(x, y, z) = EΨ(x, y, z) ,

if we know the effective vector potential Aeff (see Eq.(3.6)) and the potential energy U(x,y,z)

at the junction. This could be achieved by calculating the overlap between the eigenstates

in different sides of the waveguide. The transmission probability Tmn is obtained by taking

the squared magnitude of the corresponding element of the S-matrix,

Tm←n = |Sm←n|2 . (3.11)

In order to ensure current conservation the S-matrix must be unitary. We can write in

matrix notation

{b} = [S]{a} , (3.12)

where the matrix [S] has dimensions MT × MT being the total number of modes in all

the channels, while {a} and {b} are column vector representing the incoming and outgoing

wave amplitudes in the different modes in the channels. We assume that the incoming and

outgoing currents in a particular mode m are proportional to the squared magnitudes of the

corresponding mode amplitudes am and bm respectively. Current conservation then requires

that
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∑

m

|am|2 =
∑

m

|bm|2 ,

that is,

{a}†{a} = {b}†{b} . (3.13)

Substituting Eq.3.12 into Eq.3.13 we obtain

{a}†{a} = {Sa}†{Sa} = {a}†[S]†[S]{a} . (3.14)

Hence

[S]†[S] = I , (3.15)

so in terms of the elements of the S-matrix we have

MT
∑

m=1

|Smn|2 = 1 , (3.16)

The general S matrix of a three channel junction (Y shaped-junction) depends on twelve

parameters and given by

Ŝ =











r11 t12 t13

t21 r22 t23

t31 t32 r33











, (3.17)

where [S]†[S] = I and tij, rij are complex numbers. In a coherent microscopic system we
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can assume that there is time reversal symmetry where t → − t and k → − k. In a

beam splitter it means that a particle that passes from channel i to channel j suffer the

same phaseshift as a particle that passes from channel j to channel i, i.e tij = tji [33, 34].

Under the assumptions that the junction is not fully symmetric i.e. t12 = t13 6= t23, as seen

in Fig.(29), the scattering matrix depends on eight parameters and becomes into

Incident wave

Reflacted wave

Transmitted wave
Bup

Ado

Bdo

Aup

B'up

A'up

B'do

A'do

ch.2

ch.3

ch.1

FIG. 29: A schematic representation of an asymmetric double Y junction rotating interferometer where

the transmission amplitude (TA) between ch.1 and ch.2 is equal to the TA between ch.1 and ch.3 but is not

equal to the TA between ch.2 and ch.3

Ŝ =











r1 t1 t1

t′1 r t

t′1 t r











, (3.18)

3.3. Real Amplitudes Scattering Matrix

Due to the analogy between a massive particle travelling in a rotating frame and a charged

particle travelling in a ring with a magnetic flux, a theoretical examination of beam-splitters

with similar structure to the electronic case [31] is a natural choice.

Assuming that the transmission and reflection amplitudes are real, one can express the scat-

tering matrix with four parameters and from unitarity consideration it could be expressed

in terms of a single parameter, the coupling between the symmetric interferometer arms

(internal transmission amplitude), by the following matrix
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Ŝ =











1 − 2t
√

2 t(1 − t)
√

2 t(1 − t)
√

2 t(1 − t) −(1 − t) t
√

2 t(1 − t) t −(1 − t)











. (3.19)

Mathematical description of the transmission in a Double-Y interferometer could be given

from the solution of this set of equation

Ŝ.











1

Bup

Bdo











=











ra

Aup

Ado











, Ŝ.











0

A′up

A′do











=











ta

B′up

B′do











, (3.20)

where A′, B′, A,Bup,do are the internal amplitudes (see Fig.(29)), ta is the total transmission

amplitude and ra is the total reflection amplitude. Using the relations,

A′up = Aupe
i(k− φ

L
)L

2 , A′do = Adoe
i(k+ φ

L
)L

2 , (3.21)

B′up = Bupe
i(k+ φ

L
)L

2 , B′do = Bdoe
i(k− φ

L
)L

2 ,

where k is the particle momentum, L is the interferometer perimeter and φ is the effective

flux, we obtain the following equations,

Ŝ ·











1

Bup

Bdo











=











ra

Aup

Ado











, Ŝ ·











0

Aupe
i(k− φ

L
)L

2

Adoe
i(k+ φ

L
)L

2











=











ta

Bupe
i(k+ φ

L
)L

2

Bdoe
i(k− φ

L
)L

2











. (3.22)

A solution for this set yields the total transmission amplitude, ta and the transmission, i.e.

the probability of a particle to exit the interferometer is given by T = |ta|2.
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3.4. Horizontal Complex Amplitudes Beam-Splitter

There are experimental limitations to realizing a Y (3 port) beamsplitter in matter waves

(e.g. via light or magnetic fields). In any case, as may be seen from the scattering matrix

in the previous section, such a beam splitter induces uncontrolled inherent reflection to

preserve unitarity. The beam splitter described in the previous sections was motivated by

interferometers realized for electrons in conductors. An alternative approach would be to

design matter wave beam splitters based of the optical analogue having 4 ports (rather

than 3 above). Such an X beam splitter is the topic of the following sections.

As we would like to continue to focus on 3 port junctions, we will in the following analyze

an X beamsplitter with a ”mirror” in front of one of the channels. In such of atomic beam

splitter a potential barrier splits an atomic beam into two trajectories , as seen in Fig.(30).

1 2

3ei

1 2

3eiδ

FIG. 30: A scheme of a horizontal complex amplitudes beam splitter. The reflection amplitude of the

mirror (green) in channel 4 and the distance between the potential barrier (blue) and the mirror defines the

geometric phase δ.

A beam that comes from channel 1 can either be transmitted to channel 3 with amplitude

t or reflected to channel 2 with amplitude r. A beam that comes from channel 2 can be

either reflected to channel 1 or transmitted to channel 4, reflect back by the mirror while

accumulating a geometrical phase and transmitted back to channel 2 or reflected to channel

3. A beam that comes from channel 3 can be either transmitted to channel 1 or reflected

to channel 4, reflect back by the mirror and reflected back to channel 3 or transmitted to
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channel 2. It can be shown that the S-Matrix for the outputs of channels 1,2,3 in terms of

the inputs at the same channels is given by (see Appendix A)

Ŝ =











0 r t

r t2eiδ rteiδ

t treiδ r2eiδ











. (3.23)

From the demand for unitarity we obtain that |t|2 + |r|2 = 1 and r∗t+ t∗r = 0. By rewriting

the second condition in terms of absolute value and phase we obtain, 2|r||t| cos[β − α] = 0,

i.e. this conditions implies that there is always a phase difference of π
2

between r and t.

We may assume that t is real and then r is pure imaginary, in particular we discuss the

case where t = 1√
2
, in order to obtain a symmetric beam splitter. This choice results in the

S-matrix

Ŝ =











0 i√
2

1√
2

i√
2

1
2
eiδ i

2
eiδ

1√
2

i
2
eiδ −1

2
eiδ











. (3.24)

There are two options to configure this interferometer. In the symmetric configuration the

mirror ports are set in the same direction, e.g. in the ”upper” part of the the interferometer,

in both sides of the interferometer, as seen in Fig. (31 a). A particle that travels in the

”lower” part accumulates a phase of eiπ due to reflections and the total transmission will

be zero for φeff = 0 and 1 for φeff = π. In the anti-symmetric configuration the mirror

ports are set in opposite directions in both sides of the interferometer, as seen in Fig. (31

b). The total transmission will be 1 for φeff = 0 and zero for φeff = π, similar to the real

amplitudes case.
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(a)

(ab)(a)

(a)

(b)

FIG. 31: (a) The mirror ports set in the same direction on both sides of the interferometer. (b) The mirror

ports set in opposite directions on both sides of the interferometer.

3.5. Vertical Complex Amplitudes Scattering Matrix

Similarly configured to the horizontal beam splitter, is the vertical beam splitter. Unlike

the horizontal configuration, this configuration allows symmetric scattering between port 2

and 3 and a multipath trajectory inside an interferometer constructed from two horizontal

beam splitters. A scheme of the horizontal beam splitter is seen in Fig.(32).

 

1 2

3

e
1 2

3

1 2

3
eiδ

FIG. 32: A scheme of a vertical complex amplitudes beam splitter.

A beam that comes from port 1 can either be transmitted to port 3 with amplitude t or
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reflected to port 4 with amplitude r. The reflected beam accumulates a phase of eiδ and

can either be reflected back to port 1 with amplitude r or transmitted to port 2. A beam

that comes from port 2 can be either reflected to port 3 or transmitted to port 4. The

transmitted beam accumulates a phase of eiδ and can either be reflected back by the mirror

to port 1 with amplitude r or transmitted to port 3 with amplitude t. A beam that comes

from port 3 can be either transmitted to port 1 with amplitude t or reflected to port 2 with

amplitude r. It can be shown that the S-Matrix for the outputs of ports 1,2,3 in terms of

the inputs at the same ports is given by

Ŝ =











r2eiδ rteiδ t

rteiδ t2eiδ r

t r 0











. (3.25)

From the demand for unitarity we obtain the same conditions like in the vertical configura-

tion. Under the assumption that r is real (and then t is pure imaginary) and by using the

first condition we obtain the relation between r and t. In this case the S-matrix becomes

into

Ŝ =











eiδr2 i eiδr
√

1 − r2 i
√

1 − r2

i eiδr
√

1 − r2 eiδ(−1 + r2) r

i
√

1 − r2 r 0











. (3.26)

Setting r → 1, implies |Ŝ12| ≈ |Ŝ13|, and a multipass trajectory with a symmetric scattering

between port 2 and 3 is achieved. A scheme of this interferometer is shown in Fig.(33)

3.6. Noise and Gyroscope Units

In our model we treat the atoms as quantum (rather than classical) particles, which are

represented by a continious wave function. The square amplitude of the transmitted

wave is the probability of an atom to exit the interferometer. On the other hand, in
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FIG. 33: A scheme of a vertical complex amplitudes interferometer.

a real experiment, we measure the atoms as classical discrete particles. Therefore, by

measuring the numbers of atoms passing a point in the interferometer and detecting the

number of atoms at the exit of the interferometer, for some time interval, one would

expect to count a different number of atoms in one time interval versus the next. It is

impossible to predict the motion of individual atom, but it is possible to calculate the

average number of atoms drifting past a particular point per time interval. The variation

about the mean value or average of these quantity is the noise. Shot-noise is due to the

corpuscular nature of transport and it is always associated with direct particles current

flow. In fact, it is required that there be direct current flow or there is no shot-noise.

Generally, in order to discern shot-noise, a particle that enters the detection point

must do so as a purely random event and independent of any other atom crossing this

point. Since the events are random and independent, Poisson statistics describe this process.

Short-term sensitivity (STS) define the ability to detect small rotations over short time

scales. It depends on interferometer area, the mass of the atom and on signal-to-noise ratio

(SNR). Gyroscope sensitivity is typically referred in units of (rad/sec)/
√
Hz. These units

signify a rotation rate (rad/sec) measurement that is presumed to be limited by shot-noise.

In such a case the shot-noise is an intrinsic noise of the system and it is impossible to

overcome it, unlike fluctuations from external sources/fields which, theoretically, could be

screened. As stated, shot-noise processes obey Poisson statistics with standard deviation

equal to
√
N of the number of particles, and the total number of particles in the signal

increases linearly with time. Therefore,a shot-noise-limited signal improves like
√
t with
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integration time t. Dividing by
√
Hz normalizes the result by the measurement bandwidth,

yielding the sensitivity in 1 second.

To present rotation sensitivity as a function of system parameters and its relation to the

SNR, let us express the change in the number of atoms that exit the interferometer due to

rotations in the form:

∆Nout =
∆Nout

∆Ω
∆Ω . (3.27)

In order to notice any changes in the number of atoms that exit the interferometer, we

demand that any change will be larger than the noise of the system. Since the noise in a

shot-noise limited system is Poissonian, we demand that,

∆Nout

∆Ω
∆Ω ≥

√

Nout , (3.28)

and the STS is given by

∆Ω =

√
Nout

dNout

dΩ

=

√
Nout

dNout

dφ
dφ
dΩ

. (3.29)

This derivation is with analogy to Gustavson’s derivation [26] as explained at Appendix

B. By substituting Nout = Nin T , where Nin is the incoming atomic flux and T is the

interferometer transmission Eq.(3.29) becomes

∆Ω =
1√

Nin
dφ
dΩ

√
T

dT
dφ

=
∆φ√
Nin

dφ
dΩ

, (3.30)

where ∆φ ≡
√

T
dT
dφ

is the intrinsic sensitivity of the interferometer and it depends only on the

beamsplitter characteristics.

3.7. Coherence length

An incident particle flux with spectral width ∆k may be viewed as a statistical mixture of

wavepackets with random initial phases and/or random initial locations, such that inter-

ference occurs only if the path difference is smaller than the coherence length ∆x = 1/∆k [35].
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A Fourier integral representation of one-dimensional wave-packet is given by

ψ(x) =

∫ ∞

−∞
a(k)eikxdk , (3.31)

assuming Gaussian momentum distribution ψ(x) becomes

ψ(x) =
A√

2π∆k

∫ ∞

−∞
exp

[

−(k − k0)
2

2∆2
k

]

eikxdk , (3.32)

where the mean wavenumber 〈k〉 = k0 and ∆k is the standard deviation of k. We change

variables to k′ ≡ k − k0, u ≡ k′

√
2∆k

and z ≡ u− i∆kx√
2

, to obtain

ψ(x) = A exp

[

− x2

2∆2
x

]

eik0x . (3.33)

The requirement for normalization
∫

ψ∗ψdx = 1 provides the value of A

A =

√

∆k√
π

=

√

1

∆x

√
π
. (3.34)

In an un-revolving interferometer with different internal channel length, as sketched in Fig.

34, the length difference between the internal channels ∆L = |L2 − L1| must be much

smaller than ∆x or the spatial overlap of the wave contributions will go down to zero and

no interference will occur (this statement still holds even after the time evolution has made

the wave packets broader).

L1

L2

FIG. 34: A scheme of an interferometer with different internal channel length.
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In terms of phases this condition becomes k|L2 − L1| � k∆x.

3.8. The Relation Between the Finesse and the Average Number of Cycles

The Sagnac phase difference is accumulated along the arms of a revolving interferometer

and as arises from Eq.(1.9) it is proportional to the interferometer area. We expect that

increasing the number of full cycle trajectories transversed by the particle, will increase

the interferometer sensitivity or alternatively allow to reduce the interferometer area while

maintaining the same sensitivity of a larger area single pass interferometer.

In the high finesse limit where we can neglect back reflections inside the interferometer loop

(i.e. t → 1 in the real amplitudes model and r → 1 in the vertical complex model), the

probability of a particle to complete N cycles in the interferometer is t4N . The normalized

probability to complete up to N cycles is given by

P (N) = (1 − t4)
N
∑

n=0

t4n , (3.35)

(normalized, i.e. P (N → ∞) → 1) and the average number of cycles is given by

〈N〉 = (1 − t4)
∞
∑

n=0

n t4n =
t4

1 − t4
. (3.36)

Alternatively, the distance between adjacent transmission peaks is called the free spectral

range (FSR) and as will be shown in the results chapter, in our case it is given by

∆FSR =
2π

L
. (3.37)

The FSR is related to the full-width half-maximum, ∆k, of any one transmission peak by a

quantity known as the finesse

F =
∆FSR

∆k
. (3.38)

In the real amplitude t→ 1 model, ∆k is given by
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∆k =
4(1 − t)

L t
, (3.39)

and the finesse is given by

F = 2π
t

4(1 − t)
. (3.40)

Up to a 2π factor, the leading order of the Taylor expansion (around t → 1) is equal to

1
4(1−t)

for both F or 〈N〉, i.e. these quantities scale similarly as t becomes closer to one.

In practice the number of cycles is limited by experimental and technological limitations as

will be shown in the next section. In addition, the number of cycles is limited by the required

band width or response time of the sensor. The larger the finesse the longer the response

time will be as at any given time, the interferometer transmission will still be affected by a

phase accumulated previously under a different angular velocity.

3.9. Experimental Limitation on the Interferometer Parameters

The approximated average life time of an atom in an ultra high vacuum chamber (10−10 Torr)

is about τ = 10sec due to background gas collisions. The maximal atom velocity is limited

by the interferometer curvature. For example, if the atom is guided in the interferometer

under the influence of a magnetic potential, the resultant force, which keeps the atoms in

the radial axis, should be larger than the centrifugal force

µB∇B > m
v2

r
(3.41)

where µB is the Bohr magneton, B is the magnetic field, v is the atom velocity, m is its

mass and r is radius of the interferometer. From Eq.(3.41) we obtain

v <

√

µB∇Br
m

. (3.42)
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For Cs atom moving in an interferometer with a radius of 2.6mm (for this radius the area

is equal to the area of the Stanford atom interferometer) and with a feasible experimental

magnetic gradient of ≈ 103 T
m

, the maximal velocity is ≈ 10 m
sec

. Considering the life-time

of the atom and its velocity we obtain that the maximal path inside the interferometer

is d ≈ 100m. This path is also equal to the number of cycles times the interferometer

perimeter d = N 2πr. The geometrical limitation on the radius minimization is due to the

resolution of the chip fabrication and the limitations on the radius maximization is due to

chip size. In order to achieve high finesse the interferometer radius should be decreased,

but as we see in Eq.(3.30) the sensitivity scales like 1
r2 , and hence we should choose a large

interferometer radius. In the case of r = 2.6 10−3m the estimated average number of cycles

in the interferometer is

〈N〉 =
v τ

2 π r
≈ 6000 , (3.43)

and each cycle takes

τ0 =
2 π r

v
≈ 1.5 10−3 sec . (3.44)

By substituting 〈N〉 = 6000 into Eq.(3.36) we find the matrix parameter t = 0.99996 which

satisfies this equation. This rough estimation can be made more precise by taking in account

the exact expression for the trapped atom life time due to background gas collisions. We

then find the probability to be

P (N) = (1 − t4)
N
∑

n=0

t4n exp[−nτ0
τ

] , (3.45)

where P (∞) 6= 1 due to the atom collisions with the background gas inside the interferom-

eter. The average number of cycles is then given by

〈N〉 = (1 − t4)

∞
∑

n=0

n t4n exp[−nτ0
τ

] =
exp[ τ0

τ
] t4(1 − t4)

(exp[ τ0
τ
] − t4)2

. (3.46)
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FIG. 35: Average number of cycles vs the matrix parameter t.

The maximal average number of cycles 〈N〉 ≈ 1650 is achieved around t = 0.99996, as seen

in Fig.(35).
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4. RESULTS

In this chapter we present the results of the model, i.e. the solutions for the equations given

in chapter 3 for different beam splitters. The chapter is organized as follows. In Section

4.1 we describe in general terms the expected transmission of an interferometer based on a

real amplitudes beam splitter (see section 3.3). In sections 4.2− 4.4 we present in detail the

expected transmission and the expected sensitivity for three different regimes of the matrix

parameter t (see Eq.3.19): t � 1, t = 1
2

and t → 1. In section 4.5 we incorporate the

results of sections 4.2 − 4.4 to obtain the main result of this chapter, an expression for the

sensitivity for any matrix parameter t, as a function of the incoming particle flux, the atomic

mass and the interferometer area. In this section, we verify the assumption that the high

finesse interferometer will allow to reduce the interferometer’s size while still achieving high

sensitivity. In section 4.6 we present the expected transmission and the expected sensitivity

for an interferometer based on an horizontal, complex amplitudes, beam splitter (see section

3.4) and in section 4.7 we present the results for a vertical, complex amplitudes, beam

splitter (see section 3.5), which is perhaps the most experimentally feasible on an atom chip

among the interferometers described in chapter 3.

We note that in most sections of this chapter, the main numerical results (sensitivity results)

are calculated using the parameters reported in Gustavson’s thesis [26]: Nin = 1.6 1010 atom
sec

,

m = 2.2 10−25 kg (Cesium atom) and r = 2.6 10−3m, which allows for a comparison between

the results presented here and those of up-to-date experiments.

4.1. The Transmission of an Interferometer Based on a Real Amplitudes

Beam-Splitter

In this section we give a short description of the transmission of an interferometer based

on a real amplitude beam splitter. A more detailed description will be given in sections

4.2 − 4.4.

Recalling Eq.(3.19) we notice that the matrix parameter t governs the behavior of the

particle at the beam splitter. For t � 1, there is high reflectivity at the junction, while for
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t→ 1, the particle has a high probability to be transmitted from one internal loop channel

to the other internal channel, i.e. from channel 2 to channel 3 and vice versa. Solving

Eq.(3.22) results in the wave amplitudes at the interferometer, and in particular we obtain

the total transmission amplitude of the interferometer, ta, where a general expression for

the interferometer transmission is given by

T = |ta|2 =
16(1 − t)2t2 cos2

(

φ
2

)

sin2
(

kL
2

)

((1 − t)2 + (−1 + 2(1 − t)t) cos (kL) + t2 cos (φ))2 + 4(1 − t)2t2 sin2 (kL)
.(4.1)

The interferometer transmission has a 2π
L

period and it strongly depends on the parameter

t and we can distinguish between three major regimes of t, t� 1, t = 1
2
, t ≈ 1. In Fig.(36)

we present a few representative examples at certain values. For t� 1, the probability of an

atom to travel forward and backward is large, while the probability to complete a full cycle

or exit the interferometer is small. On the other hand, we know that the eigenvalues of the

momentum in a ring geometry are given by k = 2 n π
L

. Thus, unless kL(mod 2π) ≤ t, i.e

interference occurs despite the low probability to exit the interferometer, the transmission at

this regime is small with respect to the other regimes (Fig.(36a,b)), and it becomes smaller,

down to zero, as φ becomes larger between 0 < φ < π and vice versa between π < φ < 2π.

From inspecting the scattering matrix, it is clear that for t = 1
2

the probability of a particle

to be reflected at the entrance of the interferometer (for instance, the left beam splitter

in Fig 29) is equal to zero, thus, the particle must enter the interferometer. At the right

beam splitter the particle could exit the interferometer, it could also be reflected back to

the same channel, or it could be internally transmitted to the second channel, with opposite

amplitude. This leads to a fully destructive interference at the left beam splitter and to

a single path trajectory. At φ = 0, this behavior of the particle manifests itself by unity

transmission for every k. As φ increases, periodic narrow dips appear, located at k = 2nπ
L

.

These dips become wider and the transmission becomes smaller as φ is getting larger,as seen

in Fig(36c,d). Recall Eq.(3.19) we notice that for t ≈ 1, the term Ŝ11 = 1 − 2 t implies a

low probability to enter the interferometer. On the other hand, the terms Ŝ23,32 = t implies

that once the particle enters the interferometer it has high probability to complete many
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FIG. 36: The transmission of an interferometer at a few representative regimes. (a) At t � 1 and φ 6= 0

the transmission curve is double peaked. As φ is getting larger the transmission is getting smaller. (b)

t � kL (mod 2π) i.e. reflection effects are stronger than interference effects. Thus, the transmission vs φ

is poor. (c) At t = 1
2 , and φ = 0, the transmission is equal to unity for every k. As φ increases, periodic

narrow dips appear, located at k = 2nπ
L

. These dips become wider and the transmission becomes smaller

as φ is getting larger. (d) For kL 6= 2nπ and around φ = 0 the transmission is ≈ 1 and small change in φ

causes a small change the transmission. (e,f) At t ≈ 1, the probability of an atom to travel along a large

number of cycles is high. Thus, the phase difference between a clockwise trajectory and a counter-clockwise

trajectory is large. The transmission curve characterized by narrow peaks due to this phase shift and any

small displacement from resonance causes a destructive interference and the transmission goes to zero.

full cycle passes, while the probability to be reflected back to the origin channel is very

small. This motion could be approximated by a motion of a particle in a closed ring. Recall

Eq.(3.8) we obtain that, in this regime, the location of the peaks is given by
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kn =
2nπ

L
± φ

L
, (4.2)

as seen in the inset of Fig.(38b). At φ = 0 the transmission curve is single peaked periodic

Lorentzian shape with peaks at k = 2nπ
L

. As φ increases, the lineshape transforms into two

separated peaks as seen in Fig.(36e, f).

The transmission maximal value along k depends on two factors, the matrix parameter t

and the effective flux φ = 2 m s
~

Ω (see Eq.(3.5)). In Fig(37) we see that the maximal value

becomes smaller, down to zero, as t becomes smaller and φ becomes closer to π. The maximal

transmission value dependence on t is symmetric around φ = π, where the transmission is

zero for every t.
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FIG. 37: Transmission maximal values of interferometer with radius of r = 500 µm vs the parameter t, for

different φ′s. For small φ and t ≥ 1
2 the maximal transmission value is 1, this value decreases a little. As φ

increases the decrease in the maximal value occurs at larger t. At φ → π the transmission is very low for

t < 1 and a maximal transmission value of 1 achieved only for t → 1.

By taking the derivative of the transmission with respect to k, and equating to zero, we

obtain the shift of the peak location, relative to k = 2 n π
L

at φ = 0, due to rotations

∆k =
2

L
cos−1

[
√

1 − t4 sin4(φ)

2(cos(φ) + 1)|1 − 2t|t2 sin2(φ)

]

. (4.3)
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At t � 1, ∆k is very small and hardly changes due to rotations. At this values of t, there

is a high probability to follow forward and backward trajectories, thus, the transmission is

insensitive to rotations. At t→ 1
2
, ∆k rapidly converges to π

L
, due to the forward scattering

and backward scattering symmetry, as mentioned above. As t increases towards 1, ∆k → π
L
,

as seen in Fig.(38).
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FIG. 38: The peak shift due to rotations in interferometer with radius of r = 500 µm. (a) At t → 1
2 , ∆k is

rapidly converges to π
L

and it rapidly converges back to 0 as t → 2π. The slope of the orange curve (t ≈ 1)

is 1
L

. (b) For small φ, the transmission curve is double peaked around k = 2 n π
L

, at a larger range of t, but

the peak shift is poor at this range. As φ increases the transmission curve is double peaked at a smaller

regime of t, but the peak shift is more significant. As φ approaches π the transmission is double peaked up

to t ≈ 0.4. At this range, the transmission is very poor, and the transmission curve become rapidly single

peaked.
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4.2. Interferometer Transmission and Sensitivity Calculation for t � 1

For t � 1 the probability to pass from channel to channel is very small compared to the

probability of reflection within the channels (see Eq.(3.19)). In other words the particle

moves back and forth along a channel without crossing the junction. If t is also much

smaller than kL (mod 2π), multi-path interference of waves travelling many times back and

forth add up destructively at the output channel. In this case the transmission amplitude

(TA) could be approximated by two independent sums over trajectories of each arm of the

interferometer

ta ≈
∞
∑

n=0

√

2(t− t2)

(

exp

[

i(k − φ

L
)
L

2

](

(t− 1) exp

[

i(k +
φ

L
)
L

2

]

(t− 1) exp

[

i(k − φ

L
)
L

2

])n

+(4.4)

+ exp

[

i(k +
φ

L
)
L

2

](

(t− 1) exp

[

i(k − φ

L
)
L

2

]

(t− 1) exp

[

i(k +
φ

L
)
L

2

])n)
√

2(t− t2) =

=

∞
∑

n=0

4(t− t2) cos
φ

2
eik L

2 (1 − t)2n enikL =
4(t− t2) cos(φ

2
)eik L

2

1 − (1 − t)2eikL
,

and the transmission is given by

T = |ta|2 =
16t2(1 − t)2 cos2(φ

2
)

1 + (1 − t)4 − 2(1 − t)2 cos(kL)
≈ 16t2(1 − t)2 cos2(φ

2
)

2(1 − cos(kL))(1 − 4t)
≈ 4t2 cos2

(

φ
2

)

sin2
(

kL
2

) .(4.5)

Under the conditions in which this approximation is valid, the device transmission is poor

due to the 4t2

sin2(kL
2

)
factor which is very small, as shown in Fig.(39).

If kL ( mod 2π) ≤ t � 1, although t is small, multi-path interference of waves travelling

many times back and forth add up constructively at the output channel, and the transmission

is resonantly shaped with a periodic single peak, as shown in Fig.(40).

Since the transmission depends on the particles momentum we distinguish between three

regimes of bandwidth of the momentum.
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interference of waves travelling many times back and forth add up destructively at the output channel and

the transmission is poor. The red dashed line is the approximated transmission.
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thus for φ = 2 n π, interfering waves add up constructively at the output channel. (a) zoom out,(b) zoom

in.

1. Monochromatic input wave

Theoretically, at very low temperatures, the width of the momentum distribution of the

atoms ∆k may be much smaller than the width of the transmission resonance peak ∆T

(∆k � ∆T ) and in such a case, we can assume that the incoming wave is monochromatic.

The width of ∆T and its slope depends on φ̃ ≡ kL (mod 2π), where the peak becomes

narrower and the slope becomes steeper as φ̃ becomes smaller, as shown in Fig.(40).

Substituting Eq.(4.1) into Eq.(3.30), results in the sensitivity of the interferometer in this

regime. After substituting, one may find the maximal intrinsic sensitivity vs φ̃ for t = 0.01

as shown in Fig.(41) and the location (in φ) vs φ̃ as shown in Fig.(42). Fitting these curves
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show that these quantities scale as square root of φ̃

∆φmax = 14.85φ̃
1
2 ,

φmax = 19.89φ̃
1
2 . (4.6)

From this example (note that the coefficient depends on t) we learn that ∆φmax → 0, as

φ̃→ 0. In order to achieve momentum distribution narrower than ∆T it is needed to cool the

atoms many orders of magnitude lower than a feasible temperature (See App.C). Therefore,

this kind of operation is not applicable.
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FIG. 41: Logarithmic scale of the maximal intrinsic sensitivity of rotating interferometer with matrix

parameter t = 0.01 vs Log[φ̃]. The maximal sensitivity goes to zero like the square root of φ̃.
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like the square root of φ̃.
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2. Narrow Band

Another regime is the narrow band regime, where the momentum of atoms entering the

interferometer is determined by a Gaussian distribution

Iin(k) = I0 G(k) = I0 exp

[

−1

2

(

(k − k′)

∆k

)2
]

(4.7)

(∆k is the Gaussian width, I0 = 1√
2π∆k

and k′ is the most probable momentum) and the width

of the Gaussian is comparable with the width of the transmission peak, i.e. ∆k ≈ ∆T , where

∆T = 4t(1−t)
L(1−2t)

(see derivation in App. D). The number of atoms that exit the interferometer

is given by

Nout = Nin

∫ π/L

−π/L

dk Iin(k) T (k, φ) . (4.8)

It is easy to show that an integral of the form (note that Iin ∼ L)

I = L

∫ π/L

−π/L

f(k · L)dk, (4.9)

is equivalent to

I ≡
∫ π

−π

f(u)du , (4.10)

where u ≡ k · L and the dependence on L vanishes for any f . For simplicity and due to

periodicity of the transmission we may assume that k′ = 0. A numerical integration for

∆k = ∆T , where t = 0.01 and L = 2 π 2.6 10−3mm, is given in Fig.(43).

To this numerical integration one can fit an approximate analytical solution

Nout/Nin ≈ 2

3
cos[

φ

2
]2 . (4.11)
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A correspondence between the numerical integration and the analytical approximation is

shown in Fig.(43). Substituting the parameters given in the introduction to this chapter

and Eq.(4.11) into Eq.(3.30), yields the sensitivity of the interferometer in this regime, as

seen in Fig.(44). A maximal sensitivity of 1.1 10−10 rad/sec/
√
Hz is achieved at φ = π,

which is equivalent to rotation rate of π ~

2ms
= 3.53 10−5 rad/sec.
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FIG. 44: Interferometer sensitivity for t = 0.01, L = 2π2.6 mm, m = 2.2 10−25 Kg and Nin = 1.6 1010 atom
sec

at the narrow band regime. A maximal sensitivity of 1.1 10−10 rad/sec/
√

Hz is achieved at φ = π, which

is equivalent to rotation of π ~

2ms
= 3.53 10−5 rad/sec.

Like in the monochromatic case, the atoms should be cooled to a temperature which is lower

than a feasible temperature (See App.C).
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3. Wide Band

The third regime is the wide band regime where ∆k � 2 π
L
> ∆T . Similarly to the narrow

band regime the number of atoms that exit the interferometer is given by an integration

over the product I(k)T (k, φ), but unlike the narrow-band regime the limits are all over the

spectrum

Nout = Nin

∫ ∞

−∞
dk Iin(k) T (k, φ) . (4.12)

In appendix D we show in details that this integral can be approximated by

Nout ≈ Nina1(∆1 − ∆2)
L

2
, (4.13)

where

∆1 =

√

√

√

√

√

√

1 − 1−2t+2t2

2(1−t)2
sin2[φ

2
]

L2

(

(

1−2t+2t2

4t(1−t)

)2

− 1
2

) ; ∆2 =

√

√

√

√

√

t2
(

1 − 1−2t+2t2

2(1−t)2
sin2[φ

2
]
)

L2(1 − t)2
(

1

sin4[ φ

2
]
− t2

4(1−t)2

) ;

a1 =
cos2[φ

2
]

1 − 1−2t+2t2

2(1−t)2
sin2[φ

2
]
. (4.14)

We note that the dependence on r vanishes due to the 1
L

factor in the terms ∆1 and ∆2. In

Fig.(45) we see the changing of Nout due to varying in φ for matrix parameter t = 0.01 and

an approximate analytical fit given by

Nout/Nin ≈ 2t

1 − t
cos[

φ

2
]2 . (4.15)
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of
∑

∞
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Iin(2nπ

L
)
∫ π

−π
dk T (k, φ). The blue dashed line is the Lorentzians subtraction approximation

(Eq.(4.13)). The dashed red line is the a fit to 2t
1−t

cos[φ

2 ]
2
.

In this regime, where ∆k � 2 π
L

, the coherence length is much smaller than L, ∆x � L (see

section 3.7). From this, it follows that only equal order trajectories can interfere. Under

this assumption we can rewrite Eq.(4.5)

ta ≈
∞
∑

n=0

4(t− t2) cos
φ

2
eik L

2 (1 − t)2n enikL =

∞
∑

n=0

an e
nikL →

∞
∑

n=0

an , (4.16)

where the dependence on k vanishes. It is interesting to note that the resulting transmission

T = |∑∞n=0 an|2 can be approximated, up to a t
2

factor, to the result given in Eq.(4.15)

Substituting the parameters given in the introduction to this chapter and Eq.(4.15) into

Eq.(3.30), yields the sensitivity of the interferometer in this regime, as seen in Fig.(46). A

maximal sensitivity of 6.28 10−10 rad/sec/
√
Hz is achieved at φ = π, which is equivalent to

rotation rate of π ~

2ms
= 3.53 10−5 rad/sec.

In summary, we find that a better sensitivity is achieved as the bandwidth becomes

narrower (see Table.(I)), i.e. the temperature is lower. As the required temperature for the

monochromatic regime i.e. the narrow band regime is lower than an experimentally feasible

temperature, in the following sections we focus on the wide band regime. Furthermore,

by examining the scattering matrix (Eq.3.19), we notice that at the regime t � 1 the

probability amplitude of internal reflection is ≈ −1 and the probability of an atom to be

reflected forward and backwards is ≈ 1. Every time an atom moves forward and backward
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FIG. 46: Interferometer sensitivity for t = 0.01, L = 2π2.6 mm, m = 2.2 10−25 Kg and Nin = 1.6 1010 atom
sec

at the wide band regime. A maximal sensitivity of 6.28 10−10 rad/sec/
√

Hz is achieved at φ = π, which is

equivalent to rotation of π ~

2ms
= 3.53 10−5 rad/sec.

Type Max. Sensitivity

( rad
sec
/
√
Hz)

Monochromatic → 0

as kL(mod 2π) → 0

Narrow Band 1.1 10−10

Wide Band 6.28 10−10

TABLE I: Interferometer sensitivity for different bandwidths

a cancelation of the phase shift occurs, hence the sensitivity at this regime expected to be

lower than regimes of higher t.

4.3. Interferometer Transmission and Sensitivity Calculation for t = 1
2

By substitution of t = 1
2

into Eq.(4.1) we obtain the transmission
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T (k, t =
1

2
) =

4 cos2 φ
2

sin2 kL
2

(0.5 − cos kL+ 0.5 cosφ)2 + sin2 kL
. (4.17)

For φ = 0 the transmission is unity for every k and as φ becomes different than zero occur

dips around k L = 2nπ, as seen in Fig.(47).
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FIG. 47: Interferometer Transmission for t = 1
2 . The location of the dips is constant for different rotation

rates, but the width of dips is getting larger with φ, between 0 ÷ π and vice versa between π ÷ 2π

Similarly to the t � 1 regime we would like to simplify the expression for the transmission

in a way that will simply demonstrate, in mathematical terms, the behavior of the function

and will permit to calculate the integral
∫∞
−∞ dkI(k)T (k, φ). From Eq.(4.17) we obtain

T (k0 + ∆k, t =
1

2
) =

4 cos2 φ
2

sin2 k0L+∆kL
2

(0.5 − cos (k0L+ ∆kL) + 0.5 cosφ)2 + sin2 (k0L+ ∆kL)
(4.18)

Algebraic manipulation and Taylor expansion around k0 = 2nπ
L

will give ,
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T (k0 + ∆k, t =
1

2
) =

4 cos2 φ
2

sin2 ∆kL
2

(0.5 − cos (∆kL) + 0.5 cosφ)2 + sin2 (∆kL)
(4.19)

=
4 cos2 φ

2
sin2 ∆kL

2
(

sin2 (φ
2
) − 2 sin2 ∆kL

2
)
)2

+ sin2 (∆kL)

≈ cos2 φ
2
(∆kL)2

sin4 (φ
2
) − sin2 (φ

2
)(∆kL)2 + (∆kL)2

=
(∆k)2

sin2 (φ

2
) tan2 (φ

2
)

L2 + (∆k)2
≈ (∆k)2

( φ2

4L
)2 + (∆k)2

,

For φ . π
2
, a good periodic approximation for Eq.(4.18) is given by

T (k, t =
1

2
) = 1 −

∞
∑

n=−∞

∆(φ)2

(

k − 2nπ
L

)2
+ ∆(φ)2

= 1 −
∞
∑

n=−∞
T̃n(k, φ) . (4.20)

where ∆(φ) = φ2

4L
. The sum in Eq.(4.20) converges into

T (k, t =
1

2
) = 1 − φ2 sinh(φ2

4
)

8 cosh(φ2

4
) − 8 cos(kL)

. (4.21)

The transmission vs the momentum and the approximated transmission shown in Fig.(48)
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FIG. 48: Interferometer transmission vs the momentum, for φ = π
2 . The dashed red line is the approximated

transmission as given in Eq.4.21.

As mentioned above, similarly to the t � 1 regime, the number of atoms that exit the
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interferometer is given by

Nout ≈ Nin

∞
∑

n=−∞
Iin(

2nπ

L
)

∫
(2n+1)π

L

(2n−1)π
L

dk T (k, φ) = Nin
L

2 π

∫ π
L

− π
L

dk T (k, φ) , (4.22)

where the dependence on L vanishes (see Eq.(4.10)). A numerical solution to Eq.(4.22) and

an analytical fit to

Nout

Nin
≈ a1

(

1 − exp

[

−1

2

(

φ− π

a2

)2
])

, (4.23)

are shown in Fig.(49) where a1 ≈ 1.01 and a2 ≈ 1.06.
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FIG. 49: The black curve is the numeric integration of Nout(φ)
Nin

. The dashed blue line is a fit to this result

Substituting the parameters given in the introduction to this chapter and Eq.(4.23) into

Eq.(3.30), yields the sensitivity of the interferometer in this regime, as seen in Fig.(50). A

maximal sensitivity of 6.6 10−11 rad/sec/
√
Hz is achieved at φ = π, which is equivalent to

rotation rate of π ~

2ms
= 3.53 10−5 rad/sec. This result is one order of magnitude better

than the result calculated for the t� 1 regime.

In this regime the particle has a higher probability to complete a full cycle than at the

regime t� 1, thus the sensitivity in this regime is higher.
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FIG. 50: Interferometer sensitivity for t = 1
2 , L = 2π2.6 mm, m = 2.2 10−25 Kg and Nin = 1.6 1010 atom

sec
.

A maximal sensitivity of 6.6 10−11 rad/sec/
√

Hz is achieved at φ = π, which is equivalent to rotation of

π ~

2ms
= 3.53 10−5 rad/sec.

4.4. Interferometer Transmission and Sensitivity Calculation for t ≈ 1

From Eq.(3.19) we obtain that for t→ 1 the probability of the reflection within the channels

is much smaller compared to the probability of a particle to pass from channel to channel

inside the interferometer. In other words the particle completes many full cycles before cross-

ing the junction out of the interferometer and the the transmission amplitude (TA) could be

approximated by two independent sums over trajectories of each arm of the interferometer.

The approximated TA of the clockwise trajectory is given by

ta,c.w. ≈
∞
∑

n=0

√

2(t− t2) exp

[

i(k − φ

L
)
L

2

](

t2 exp

[

i(k − φ

L
)L

])n
√

2(t− t2)

=
2(t− t2) exp

[

i(k − φ
L
)L

2

]

1 − t2 exp [i(kL− φ)]
, (4.24)

and

Tc.w. = |ta,c.w|2 ≈
4(t− t2)2

1 + t4 − 2t2 cos(kL− φ)
≈ 4(t− t2)2

1 + t4 − 2t2
(

1 − (kL−φ)2

2!

)

=
4(t− t2)2

(1 − t2)2 + t2(kL− φ)2
. (4.25)
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Taylor expansion for t ≈ 1 will give

Tc.w. ≈
[2(1 − t)/t]2

[2(t− 1)/t]2 + (kL− φ)2
. (4.26)
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FIG. 51: Transmission of interferometer with matrix parameter t = 0.96 and φ = π
3 (blue line). The red

dashed line is the approximated transmission as given in Eq.(4.29).

From the same consideration the counter-clockwise transmission may be approximated by

Tcc.w. =
4(t− t2)2

1 + t4 + 2t2 cos(kL+ φ)
≈ [2(1 − t)/t]2

[2(t− 1)/t]2 + (kL+ φ)2
. (4.27)

The total transmission , as shown in Fig(51), is the sum of the transmission in both directions

T = Tc.w. + Tcc.w. , (4.28)

The periodic form of Eq.(4.28) is given by an infinite sum of Lorentzians, as shown in Fig.(51)
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T (k, φ) ≈
∞
∑

n=−∞
∆

(

∆

(k L− (2nπ + φ))2 + ∆2
+

∆

(k L+ (2nπ − φ))2 + ∆2

)

=
∞
∑

n=−∞
Tn(k, φ) , (4.29)

where φ = 2mS
~

Ω and ∆ = 2(1−t)
t

is the Lorentzian width. All the Lorentzians are equal and

the area under each Lorentzian is given by

∫ ∞

−∞
Tndk = π∆ . (4.30)

Let us inspect the behavior of the transmission as a function of the momentum k, as shown

in Fig.(52). At this regime (t → 1) and for φ = 0 the transmission is characterized by a

single Lorentzian curve which evolve smoothly into two Lorentzian curves, each Lorentzian

centered around k L = 2nπ ± φ, as φ becomes different than zero. The right Lorentzian is

shifted to the right, and the left one is shifted to the left, as φ increases, and viseversa as φ

decreases.

-2 Π -Π 0 Π 2 Π
kL

0

0.2

0.4

0.6

0.8

1

T

Φ=
Π
����
2

Φ=
Π
����
6

Φ=0

FIG. 52: Interferometer transmission matrix parameter t = 0.95. As φ increases, the peaks are shifted

from the center of the double peak structure, located at k = 2nπ
L

. Once the curve structure evolves into full

separated peaks their width is constant with φ.

Similar to the t � 1 and the t = 1
2

cases, the number of atoms that exit the interferometer

could be given by
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Nout = Nin

∫ ∞

−∞
dk Iin(k) T (k, φ) ≈ Nin

∞
∑

n=−∞

∫ ∞

−∞
dk Iin(k) Tn(k, φ)

= Nin

∞
∑

n=−∞
(Iin(

2nπ + φ

L
) + Iin(

2nπ − φ

L
))

∫
2(n+1)π

L

2nπ
L

dk Tn(k, φ)

≈ Ninπ∆

∞
∑

−∞
(Iin(

2nπ + φ

L
) + Iin(

2nπ − φ

L
))

≈ Ninπ
2(1 − t)

tL
2r = Nin

2(1 − t)

t
. (4.31)

This approximation is not valid around φ = π but we will use its final results to characterize

more correct approximation. In order to find Nout let us recall Eq.(4.22) and integrate

numerically (for t = 0.99) as plotted in Fig.(53).
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FIG. 53: The black curve is the numeric solution of Nout (in units of N0) vs φ, for t = 0.99 and r = 500µm.

The dashed blue line is a fit to this result and a zoom in on the Lorentzian shape is plotted in the inset

An analytical fit to this curve is given by

Nout

Nin

≈
(

a− a3

a2 + (φ− π)2

)

, (4.32)

where a = ∆ could be also derived from the final result of Eq.(4.31). Substituting the

parameters given in the introduction to this chapter and Eq.(4.23) into Eq.(3.30), yields the

sensitivity of the interferometer in this regime, as seen in Fig.(54). A maximal sensitivity
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of 6.3 10−12 rad/sec/
√
Hz is achieved at φ = π, which is equivalent to rotation rate of

π ~

2ms
= 3.53 10−5 rad/sec. This result is one order of magnitude better than the result

calculated for the t = 1
2

regime.
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FIG. 54: Interferometer sensitivity for t = 0.99, L = 2π2.6 mm, m = 2.2 10−25 Kg and Nin =

1.6 1010 atom
sec

. A maximal sensitivity of 6.3 10−12 rad/sec/
√

Hz is achieved at φ = π, which is equiv-

alent to rotation of π ~

2ms
= 3.53 10−5 rad/sec.

In this regime the particle has the highest probability to complete many full cycles and to

accumulate Sagnac phase shift. Thus the sensitivity in this regime is the highest.

4.5. General Expression for Sensitivity

Recall Eq.(3.30), we notice that only the term ∆φ ≡
√
T/dT

dφ
depends on the matrix param-

eter t. It turns out that in both regimes t� 1 and t→ 1 the intrinsic sensitivity converges

to

lim
φ→π

∆φ =

√

1 − t

2 t
. (4.33)

Substituting this result into Eq.(3.30) yields a general expression for the maximal sensitivity

∆Ωmax =
~

2ms
√
Nin

√

1 − t

2 t
=

~

2ms
√
Nin

√

π

4F . (4.34)

The maximal sensitivity goes to zero as t → 1, i.e. the sensitivity is getting better as the

finesse (see section 3.8) of the interferometer is getting higher.
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In Table.(II) we compare between the final results of sections 4.2−4.5. Although these values

are given for an interferometer with specific parameters (r = 2.6 10−3m, m = 2.2 10−25Kg

and Nin = 1.6 1010 atom
sec

), we can see that the high finesse interferometer is more sensitive by

two orders of magnitude than the low finesse interferometer. This result is the main result

of this chapter.

Matrix Parameter (t) Max. Sensitivity

( rad
sec
/
√
Hz)

0.01 6.28 10−10

1
2

6.6 10−11

0.99 6.3 10−12

TABLE II: A summary of the final results for the real amplitudes interferometer sensitivity

4.6. Transmission and Sensitivity Calculation for Interferometer based on

Horizontal Complex Amplitudes Beam-Splitter

In order to calculate the total transmission amplitude of an anti-symmetrically configured

interferometer with a beam splitter described in section (3.3), we substitute the scattering

matrix given by Eq.(3.24) into Eq.(3.22) and permute Bup with Bdo. Like in the real ampli-

tudes case a solution of the six equations set, yields an expression for the total transmission

amplitude. A general expression for the interferometer transmission is given by

T =
32 cos(k L

2
+ δ)

2
cos(φ

2
)
2

11 + 4 cos(φ) + 8 cos(k L+ 2 δ) (1 + cos(φ)) + cos(2φ)
, (4.35)

where δ defined by the distance between the potential barrier and the ”mirror” in port 4



79

and by the imaginary part of the reflection coefficient of the ”mirror”. In the anti-symmetric

configuration , both channels accumulate a phase of ei π
2 due to the crossing of two beam-

splitters and similar to the real amplitude case the total transmission will be unity for φ = 0

and zero for φ = π. In particular, the transmission is similar to the real amplitudes, t = 1
2

case, up to a shift of π − 2δ, i.e. the center of the dip located at kL = (2n + 1)π − 2δ, as

seen in Fig.(55). In order to calculate the number of atoms that exit the interferometer in

the feasible wide band case, we integrate over a full period of 2π, therefore the ratio Nout(φ)
Nin

(see Eq.(4.23) and Fig.49) and the sensitivity (see Fig.(50) and Tab.II) are equal to the real

amplitudes, t = 1
2

case for every δ.
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FIG. 55: Horizontal anti-symmetrically configured interferometer transmission vs kL for different δ where

φ = π
3 . The dashed blue line is the transmission of a real amplitude interferometer with matrix parameter

t = 1
2 .

Similarly by substituting the scattering matrix given by 3.24 into Eq.(3.22), without permut-

ing Bup with Bdo, we obtain a different set of six equations. A solution of this set, yields an

expression for the total transmission amplitude of a symmetrically configured interferometer

with a beam splitter described in section (3.3). A general expression for the interferometer

transmission is given by,

T =
32 sin(k L

2
+ δ)

2
sin(φ

2
)
2

11 + 8 cos(k L+ 2 δ) (−1 + cos(φ)) − 4 cos(φ) + cos(2φ)
. (4.36)

In the symmetric configuration , a particle that travels in the port opposite to the mirrors

port accumulates a phase of eiπ due to reflections and the total transmission will be zero
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for φ = 0 and 1 for φ = π. The center of the dip located at kL = 2nπ − 2δ, as seen in

Fig.(56). Like in the anti-symmetric configuration, and from the same reasons, the sensitivity

magnitude is equal to the Real amplitudes, t = 1
2

for every δ, but in contrast, the maximal

sensitivity achieved around zero.
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FIG. 56: Horizontal symmetrically configured interferometer transmission vs kL for different δ where

φeff = π
2 .

4.7. Transmission and Sensitivity Calculation for Interferometer based on Vertical

Complex Amplitudes Beam-Splitter

In the vertical configuration of two complex amplitude beam-splitters and for r → 1 the

atom has a high probability to complete many cycles in the interferometer and to accumulate

a large Sagnac phase-shift between the ”left” and ”right” contributions. Similarly to the

horizontal configuration there are two optional configurations. In the horizontal case we

noticed that in the anti-symmetric configuration the transmission is unity for φ = 0 and

zero for φ = π and vice versa in the symmetric configuration. The zeroing of the transmission

at φ = 0 ensure an optimal working point of the interferometer at Ω → 0. From this reason,

the symmetric configuration is of a main interest in this section.

By Substituting Eq.(3.26) into Eq.(3.22) we obtain a set of six equation. A solution for this

set yields the total transmission amplitude ta and the interferometer transmission T = |ta|2,
is given by
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T =

(

2
(

−1 + r2
)2

cos(
k L

2
)
2
(

1 + r4 − 2 r2 cos(φ)
)

)

[

P (r) + r4 cos(2 k L) − 2
(

r − r3
)2

cos(φ)

+
(

1 + r4
)

cos(k L)
(

(

−1 + r2
)2 − 2 r2 cos(φ)

)

+ r4 cos(2φ)
]−1

, (4.37)

where P (r) = 1−2 r2+4 r4−2 r6+r8. Similarly to the real amplitudes t→ 1 case, we obtain

a 2π period single peaked structure at φ = 0, each peak evolves into a double peak structure

as φ becomes different from zero. Unlike the previous configurations the transmission does

not vanish for φ = 0 nor for φ = π, as seen in Fig.(57).
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FIG. 57: Vertical symmetrically configured interferometer transmission vs kL for different δ where φeff = π
2 .

As seen in Fig.(58), the rate of atoms that exit the interferometer is given by

Nout = Nin

∫ ∞

−∞
dkT (k, φ)I(k) ≈ Nin

(

a− a3

2a2 + φ2

)

= Nin

(

a− a3

2a2 + (αΩ)2

)

, (4.38)

where I(k) is the momentum distribution and a ≈ 2(1−r)
r

. Unlike other configurations treated

in previous sections, the minimal value of Nout/Nin is not zero, but it is equal to a/2, i.e

half of the maximal value. Recall Eq.(3.29) we obtain the interferometer sensitivity

∆Ω =
(2 a2 + α2 Ω2)

2
√

a− a3

2 a2+α2 Ω2

2 a3 α2 Ω
√
Nin

. (4.39)

By comparing d
dΩ

(∆Ω) to zero we obtain Ω0, the rotation rate where the sensitivity is
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maximal

Ω0 ≈
πa

3
√

2α
. (4.40)
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FIG. 58: Nout vs phi for r = 0.99. The rate of atoms exit the interferometer does not go to zero at φ = 0

nor at φ = π but it goes to the half of the maximal value at φ = 0

Substituting Eq.(4.40) into Eq.(4.39) yields the maximal sensitivity in terms of the funda-

mental interferometer parameters

∆Ωmax =
(2a2 + α2Ω2)

2
√

a− a3

2a2+α2Ω2

2a3α2Ω
√
Nin

≈ 3π3

20
√
aNin

Ω0 . (4.41)

For r = 0.99 (equivalent to t = 0.99 in the real amplitudes case) and for the standard

parameters in this work m = 2.2 10−25Kg, r = 2.6 10−3m and Nin = 1.6 1010 atoms
sec

we

obtain at φ0 = π
210

, which is equivalent to rotation rate of 1.68 10−7 rad
sec

, a maximal sensitivity

of 4.3 10−11 rad
sec
/
√
Hz. This result is one order of magnitude worse the result obtained in

the real amplitude t → 1 case. The difference between the two high finesse configurations

could be explained by a crucial difference in the symmetry of each beamsplitter. In the real

amplitude case, once the particle enters the interferometer there is a symmetry between the

transmission and reflection amplitudes of the internal channels which accumulate the Sagnac

phase shift (see Eq.(3.19)). Namely, when φ = π, for each copropagating contribution of

the wave function there is a counterpropagating contribution with a π phase difference.

Therefore, the total transmission is identical to zero for φ = π. On the other hand, in the
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vertical complex case, the reflection amplitudes of the internal channels are not symmetrical

(see Eq.(3.26)), moreover one of the reflection amplitude is identical to zero. That means that

the reflected contributions from the internal channel with non-zero reflection amplitude do

not have counterpropagating contributions with a π phase difference to destructively interfere

with. Therefore, the total transmission does not go down to zero for any φ, but goes down

to half of the maximal value. Furthermore, this asymmetry increases the complexity of the

interfering trajectories and the width of the Lorentzian curve becomes wider (see Eq.(4.32)

and Eq.(4.38)). These differences imply also a difference in the sensitivity due to the term

dNout/dφ.
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5. SUMMARY, CONCLUSIONS AND FUTURE WORK

5.1. Summary and Conclusions

In this thesis we presented a theoretical model for a Sagnac atom interferometer. The

model relies on the analogy between a massive particle travelling in a rotating frame and a

charged particle travelling in a ring with a magnetic flux. Within the model, we neglected

atom-atom interactions and impurities in the system. The scattering matrix formalism was

used to calculate the transmission and the sensitivity of a revolving atom interferometer.

First, the general transmission of an interferometer based on a double Y beamsplitter was

calculated. Due to the complexity of the expression for the transmission we distinguished

between three regimes of the matrix parameter t, which corresponds physically to the ability

of a particle to cross from one arm of the interferometer to another: t� 1, t = 1
2

and t→ 1.

We inspected the regime t � 1 as a test case, and within this regime we distinguished

between three regimes of the momentum bandwidth. We demonstrated that the sensitivity

is improved with the decreasing of the momentum bandwidth (see Table.(I)), i.e. with the

decreasing of the temperature.

However, the required temperature for a narrow momentum bandwidth is much lower than

experimentally feasible temperatures. Therefore, this work focuses on the wide band regime,

which is experimentally feasible, and analyzes the sensitivity in the t = 1
2

and t→ 1 regimes.

The main result of the thesis is an expression for the maximal sensitivity as a function of

the finesse

∆Ωmax =
~

2ms
√
Nin

√

π

4F ,

where ~ is the Planck constant, m is the atomic mass, s is the interferometer area, Nin is the

incoming particles flux and F is the finesse. Our model confirms the assumption that the

sensitivity is improved with the increasing of the interferometer finesse. We have confirmed

that the sensitivity found in the real amplitude case, in the situation where t � 1, i.e.

describing a low finesse interferometer, is of the same order of magnitude as the sensitivity

of the experimentally realized ’one-pass’ freely propagating atom interferometers. This result
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is significant not only because it verifies our model, but also as it confirms the assumption

that in this regime of low finesse, the total effect on the sensitivity to rotations, of a particle

in a freely propagating atom interferometer, is similar to the total effect of a particle in a

smoothly guided atom interferometer. Up to date, there is no realized high finesse atom

interferometer to compare our model with, and the obtained results will hopefully motivate

such a realization.

Type Section Matrix Max. Sensitivity Comparison

Parameter ( rad
sec
/
√
Hz)

Single Mode 4.2 t = 0.01 6.3 10−10 2.86

Real Amplitudes 4.3 t = 1
2

6.6 10−11 0.3

Scattering Matrix 4.4 t = 0.99 6.3 10−12 0.028

Horizontal

Complex Amplitudes 4.6 r = i√
2

; t = 1√
2

6.6 10−11 0.3

Scattering Matrix

Vertical

Complex Amplitudes 4.7 r = 0.99 4.3 10−11 0.2

Scattering Matrix

Experimental Results 2.3 Single Pass 2.2 10−10 1

(Ref. [26])

TABLE III: A summary of final sensitivity results for a double Y and a double semi-X interferometer with

comparison to the Stanford interferometer. The fundamental parameters (Nin, m and r-radius) are similar

for all the interferometers
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In Table.(III) we present the final sensitivity results for a double Y beamsplitter atom

interferometer and for an atom interferometer based on two semi-X beamsplitters. These

results are obtained with the parameters Nin = 1.6 1010 atom
sec

, m = 2.2 10−25 kg and r =

2.6mm, which are the same as the those given in Ref. [26]. As can be noticed, the best

sensitivity, on the order of ≈ 10−12 rad
sec
/
√
Hz, is two orders of magnitude better than the

best sensitivity realized so far with a single pass interferometer (also noted in the table).

The best sensitivity is achieved in the real amplitude, t → 1 case, which describes a high

finesse double Y interferometer. In such an interferometer the particle has a high probability

to complete many cycles inside the interferometer and therefore the accumulated Sagnac

phase difference between counterpropagating trajectories is large. The apparent sensitivity

difference in the above table between the latter configuration and the vertical complex case,

which also describes a high finesse interferometer, could be explained by a crucial difference

in the symmetry of each beamsplitter. In the real amplitude case, the inherent symmetry of

the Y beam splitters ensures that every clockwise propagating wave has an identical counter

clockwise partner, which destructively interferes with it when φ = π. On the contrary, in

the semi-X configuration, the asymmetry of the beam splitter (as the mirror is on a specific

side) means that not all clockwise waves have counter clockwise partners. This gives rise to

the fact that the minima of the transmission in the former case goes to zero while in the

latter only to half the base height. This factor 2 difference, as well as a difference in the

Lorenzian width, give rise to the sensitivity difference observed in the table between the two

high finesse configurations.

Finally, our model may be applied to interferometers based on other configurations, if one

knows the scattering matrix of the beamsplitter, and so we hope it will serve as a base for

designing more advanced interferometer configurations in the future.

5.2. Future work

Much work still needs to be done before all aspects of the problem are accounted for. For

example, within the scope of this work one should expand the model to a multi mode

system. We have assumed that the motional transverse modes of the waveguide are not
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excited due to thermal fluctuations nor scattering effects, i.e the energy gap between the

transverse modes is larger than any excitation in the system. This assumption allowed us

to treat the system as a single mode system, but a more realistic feasibility study should

include coupling between modes.

Furthermore, Atom-Atom interactions and guiding potential impurities may decrease dra-

matically the sensitivity of a guided interferometer, especially in the high finesse regime

(multipass interferometer), due to incoherent scattering. The effect of these phenomena

on the interferometer behavior, and in particular on its sensitivity, may be an interesting

question for a future theoretical research.
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APPENDIX A: BEAM-SPLITTER WITH A COMPLEX S-MATRIX

In order to obtain the scattering matrix of the interferometer setup depicted in Fig.(30), let

us examine a few examples in detail. Starting from channel 1, we see that it can only be

reflected to channel 2 or transmitted to channel 3. Thus, the scattering matrix elements will

be S11 = 0, S12 = r, S13 = t. As another examples let us study the matrix element S23. In

order to be transmitted from channel 2 to channel 3 the wave should be first transmitted to

the mirror port (with amplitude t) and than be reflected back to channel 3 (with amplitude

r) while accumulating some phase eiδ. Thus, the resulting matrix element is S23 = rteiδ.

Following the above procedure for all channels one obtains the S-matrix of Eq.(3.23)

APPENDIX B: STS DERIVATION

In T. L. Gustavson’s thesis [26] the STS is given by

∆Ω = χ−1 1

vkeffτ 2
, (B.1)

where v is the longitudinal velocity, Keff is the additional momentum kick due to the π
2

pulse and τ is the time between the pulses. In the following we show that Eq.(B.1) is

analogous to Eq.(3.29).

The peak-to-peak interference fringe signal as shown in Fig.(59) is

Spp = Nmax −Nmin , (B.2)

while the noise in a shot-noise limited system is poissonian. Since we are interested in the

sensitivity for small rotation rates, the noise near Ω = 0 is given by
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Noise =
√

N(Ω=0) . (B.3)
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FIG. 59: An example of a typical signal of an atom interferometer rotation measurement (computer gen-

erated)

The signal to noise ratio is given by

χ =
Spp

√

N(Ω = 0)
. (B.4)

In order to detect a differences in the signal, we demand that changes in the signal due to

rotations will be at least from the same magnitude of the noise

∆N

∆Ω
∆Ω ≥

√

N(Ω=0) , (B.5)

and rearranging we get

∆Ω =

√

N(Ω=0)

dN
dΩ

. (B.6)

The effective flux φ has a 2π periodicity, therefore Ω has a π~

mA
periodicity (recalling that
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φ = 2mA
~

Ω), and the peak-to-peak distance is given by

∆Ωperiod =
π~

2mA
. (B.7)

For a smoothly varying function, such as cosine in Gustavson’s experiment, a good approx-

imation for dN
dΩ

is given by

dN

dΩ
≈ Nmax −Nmin

∆Ωperiod.
(B.8)

By substitute of Eq.(B.4) and Eq.(B.8) into Eq.(B.6) we obtain

∆Ω = χ−1∆Ωperiod . (B.9)

Recall Eq.(B.1) we can manipulate its second term,

1

vkeffτ 2
=

v

v2keffτ 2
. (B.10)

The product L = vτ is the geometrical distance between two pulses, i.e. half of the inter-

ferometer length, thus Eq.(B.10) becomes

1

vkeffτ 2
=

v

L2keff

=
~

mL2

k

keff

, (B.11)

where ~ is Planck constant, m is the particle mass and k is the longitudinal momentum.

From the ratio between the transversal momentum and the longitudinal momentum, one can

obtain tan(θ), where θ is the angle between the arms of the interferometer, and calculate its

area,

~

mL2

k

keff
=

~

mL2

1

tan(θ)
=

~

mA
. (B.12)

From Eq.(B.12) we can notice that Eq.(B.1) and Eq.(B.9) are equal up to a constant factor
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≈ 1.5.

APPENDIX C: TEMPERATURE LIMIT

The classical relation between velocity and temperature τ , (in one dimension) is given by

1

2
mv2 =

1

2
KBτ ⇒ ∆v =

√

KB∆τ

m
, (C.1)

and in terms of momemtum we obtain

∆k =

√

mKB∆τ

~2
. (C.2)

From Eq.(4.2) one can see that momentum fluctuations yield peak drifts and from the

demand that this drift will be narrower than the peak width we obtain (under the t ≈ 1

approx.)

∆kL < 4(1 − t) (C.3)

By Substitution of Eq.(C.2) we obtain

√

mKB∆τ

~2
<

4(1 − t)

L
⇒ ∆τ <

16~
2(1 − t)2

mKBL2
. (C.4)

For Cs Atom moving in interferometer with radius of 2.6 10−3m and t = 0.99 the needed

temperature is from the order of ≈ 10−20K which is far below a feasible temperature.

APPENDIX D: INTEGRATION AT THE t � 1 - WIDE BAND REGIME

Let us simplify the integral
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Nout = Nin

∫ ∞

−∞
dk Iin(k) T (k, φ) , (D.1)

in few steps:

For φ = 0 the transmission curve has a Lorentzian shaped resonances as plotted (for t = 0.1)

in Fig.(60) and Eq.(4.1) is given by

T(φ=0) =
4 sin kL

2

2

(

1−2t+2t2

2t(1−t)

)2

(1 − cos [kL])2 + sin2 [kL]
. (D.2)

Using trigonometric identities and algebric manipulations we obtain

T(φ=0) =
1

(

(

1−2t+2t2

2t(1−t)

)2

− 1

)

1

sin2[kL
2

] + 1
(

(

1−2t+2t2

2t(1−t)

)2
−1

)

. (D.3)

A Taylor expantion around k = nπ
L

will obtain

T(φ=0) ≈ 4

L2

(

(

1−2t+2t2

2t(1−t)

)2

− 1

)

∞
∑

n=−∞

1
(

k − 2nπ
L

)2
+ 4

(

(

1−2t+2t2

2t(1−t)

)2
−1

)

=
∆T L sinh[∆T L]

2 cosh[∆T L] − 2 cos[kL]
, (D.4)

where

∆T =
4t(1 − t)

L(1 − 2t)
. (D.5)

The approximation given in Eq.(D.4) is plotted in Fig.(60).

For φ 6= 0, the maximal transmission is getting smaller then 1 between 0 < φ ≤ π and
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FIG. 60: Interferometer transmission for φ = 0 and t = 0.1. The red dashed line is the approximated

transmission given in Eq.(D.4)

viceversa between π < φ ≤ 2π. The transmission curve is not simply a Lorentzian, but it

has a Lorentzian envelope curve, as seen in Fig.(61). The envelope curve is given by

L1 =
cos2[φ

2
]

(

(

1−2t+t2

2t(1−t)

)2

− 1

)

sin2[kL
2

] +
(

1 − 2t2(1−2t+2t2)
(2t(1−t))2

sin2[φ
2
]
)

. (D.6)
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FIG. 61: Interferometer transmission for φ = π
2 and t = 0.1. The red dashed line is the envelope of the

transmission curve, L1

A Taylor expantion around k = nπ
L

will obtain

L1 ≈ a1

∞
∑

−∞

∆2
1

(k − nπ
L

)2 + ∆2
1

= a1
∆1L sinh[∆1L]

2 cosh[∆1L] − 2 cos[kL]
, (D.7)
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where

a1 =
cos2[φ

2
]

1 − 1−2t+2t2

2(1−t)2
sin2[φ

2
]

; ∆1 =

√

√

√

√

√

√

1 − 1−2t+2t2

2(1−t)2
sin2[φ

2
]

L2

(

(

1−2t+2t2

4t(1−t)

)2

− 1
2

) (D.8)

Denote by L2 the subtraction of the transmission, T from the envelope curve, L1 we obtain

L2 =
t2 cos2[φ

2
]

4(1 − t)2
((

1

sin4[ φ

2
]
− t2

4(1−t)2

)

sin2[kL
2

] + t2

4(1−t)2

(

1 − (1−2t+2t2) sin2[ φ

2
]

2(1−t)2

)) , (D.9)

A Taylor expantion around k = nπ
L

will obtain

L2 ≈ a2

∞
∑

−∞

∆2
2

(k − nπ
L

)2 + ∆2
2

= a2
∆2L sinh[∆2L]

2 cosh[∆2L] − 2 cos[kL]
, (D.10)

where

a2 = a1 ; ∆2 =

√

√

√

√

√

t2
(

1 − 1−2t+2t2

2(1−t)2
sin2[φ

2
]
)

L2(1 − t)2
(

1

sin4[ φ

2
]
− t2

4(1−t)2

) . (D.11)

Now we can express the transmission in terms of L1 and L2

T (k, φ) ≈ a1

( ∞
∑

−∞

∆2
1

(k − nπ
L

)2 + ∆2
1

−
∞
∑

−∞

∆2
2

(k − nπ
L

)2 + ∆2
2

)

=

∞
∑

−∞
Tn(k, φ) , (D.12)

as shown in Fig.(62). Substituting Eq.(D.12) into Eq.(D.1) we obtain
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FIG. 62: Interferometer transmission for φ = π
2 and t = 0.1. The red dashed line is the function subtraction

L1 − L2

Nout ≈ Nin

∞
∑

n=−∞

∫ ∞

−∞
dk Iin(k) Tn(k, φ) , (D.13)

Since at this regime the width of the momentum distribution ∆k � 2π
L

and Tn(k) has a

periodicity of 2π
L

, Eq.(D.13) becomes

Nout ≈ Nin

∞
∑

n=−∞
Iin(

2nπ

L
)

∫ π
L

− π
L

dk T0(k, φ) . (D.14)

Generally, the integral of a Lorentzian function over 2π period and Lorentzian width much

smaller then π, converges into

lim
∆�π

∫ π

−π

∆2

k2 + ∆2
dk = lim

∆�π
2∆ arctan[

π

∆
] ≈ π∆ . (D.15)

Specificlly, ∆1,2 / t π
L
, therefore for t� 1, Nout could be approximated by

Nout ≈ Nina1π(∆1 − ∆2)
∞
∑

n=−∞
Iin(

2nπ

L
) . (D.16)
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The sum
∑∞

n=−∞ Iin(2nπ
L

) could be converted (2π
L

� ∆k) into the integral L
2π

∫∞
−∞G(x)dx,

where G(x) is a normalized Gaussian, and finally Nout could by approximated by

Nout ≈ Nina1π(∆1 − ∆2)
L

2π
= Nina1π(∆1 − ∆2)r . (D.17)
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