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Abstract.Whispering gallery modes of a microdisk resonator are useful for the optical detection
of single rubidium and cesium atoms near the surface of a substrate. Light is coupled into two
high-Q whispering-gallery modes of the disk which can provide attractive and/or repulsive poten-
tials, respectively, via their evanescent fields. The sum potential, including van der Waals/Casi-
mir-Polder surface forces, may be tuned to exhibit a minimum at distances on the order of 100
nm from the disk surface. Simultaneously optically trapping and detecting is possible, with the
back-action of an atom held in this trap on the light fields being sufficiently strong to provide a
measurable effect. Atom trapping and detection depend on a variety of system parameters and
experimental realizations differ for different atoms.
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1 INTRODUCTION

The possibility of storing light in optical resonators has long been at the core of a wide ra-
nge of applications. Modern technology has allowed for a reduction of resonator size down
to the regime of micrometers, and thus is poised to reach the ultimate limit of devices co-
mparable in size to a few wavelengths of light, while still maintaining good optical quality.
Optical micro-resonators are today routinely applied in fields as varied as optical telecom-
munications [1, 2], and biological or chemical sensors [3].

Several different realizations of micro-resonators are currently under investigation in the
context of their integration on chips for atom optics, so-called atom chips [4, 5]. Examples
include Fabry-Perot fiber cavities [6], photonic bandgap structures [7], and microdisk res-
onators [8, 9]. The latter possibility is attractive, since it combines the high optical quality
of the much-studied microsphere [10–13] with advanced micro-fabrication and integration
technology.

With a recently developed fabrication technique, the finesse of integrable microdisk res-
onators has been increased by several orders of magnitude [14–16]. This takes the quality
of such devices to a level where effects of quantum electrodynamics can readily be observed
and exploited. Integrated into atom chips, this may have a significant impact in contexts
such as cavity QED [17–20], single photon sources [21–23], manipulation of matter waves
in interferometric sensors [24–28], atomic clocks [29], and the quantum computer [30, 31].

In Ref. 8, we suggested the use of whispering gallery modes (WGMs) of a toroidal
microcavity for single-atom detection on an atom chip. However, the initial calculations
neglected atomic motion by assuming the atom to be static at a fixed distance from the
microdisk surface. More recently, we investigated the possibility of atom trapping by the
same optical modes which are used for atom detection [9]. We showed that sufficiently deep
potential minima can in fact be created by a careful choice of parameters to hold the atom
in place during the detection process. In this paper we investigate single-atom detection
for rubidium and cesium atoms, near the surface of a microdisk including, van der Waals
and Casimir surface forces, and compare our theory with recent experiments [32, 33].

2 SYSTEM DESIGN

A schematic of the system under investigation is shown in Figure 1. The optical part con-
sists of a toroidal micro-cavity resonator which is coupled to a tapered optical waveguide
or fiber for input and output coupling. The disk is assumed to support high-finesse WGM



Fig. 1. The structure under consideration: (1) linear
waveguide coupler, (2) microdisk, (3) atomic cloud.

near the wavelengths of the D1 and D2 lines of the alkali atoms used in experiments, i.e.,
around 795 nm and 780 nm for rubidium, and around 895 nm and 852 nm for cesium. The
atoms are initially loaded into a magnetic microtrap with the resonator fields switched off.
By switching the fields on, the atoms are then transferred into a much stronger optical
trap formed by two modes of opposite detuning and the trapped atoms are finally optical-
ly detected. Another possibility is to detect atoms during free-fall using only one blue-de
tuned mode to compensate for the attractive van der Waals or Casimir-Polder forces. The
main optical properties of a selection of microdisk modes suitable for these schemes are
summarized in Table 1.

Table 1. Optical properties of selected WGMs. D is the disk
diameter, l is the longitudinal mode index (the radial index
is q = 1), Q is the quality factor for a waveguide-disk gap of
0.5 µm, and g0 is the single-photon Rabi frequency for an

atom at the disk boundary.

Atom D (µm) l λ (nm) Q/106 g0 (MHz)

Rb 30 167 778.73 3.0 102.6

30 163 797.2 2.27 105.0

45 254 777.2 10 68.3

45 253 780.15 12 68.5

Cs 45 231 851.9 1.99 74.9

45 232 848.3 2.07 74.6

44 226 850.9 1.95 76.5

44 214 897.3 1.12 80.7

3 FORCES ON ATOMS NEAR A MICRODISK

In this section we investigate in detail the forces on an atom situated near the surface of a
microdisk: forces generated by the magnetic microtrap, van der Waals and Casimir-Polder
forces due to the interaction with the dielectric surface, and optical forces induced by the
evanescent fields of the light confined in the resonator modes. Here we make the simpli-
fying assumption that these forces act on the atoms individually, that is, the total poten-
tial is the simple sum of the magnetic, atom-surface, and light contributions:

V = Vmag + VAS + Vlight. (1)

In the following section we discuss these potentials individually.



3.1 Surface potential

Close to the dielectric surface of the microdisk, an atom experiences an effective potential
due to the mutual polarizability of the atom and the microdisk dielectric material. Two
different forms of this potential have been described in the literature. At very short dis-
tances this potential is a van der Waals potential scaling as 1/r3, where r is the distance
from the surface, while at larger distances on the order of one wavelength of the atomic
transition, a Casimir-Polder potential is found which scales as 1/r4 [34]. For a ground-state
atom these atom-surface potentials are usually attractive.

The van der Waals potential for an isotropic atom near a dielectric material with refrac-
tive index n takes the asymptotic form

VvdW (x) = −(
n2 − 1
n2 + 1

)
e2R2

6πε0(2r)3
, (2)

where e is the electron charge and R2 is the expectation value of the square of the atomic
radius. The Casimir-Polder potential for an isotropic atom is given by

VCP (x) = − α0h̄c

2π2ε0(2r)4
(2c

‖
4 + c⊥4 ), (3)

where the coefficients c
‖
4 and c⊥4 are functions of the refractive index n (see Ref. 34). The

c4 coefficients range from 0 for n = 1 to 1 for n → ∞ (a perfect conductor). In the
intermediate regime of distances (on the order of 100 nm), the exact atom-surface potential
can be calculated numerically. However, for simplicity we approximate the potential VAS
at each point by the maximum of the expressions given in Eqs. (2) and (3).

3.2 Optical potential

We consider atoms close to the surface of the microdisk, coupled to the evanescent fields
of two WGMs as specified in Table 1. One of the two modes is blue-detuned with respect
to the atomic D2 line and thus forms a repulsive potential, whereas the second mode is
red-detuned with respect to the D1 line, which provides an attractive potential. Because of
the shorter decay length of the blue-detuned mode, the two field intensities can be adjusted
to provide a potential minimum at a certain distance from the microdisk surface [35–41].

The optical potential is given by the sum of the two individual potentials as

Vlight(x) ≈ Vlight,b(x) + Vlight,r(x) ≈ h̄|Ωb(x)|2
4∆b

+
h̄|Ωr(x)|2

4∆r
. (4)

Here ∆b (∆r) is the detuning of the blue (red) mode from the corresponding transition
and Ωi(x) = 2gi(x)

√
Ni, where gi(x) is the single-photon Rabi frequency of mode i at the

position of the atom and Ni is the photon number. Examples of the total optical potentials
are shown in Fig. 2. Note that there is a subtle balance between the strong potentials of
the individual light fields which yields an overall potential depth on the order of 100 µK.
The effect of the atom-surface potential, as discussed in Sec. 3.1, is to provide an additional
attractive potential for the atom very close to the surface. This reduces the depth of the
total potential V , and shifts the position of the trap minimum closer to the surface.

In the vicinity of the microdisk, the optical potentials can be approximated by decaying
exponentials, Vi(r) = Vi0e

−αir for modes i = r, b. The potential minimum is

V (rmin) = −Vb0e
−αrmin

αb − αr

αr
(5)

and is found at a distance

rmin =
1

αb − αr
log

|Vb0|αb

|Vr0|αr
. (6)
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Fig. 2. Potentials formed for Cs atoms by blue-detuned light (dash-dotted line), surface
interactions (solid), and the sum of these potentials (dashed). Figures in the upper row
are for input light intensities of 20 nW, 2 nW and 200 pW, respectively. The lower row
of figures show only the sum potentials, with an exaggerated vertical scale. For the low-
est intensity there is a simple attraction to the disk edge in the evanescent field range.
For the highest intensity a barrier is formed because of the blue-detuned repulsion.

The harmonic oscillator frequency in the radial direction is therefore given by

ωr =
√

αbαrV (rmin)/m, (7)

which is typically on the order of 100 kHz.
The light fields can also be used to create a true three-dimensional (3D) trap. In the

vertical direction, the finite size of the disk leads to potential gradients in this direction.
The field amplitudes are approximately proportional to cos(πz/H), where H is the height
of the disk and z = 0 coincides with the disk center. Likewise, trapping in the azimuthal
direction can be achieved by coupling light simultaneously from both sides into the red-
detuned microdisk mode to create a standing wave pattern of the WGM. The total 3D
trapping potential is then given by

V (x, y, z) = Vb0e
−αbx cos2(πz/H) + Vr0e

−αrx cos2(πz/H) cos2(2lry/D), (8)

where lr is the windingnumber of the red-detuned WGM. The harmonic oscillator frequen-
cies in the y and z directions are then given by

ωy =
2lr
D

√
|Vr0|/m, ωz =

π

H

√
|V (rmin)|/m. (9)

These frequencies are typically a few kHz, i.e., an order of magnitude smaller than the
radial trapping frequency.

3.3 Magnetic trap potential

The atoms are initially prepared in a magnetic microtrap on the atom chip in the absence
of light fields. In a simple case, the magnetic potential is created by the interaction of
the magnetic field of a current-carrying wire, a homogeneous field B0 orthogonal to the
wire, and a homogeneous field Boffset parallel to the wire. This forms a minimum of the
total magnetic field above the wire which acts as an attractive potential for atoms in the
weak-field seeking Zeeman sublevels. However, as was shown in Ref. 9, magnetic trapping
in the presence of the evanescent light fields from the disk would be difficult to achieve
in practice, even in the direction along the perimeter of the disk where no optical dipole
forces exist. Therefore, we do not include magnetic potentials here at all, and consider only
optical trapping potentials.



4 ATOM DETECTION

The principles of the detection scheme have already been presented elsewhere [8, 9]. In
brief, laser light (resonant with the two modes under consideration) is launched into the
linear waveguide, from which it is coupled into the microdisk. The interaction with the
atom changes the phase of the light fields, which can be measured at the output of the
linear waveguide by a balanced homodyne detector.

We consider two coherent modes with complex amplitudes α+ and α− traveling in op-
posing directions, and assume atom-light coupling to these modes via the respective single-
photon Rabi frequencies g+ and g−. The coupling of these two modes due to imperfections
in the disk is accounted for by the introduction of the complex coefficient ε, and the model
includes the possibility of pumping from either direction with rates η+ and η− [8].

After ignoring the external motion of the atom, the Hamiltonian of this system can be
written as (h̄ = 1)

H = −∆aσ11 − ∆c(a
†
+a− + a†

−a−) − i(g+a†
+σ01 − g∗+σ10a+) − iη+(a+ − a†

+)

−i(g−a†
−σ01 − g∗−σ10a−) − iη−(a− − a†

−) − i(εa†
+a− − ε∗a†

−a+) ,

where ∆a and ∆c are the atomic and resonator detunings, respectively; σ10 and σ01 are
the atomic raising and lowering operators; and a†

± and a± are the mode creation and
annihilation operators. Here the energy of the lower atomic state has been set to zero. The
equation of motion for the density operator of the system can be written as

d

dt
ρ = −i[H, ρ] + Lρ, (10)

where L is the usual linear operator describing cavity and atomic decay with rates κ and
Γ, respectively.

Assuming a factorized density operator ρ, we find that the equations of motion for the
elements of the atomic density operator as follows:

d

dt
ρ10 = (−Γ + i∆a)ρ10 + (g∗+α+ + g∗−α−)(ρ00 − ρ11), (11)

d

dt
ρ11 = −2Γρ11 + (g∗+α+ + g∗−α−)ρ01 + (g+α∗

+ + g−α∗
−)ρ10. (12)

The coherent state amplitudes α± obey the equations of motion

d

dt
α+ = (i∆c−κ)α+−g+ρ10+η+−εα−,

d

dt
α− = (i∆c−κ)α−−g−ρ10+η−+ε∗α+. (13)

In this work we are only interested in the stationary solution of these equations of motion.
To this end, we first solve the linear set of equations (13) with respect to α±. The resulting
expressions for α± are linear in ρ10 and can be inserted into Eq. (11). From this and
using ρ11 + ρ00 = 1, we obtain ρ10 as a function of ρ11. This expression for ρ10 and the
corresponding results for α± can be inserted into Eq. (12) to give a real-valued nonlinear
equation in ρ11 which can be solved by standard numerical techniques. The output field of
the linear waveguide is the superposition of the waveguide input field transmitted through
the waveguide-disk coupler and the light coupled out of the disk [8].

The Rabi frequency g± is given by

g± = EWGM (xa)
[

3Γc3

ω2dy

∫
rn(r)2|EWGM (r)|2dr

]1/2

(14)

where n(r) describes the refractive index profile inside and outside the microdisk, dy is the
disk height, ω is the atomic transition frequency, and xa = (ra, φa) is the atomic position
in the evanescent field of the disk modes. The g± dependence on the distance from the disk
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Fig. 3. Rabi frequency divided on 2π vs. atom-disk distance. Solid curve: Rb atom,
D = 45µm, mode indices (l, q) = (254, 1); dashed: Cs atom, D = 45µm, (l, q) = (231, 1).

is given in Fig. 3, and the maximum values for g± at the disk surface for several selected
modes are given in Table .

The signal-to-noise ratio of this atom-detection scheme is given by

S = 4
√

τ |Ain|κT g2

∆κ2
, (15)

where τ is the measurement time and Ain is the amplitude of the pump light in the linear
waveguide, normalized such that |Ain|2 is the power in units of photons per second. The
corresponding photon number in the cavity is given by

N = 2|Ain|2 κT

κ2
. (16)

5 RESULTS AND DISCUSSION

In the previous sections we have established the detection scheme and the trapping poten-
tial for an atom close to the microdisk (induced by surface and optical forces). In this ca-
se, the back-action of the atom on the light in the WGMs provides a means of atom dete-
ction.

There are several advantages of our detection scheme over a corresponding absorption
detection. (i) It allows one to drive the atom far off-resonance, in which case the precise
tuning of the disk resonator with respect to the atomic transition frequency is of minor
importance. (ii) If the additional loss mechanisms are small compared to the disk-waveguide
coupling strength [8], all of the pump light will leave the system through the forward
waveguide output. Therefore a strong signal can be expected for most parameter regimes,
which allows the use of standard photodetectors rather than sophisticated single-photon
counters. (iii) The strong output signal also provides stability of the detection scheme
against weak background scattering processes.

5.1 Atom detection with only a blue-detuned mode

To detect single atoms without trapping we can create an atom cloud in a magneto-
optical trap above a photonic chip with a microdisk resonator and then drop this cloud.
A certain number of atoms will then pass through the evanescent field of the microdisk
resonator. First experiments of this type were described in Ref. 33 for Cs atoms.

The signal we are interested in is given by the difference of the detected photon numbers
in the two arms of a heterodyne detector during the observation time τ . The phase of the
local oscillator is adjusted such that this difference is zero when no atom is interacting with
the disk field. The presence of an atom is then inferred from a change in this intensity
difference.

For a pump intensity less than ∼1nW the blue-detuned light forces are much smaller
than the van der Waals (Casimir-Polder) forces over the relevant region where the atom
interacts with the evanescent field. For this low intensity an atom is simply attracted to
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Fig. 4. Typical times for an atom to stay in the range of the evanescent field
of the microdisk (0-500 nm from the disk edge) under the influence of surface
and blue-detuned light potentials as in Fig. 2 (x axis presents point of motion
start, initial velocity in the direction towards the edge of the disk assumed to
be zero). Pump intensities are a) 20 nW, b) 2 nW, c) 200 pW. The peak in
(a) is due to the extremum in the sum potential of Figs. 2(a) and 2(b).

the disk edge. For higher intensities, an atom initially placed at a distance further than
100 - 200nm (Fig.2b), is pushed out of the system because of blue-detuned repulsion.

The typical time for an atom to stay within the range of the evanescent field of the
microdisk under the influence of the surface and blue-detuned light potentials is presented
in Fig. 4. The initial atom velocity in the direction towards the edge of the disk is assumed
to be roughly zero. Obviously, taking the nonzero velocities into account will decrease this
time for some of the atoms. There is an understandable correlation between the change in
the gradient of the sum potentials presented in Fig. 2 (dashed line) and the time the atom
stays within the range of the evanescent field of the blue-detuned light (taken to be 0-500nm
from the disk edge). For a low intensity of 200 pW (Fig. 2c), an atom will be attracted to
the disk edge in a time interval of up to 25 µs depending on the initial atom position. As
we increase the pump intensity of the blue-detuned light to 2 nW, the gradient of the sum
potential decreases (Fig. 2d) and the time interval is increased up to 50 µs ((Fig. 4b). For
a strong pump intensity, a potential barrier is created with significant height relative to the
atom energy (for cloud of ultra cold atoms, the temperature is typically 10 - 50 µK). In
this case the atoms initially situated closer than 90nm will be attracted to the disk edge in
a time up to 6µs. The atoms which are further than 90nm (Fig. 2b) will be pushed from
the system in a time interval of 3 - 10 µs. Our calculations show that the sum potential of
the optical and surface potentials is strong enough to push the atoms situated closer than
∼60 - 120 nm to the disk surface in a time less than 2 µs depending on pump intensity.

The calculated coupling rate g0/2π at a distance of ∼70 nm is about 45 MHz. To compare
experimental and theoretical values for g0/2π we have to take into account the change in
the atom position during the measurement time.
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Fig. 5. Radial potentials near a 30-µm disk: (a) Rb, potential formed by
blue-detuned light (dash-dotted line) and red-detuned light (dotted), sur-
face potential (solid), and sum potential (dashed). (b) Rb, the sum of the
optical potentials solid), and the sum of the optical potentials and the sur-
face potential (dashed). (c) Contour plot of the potential depth (in mK) vs.
position of the trap minimum rmin and photon number Nb for Rb atoms.

5.2 Atom detection in a bi-chromatic optical trap

Let us now assume that we hold an atom trapped in a two-mode optical potential at



a given distance from the surface. In Fig. 5 we show sample potentials for a rubidium atom
coupled to the (l = 167, q = 1) blue-detuned mode and the (l = 163, q = 1) red-detuned
mode of a 30-µm microdisk. The light intensities create a trapping potential of about 1.9
mK at a distance of 115 nm from the surface. The surface potential reduces the potential
depth by lowering the potential barrier towards the disk surface and also slightly shifts the
center position.

As an example, we present in Fig. 6 the detection of a single Rb atom coupled to a
30 µm disk using the (l = 167, q = 1) mode as the blue detuned detection light and the
(l = 163, q = 1) mode as the red detuned attractive trapping light. The gap between
waveguide and disk is set to 0.5 µm, which gives sufficiently strong coupling to neglect
surface back-scattering effects. The optical properties of these modes are given in Table 1.
The pump intensity to create the trap is ∼2 µW.
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Figure 6: (a) Signal-to-noise ratio S, (b) performance characteristics.
Both graphs display the data as a function of distance from the disk
and blue-detuned photon number Nb for Rb atoms. The integration

time is 75 µs.

Figure 6(a) shows a contour plot of the signal-to-noise ratio for atom detection as defined
by Eq. (15). Larger distances from the disk surface lead to weaker coupling because of the
exponential decay of the evanescent fields and thus smaller values of S. Simultaneously, of
course, the total number of spontaneously scattered photons M , Eq. (18), decreases with
distance. However, the dependence of S and M on the system parameters are different,
which allows us to optimize the atom-detection scheme.

The optimum parameter regime can be found from Fig. 6(b) where we combine the
contour lines for S = 5, heating probability Pheat = 7%, and a tunnelling probability of 2%
(see the Sec. 5.3 for details of this stability analysis). The area between the three curves,
marked by the arrow in the figure, corresponds to system parameters where efficient single-
atom detection is possible with very limited atom losses due to heating and tunnelling.
The optimum point in the center of this area is found at blue-detuned photon number
Nb = 2.4 × 105, red- detuned photon number Nr = 3.6 × 105, and a trap distance r = 120
nm from the disk. For these parameters we obtain S = 7, Pheat = 5.7%, a potential depth
of 1.6 mK, and harmonic oscillator frequencies (ωx, ωy, ωz) = 2π × (0.92, 4.2, 0.11) MHz.
We also calculated that the trap is stable under light intensity fluctuations up to 2%.

5.3 Trap stability

There are several mechanisms by which a trapped atom can be lost from the trap. The
most important of these are now discussed.

5.3.1 Light-intensity balance

As already discussed in the Sec. 5.2, the optical trapping potential relies on a delicate
balance of two strong light fields which largely cancel each other. Using the exponential
approximation of Eqs. (5) and (6), we find that a small fluctuation in one of the trapping
fields, e.g., of the red-detuned field, will lead to a fluctuation of the trap center of

δrmin =
1

αb − αr

δVr0

|Vr0| . (17)



Because of the small difference between the two spatial decay coefficients αb and αr, a
small change of the magnitude of the potentials will significantly shift the minimum of the
combined potential.

On the other hand, this sensitivity of the trap to the relative strengths of the blue and
red detuned light fields allows us to accurately position an atom at a certain distance from
the disk surface. For example, varying the intensity of the red-detuned light while keeping
the intensity of the blue-detuned light constant will simultaneously change the trap depth
as well as the trap position. An example of this ability to design the total trap potential is
depicted in Fig. 5.

5.3.2 Back-reflection from surface defects

The delicate balance between the attractive and the repulsive optical potential required
to form a shallow atom trap makes this type of trap highly susceptible to small fluctuations
of the light intensities. Therefore, back-scattering of light at small surface defects can pose
serious problems. A recent publication [41] has highlighted that back-scattered light with
an intensity as low as 0.001 of the forward propagating mode intensity may decrease the
potential depth by one half and consequently destroy the trap.

The back-scattering of light in a two-mode model (forward and backward propagating)
has been discussed in Ref. 9. There it was estimated that for the latest generation of high-
Q micro-cavities [14–16], backscattering can be as low as 10−4, i.e., an order of magnitude
below the limiting value derived in Ref. 41.

5.3.3 Atom heating and tunneling

Atoms can also be lost from the trap as a result of heating by the interaction with the
light fields. Every photon of wave number k emitted spontaneously by the atom will on
average add one photon recoil energy Er = h̄2k2/(2m) to the kinetic energy of the photon.
The total number of such events during an observation time τ is given by

M = 2Γτ
|Ω|2
4∆2

, (18)

where 2Γ is the decay rate of the atomic excited state. A trap thus has to fulfill the
condition V > MEr in order to hold an initially ultra-cold atom in the trapping potential
during the interaction with the light fields.

In tightly confined traps, however, atoms are more likely to return to their initial mo-
tional state after a spontaneous emission event because of the Lamb-Dicke effect. If we
assume a three-dimensional harmonic trapping potential, the probability that an atom in
the harmonic ground state |ψ0〉 returns into the same state after the emission of a photon
with wave vector k is given by

P0(k) = |〈ψ0|eikx|ψ0〉|2. (19)

Therefore, the probability of heating the atom into a higher motional state after M spon-
taneous emissions is

Pheat(τ) = 1 − PM
0 . (20)

For Pheat � 1, the atom will stay in the ground state during the detection process with
high probability.

Another mechanism that can be significant for trapping stability is tunneling through
the potential barrier to the disk surface. However, we find that this tunneling probability
is negligible for typical values of the barrier height of 1-2 mK and of the barrier width of
30-60 nm.

6 EXPERIMENTAL FEASIBILITY AND CONCLUSIONS

We have shown that a single atom can be detected near the surface of a microdisk resona-
tor with and without trapping, such that it can be done with negligible heating.



The detection of the atom is done by a blue-detuned WGM of the resonator, while
trapping at a fixed position is achieved by a second, red-detuned WGM. The two light
fields create a trapping potential at a distance of 100-150 nm from the disk surface. At
this distance, the atom-surface attractive interaction (van der Waals force) is much weaker
than the light force, while the optical potential is sufficiently strong to create a deep trap
for the atom. The atom is then confined in the radial direction and in the z direction
(perpendicular to the chip surface). For trapping in the tangential direction, we suggest
that the red-light WGM would be coupled to the microdisk from both sides, such that a
red-detuned standing wave is formed along the disk perimeter and the atom may be trapped
in any of the maxima of the red detuned light.

The use of photonics for atom chips has been discussed recently [42]. Detection of
atoms by evanescent fields has been achieved experimentally [43]. Moreover, the use of
bi-chromatic light for guiding or trapping atoms has also been discussed before [35–41].
The idea of utilizing a two-dimensional microsphere, i.e., a disk or ring with a favorable
fabrication feasibility, was put forward by us in recent papers together with a realistic
tolerance analysis combining all the above ideas [8, 9]. We note that state-of-the-art fabri-
cation has reached a point where previous concerns regarding the spatial instability of the
trapping potential due to light back scatter from imperfections [41] may be no longer valid.
Concerning the required light mode stability, we estimate an acceptable tolerance of ∼2%.
This has been calculated when demanding high stability for the trap parameters as well as
atom-light interaction, and is highly dependent on surface roughness and mode coupling.

On the experimental side, recent work has already demonstrated strong coupling of single
Cs atoms with monolithic microtoroidal resonators that have a capability of input-output
coupling with small parasitic losses, and a demonstrated ideality of more than 99.97 [32, 33].
However, these experiments were performed at very small detuning and pump intensity.
Atoms were detected by high-sensitivity photon counters with signals as low as 6 photons.

Our work suggests that experiments at largely increased detuning of optical modes from
atomic transitions will allow for single-atom detection with higher pump intensity and thus
with far less sophisticated detectors. On the other hand, if input field intensities become
too high, unwanted nonlinear effects start to play a role, such as instabilities from Kerr
optical parametric oscillation [44] and radiation pressure induced mechanical oscillation
[45].

Further work will also need to address in detail the issue of loading, i.e, how the atoms
are brought close to the disk surface. This loading is crucial as it deals with the inter-
play between the specific atom optics elements such as guides and traps, and the detector
responsible for extracting the signal.
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