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Interference Swapping in Scattering from a Nonlocal Quantum Target
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We describe a new and distinctive interferometry in which a probe particle scatters off a superposition
of locations of a single free target particle. Probe particles scattering off a single free ‘‘mirror’’ (in one
dimension) or a single free ‘‘slit’’ (in two dimensions) can ‘‘swap’’ interference with the superposed target
states. The condition for interference is loss of orthogonality of the target states and reduces, in simple
examples, to transfer of orthogonality from target to probe states. We analyze experimental parameters
and conditions necessary for interference to be observed.
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The two-slit interference experiment contains a mystery
of quantum theory, and Feynman even stated that ‘‘it
contains the only mystery’’ [1]. Whether or not we accept
Feynman’s statement, we can easily accept the importance
of the two-slit experiment and its generalizations to quan-
tum theory. Let us consider a particularly ‘‘quantum’’
generalization of the two-slit experiment: Instead of two
slits for the interfering quanta, the experiment contains a
single free ‘‘quantum slit’’ [or a single Fabry-Perot (FP)
mirror] in a superposition of two locations. Can scattering
from such a superposition show quantum interference?
Cohen-Tannoudji et al. [2] answered this question [3] in
the negative, with an assumption that is justified in specific
experimental settings. But the advent of new experimental
settings, such as one- and two-dimensional potentials on
the atom chip [4] and highly controlled atom optics, lead us
to reconsider the question. Here we derive a general con-
dition for quanta impinging on a superposition of target
locations to interfere and describe the experimental con-
ditions for this distinctive quantum interference to be
observed.

To specify the experimental setting, we replace the FP
mirrors, or the slits in the Young double-slit experiment,
with a single quantum target: a scattering center, i.e., an
ultracold atom, in a superposition of orthogonal position
states. Both the probe and the target are free. We confine
the target to move in one dimension (i.e., in a tight atomic
guide). In the first example below, both the probe and target
are one-dimensional, and the superposed locations of the
target form a one-dimensional, one-mirror FP interferome-
ter. In the second example, the probe moves in a plane
containing the target axis and scatters in two dimensions
off the superposed locations of the target, which form a
double-slit interferometer made of a single slit.

Let the initial target wave function ’��X� be a super-
position of wave packets separated by a distance d,

’��X� �
1���
2
p �’L�X� � ei�’R�X��; (1)
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where we take ’R�X� � ’L�X� d� � er�d’L�X� for
convenience. The wave packets have support in regions
smaller than d=2. Such a wave function may be engineered
by growing a barrier in the middle of a harmonic oscillator
trap, so as to form a double well in the free dimension of
the target, and then by quickly shutting off this trap.

How should quantum interference show up in scattering
from a superposition of locations? An operational defini-
tion is essential. No local measurement on ’L�X� or
’R�X� alone can yield �, the relative phase of the wave
packets; no probe particle interacting with a target at one of
its locations, but not both, can provide any information
about �. Hence, dependence on � in the final state of the
probe is a sure signal of interference between paths of the
probe scattering from the two target locations. Since
’��X� � �1� ei��r�d�’L�X�=

���
2
p

, the Fourier transform
~’��P� of ’��X� is

~’��P� � �1� ei��iP�d=@�~’L�P�=
���
2
p

(2)

and shows peaks in P � d=d separated by h=d. A change in
� shifts the peaks, i.e., changes the modular momentum [5]
defined as P � d=d modulo h=d. We will see how � can
show up in the final momentum distribution of the probe
particles.

In the case that a probe and target have initial momenta
pin and Pin, respectively, the initial overall state j�ini of the
probe and target is

j�ini � jpini 	 j’�i � jpini 	
Z
d3Pin ~’��Pin�jPini: (3)

In Eq. (3) and below, the first ket in any tensor product
refers to the probe and the second ket refers to the target.
The state jpini 	 jPini can scatter to a state jpfini 	 jPin �
pin � pfini. We let S�pin;pfin; Pin� denote the amplitude of
the transition. Then the overall final state j�fini is
Z
d3pfin

Z
d3Pin ~’��Pin�S�pin;pfin; Pin�jpfini 	 jPin � pin � pfini: (4)
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Cohen-Tannoudji et al. [2] considered the limit in which
S�pin;pfin; Pin� is independent of Pin, a limit appropriate to
photons scattering off a heavy atom. With this assumption,
the overall final state j�fini reduces to

j�fini �
Z
d3X’��X�j��X�i 	 jXi; (5)

where j��X�i is a probe (photon) state that depends on the
location of the target. They showed that there can be no
interference between photon states entangled with the two
locations of the target, because the target states remain
orthogonal and collapse the superposition. Thus, if the
scattering matrix does not depend on Pin, there can be no
interference.

But if the scattering matrix depends on Pin, there can be
interference in the final momentum distribution of the
probe. We now illustrate such interference in a simple
one-dimensional model [6]. Scattering in this model is
elastic, and the scattering matrix is determined—up to
an overall coupling constant �—by (nonrelativistic) en-
ergy and momentum conservation. Letm andM denote the
masses of the probe and target, respectively; apart from
their interaction, they are free. The initial state is the one-
dimensional version of Eqs. (1)–(3). The final state is the
one-dimensional version of Eq. (4) except that pfin is
determined by pin and Pin:

pfin �
2m

M�m
Pin �

M�m
M�m

pin: (6)

Thus, the scattered part of the final state is

�
Z
dPin ~’��Pin�jpfini 	 jPin � pin � pfini; (7)

and the probability that the probe scatters with a particular
momentum pfin is proportional to j ~’��Pin


 �j
2, where Pin


 is
the value of Pin that solves Eq. (6):

prob �pfin���2M�m
2m

�������� ~’�

�
M�m

2m
pfin�

M�m
2m

pin

���������
2
:

(8)

Equation (8) shows that the momentum distribution of the
scattered probe reproduces the momentum distribution of
the target, only shifted by �M�m�pin=2m and scaled by
�M�m�=2m; and from Eq. (2), j ~’��P�j2 equals �1�
cos�Pd=@� ���j ~’L�P�j

2, where ~’L�P� is broad compared
to @=d because ’L�X� is narrow compared to d. The
distribution of pfin depends on �, as claimed.

In any realistic experiment, the incident probe state has a
momentum spread �pin > 0. To model this spread, we fold
prob�pfin� in Eq. (8) with a distribution g�pin�:

g�pin� � e��p
in�hpini�2=2��pin�2 : (9)

Folding prob�pfin� with g�pin� (i.e., summing probabilities
rather than amplitudes) is allowed because we trace over
the final target state and no two values of pin correspond to
the same pfin and Pfin (i.e., no two values of pin interfere in
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the same final state). To estimate the visibility of interfer-
ence fringes, we can approximate j ~’��Pin


 �j
2 by 1�

cos�Pin

 d=@� �� in this convolution. Then the probability

of pfin is proportional to

1� A cos
��
M�m

2m
pfin �

M�m
2m

hpini

�
d
@
� �

�
; (10)

where A � e�d
2�M�m�2��pin�2=8m2

@
2
. The visibility of the

fringes in the distribution of pfin is, by definition, the
difference between neighboring maxima and minima di-
vided by their sum, so it equals A. Since the visibility is
suppressed exponentially in d2�M�m�2��pin�2=8m2

@
2,

interference fringes are not visible for m� M. Indeed,
m� M and Eq. (6) together imply that the scattering
matrix is insensitive to Pin, as Cohen-Tannoudji et al. [2]
assumed. But for m � M, there is no suppression of
visibility.

Note that, when probe particles of massm scatter off two
target particles of massM, visibility is optimal [7] form�
M; here visibility vanishes for m� M. This distinction
underscores the novelty of our interference effect.

We can describe the interference effect more generally
as a transfer of orthogonality. Initially, the wave function of
the target is j’�i � �j’Li � ei�j’Ri�=

���
2
p

, with j’Li and
j’Ri orthogonal. If the initial state of the probe is j ini, the
overall initial state is j�ini � j ini 	 �j’Li � e

i�j’Ri�=���
2
p

, and it evolves according to some unitary operator U
until the probe is detected in a final state j fini. The
probability to detect this final state is tr��j finih finj�,
where tr indicates the trace over the probe and target
Hilbert spaces and

� � Uj ini 	 �j’Li � ei�j’Ri��h’Lj � e�i�h’Rj�

	 h injUy (11)

is a density matrix. Now consider tr’�Uj ini 	 j’Lih’Rj 	
h injUy�, where tr’ indicates the trace over only the target
Hilbert space. If this latter trace vanishes, then the proba-
bility of any final state j fini of the probe cannot depend on
� and there is no interference. But tr’�j ini 	 j’Lih’Rj 	
h inj� vanishes because j’Li and j’Ri are orthogonal. For
interference, then, the superposed states of the target must
lose their orthogonality during the evolution U. The states
Uj ini 	 j’Li and Uj ini 	 j’Ri, however, remain or-
thogonal as U is unitary. Hence, U must transfer the
orthogonality of the target states to other states. In general,
the orthogonal states Uj ini 	 j�Li and Uj ini 	 j�Ri are
entangled states of the probe and target. But if they are
product states, then U transfers orthogonality from the
target to the probe. Our one-dimensional model illustrates
this transfer. Figure 1(a) depicts a probe approaching a
target prepared in the initial state j’�i of Eq. (1), and
Fig. 1(b) shows the particles after scattering. If m � M,
the probe and target simply exchange states, as they do in
classical mechanics, so that orthogonality is transferred
from target to probe. We may regard this exchange as an
1-2
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FIG. 1. (a),(b) One-dimensional model: (a) A probe (in black)
approaches a target (in gray) superposed at locations X � �d=2
with relative phase �. (b) The probe and target after scattering.
(c),(d) Two-dimensional model: (c) A probe wave packet, with
incident angle 	in and momentum pin, approaches a stationary
target superposed at X � �d=2. (d) If the target scatters with
momentum Pfin � Mpin=m cos	in, the orthogonality of the tar-
get states is transferred to the probe.
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interferometric analogue of entanglement swapping. If
m � M, the probe and the target do not scatter to a product
state, but partial transfer of orthogonality from target to
probe still accounts for the partial visibility at m � M.

Our general description sheds light also on scattering
processes in which the target is not free, e.g., in a high-
barrier double-well potential. Here no transfer of orthogo-
nality is possible—j’Li and j’Ri cannot lose their or-
thogonality—hence, no interference. This explanation
complements the one by Schomerus et al. [8] ruling out
interference on the basis of energy considerations, when
the probe has sufficient energy to excite the antisymmetric
state of the target.

In our second example, the probe moves in a plane
containing the axis to which the target is confined.
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Hence, it is scattered by a ‘‘double-slit interferometer’’
made of a single slit. The momentum of the probe has
two components, px and py, where the axis of the target
defines the x axis. Energy and the x component of momen-
tum are conserved but not the y component (since the target
is constrained). We begin with scattering of momentum
states of a probe and target. They scatter at y � 0, x � X. It
is helpful to change variables. First, we rescale the position
X of the target to z 
 X

�����������
M=m

p
and correspondingly the

momentum (whether Pin or Pfin) to pz 
 P
�����������
m=M

p
. With

this rescaling, an initial wave function with momenta pin
x ,

pin
y , Pin can be written

�in�r; t� � eiP
in�re�i�p

in�2t=2m@; (12)

where r � �x; y; z� and p � �px; py; pz�. It resembles the
wave function of a single free particle scattering on the line
defined by y � 0, x � z

�����������
m=M

p
. Next, we rotate through

� 
 arctan
�����������
m=M

p
in the xz plane,

�x � x cos�� z sin�; �y � y;

�z � x sin�� z cos�;
(13)

and, correspondingly,

�p x � px cos�� pz sin�; �py � py;

�pz � px sin�� pz cos�;
(14)

so that the scattering line coincides with the �z axis; the
initial wave function still has the form of Eq. (12) but �r, �pin

replace r, pin. The probe and the target interact at short
range; hence, the scattering is cylindrically symmetric: If
the initial momentum is �pin, then the probability distribu-
tion of �pfin is

prob � �pfinj �pin� � �2
�� �pfin

z � �pin
z ��� �pfin

� � �pin
� �

2� �pfin
�

; (15)

where �p� 
 � �p2
x � �p2

y�
1=2. Transforming Eq. (15) back to

the original coordinates, we obtain
prob �pfin
x ; pfin

y ; Pfinjpin
x ; pin

y ; Pin� � �2 ��P
fin � pfin

x � p
in
x � P

in

 ���P

in � Pin

 �

2�tan2� sin�jpfin
x � p

in
x j

; (16)
where Pin

 is the value of Pin obtained by solving the two

constraints of energy and momentum conservation:

Pin

 �

1

2

�
pfin
x � pin

x �
M
m
�pfin�2 � �pin�2

pfin
x � pin

x

�
: (17)

Now suppose we prepare the target in the state j’�i and the
probe in a state j ini with fixed 	in and a spread �pin

around pin. We obtain the probability distribution
prob�pfin

x ; pfin
y � for the scattered probe by evolving the

overall state j ini 	 j’�i in time, projecting onto a final
state jpfin

x ; p
fin
y i of the probe, and tracing

jhpfin
x ; p

fin
y jUj ini 	 j’�ij

2 over the final momentum state
jPfini of the target. Expanding j ini in momentum space,
we note that, since Eq. (17) is quadratic in pin, there are at
most two values of pin consistent with the same set pfin

x ,
pfin
y , and Pfin. Hence, for �pin small enough to include only

one of the two, we can obtain prob�pfin
x ; p

fin
y � by summing

probabilities, namely, folding Eq. (16) with j ~’��Pin�j2 and
integrating over Pfin [9]:

prob �pfin
x ; pfin

y � � �2 M
1=2�M�m�1=2j ~’��p

in

 �j

2

2�mjpfin
x � pin

x j
; (18)

which we fold with Eq. (9). Here, as in the first example,
the probe inherits the interference in the initial target wave
function ~’��Pin�.
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FIG. 2 (color online). Normalized angular distribution of scat-
tered probe (�pin � 0) incident at 	in � 45�, for relative phases
� � 0 and � � � and M=m � 0:5. Insets: Visibility as a func-
tion of M=m and (for M=m � 0:5) as a function of �pin=pin, at
	in � 45�, 	fin � 60� [11]. Here we define visibility as
�P��	

fin� � P����	
fin��=�P��	

fin� � P����	
fin�� maximized

over �, where P��	fin� is the probability density for the probe
to scatter in the direction 	fin from the initial target state j’�i of
Eq. (1).
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If ~’��Pin

 � changes more rapidly than the denominator

of Eq. (18) as a function of pin, we can estimate the
visibility of this interference by approximating j ~’��Pin


 �j
2

by 1� cos�Pin

 d=@� �� as before. We obtain

e�d
2�@Pin


 =@p
in�2��pin�2=2@2

as the visibility for small �pin.
When @Pin


 =@pin vanishes, the visibility is not sup-
pressed at all, and the spread in the initial state of the
probe is transferred to the final state of the target.
From @Pin


 =@p
in � 0, we obtain the condition Pfin


 �
Mpin=m cos	in (where Pfin


 
 Pin

 � p

in
x � p

fin
x ), which

we can interpret with the help of Fig. 1. Figure 1(c) depicts
the probe approaching the stationary target at an angle 	in,
and Fig. 1(d) depicts the scattering. The target, initially at
X � d=2 or at X � �d=2, scatters with momentum Pfin. If
the target was at X � �d=2, it reaches X � d=2 after a
time Md=Pfin, while the probe wave packet requires a time
md cos	in=pin to reach X � d=2 if it crosses X � �d=2
without scattering. If these times coincide, then the scat-
tered target states in the superposition coincide, and their
orthogonality is transferred to the probe. The condition for
this transfer of orthogonality is Pfin � Mpin=m cos	in.
Since Pfin


 � Mpin=m cos	in is algebraically equivalent to
@Pin

 =@p

in � 0, the condition that visibility not be sup-
pressed implies transfer of orthogonality, here just as in
the one-dimensional model [10].

A full experimental feasibility study will appear else-
where [9]. Let us, however, apply our second example to a
typical experimental setting in which only the final direc-
tion of the probe is measured. We have numerically inte-
grated pfinprob�pfin

x ; pfin
y � with respect to pfin along lines of
17360
constant 	fin. In the numerical integration, we took ’L�X�
and ’R�X� to have the form e��X�d=2�2=2w2

, with w �

in=5, d � 7
in, and incident probe wavelength 
in �
0:5 �m. (Double wells with ground state of size 0:1 �m
and separation 3:5 �m are achievable with magnetic
traps.) While integrating over pfin tends to average out
some of the interference, Fig. 2 shows that the visibility
is robust. The dependence of the scattering on the relative
phase � is very clear. The insets show how visibility
depends on the mass ratio M=m and on �pin=pin. For
M=m> cos2	in, the visibility is suppressed, as we expect
since M=m> cos2	in is incompatible with the condition
Pfin

 � Mpin=m cos	in.
In summary, we have shown how a distinctive new

interferometry can yield the relative phase of superposed
orthogonal location states of a free target.
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