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We analyze theoretically and experimentally the existence of a magic frequency for which the
absorption of a linearly polarized light beam by vapor alkali atoms is independent of the population
distribution among the Zeeman sub-levels and the angle between the beam and a magnetic field. The
phenomenon originates from a peculiar cancelation of the contributions of higher moments of the
atomic density matrix, and is described using the Wigner-Eckart theorem and inherent properties of
Clebsch-Gordan coefficients. One important application is the robust measurement of the hyperfine
population.
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Interaction of light with alkali metal vapor has an im-
portant role both in the study of fundamental physics
and in many technological applications. Macroscopic en-
tanglement was demonstrated using cesium vapor cells
[1]; Pulses of light, as well as images, were stored in ru-
bidium vapor [2, 3]; Rubidium vapor cells serve as a ba-
sis for chip-scale atomic clocks [4]; and alkali vapor cells
are used for high sensitivity optical magnetometry [5, 6].
More applications can be found in [7–10].

The density matrix representing the state of an alkali
vapor in a specific hyperfine state |F 〉 can be expanded
in terms of polarization moments (PM). A PM ρ(κ) is an
irreducible spherical tensor of rank κ (0 ≤ κ ≤ 2F + 1)
whose components are given by [10]:

ρ(κ)q =
∑
m1,m2

(−1)F−m1〈F,m2, F,−m1|κ, q〉ρm1,m2 (1)

where q = −κ...κ, m1 and m2 are the magnetic quantum
numbers, ρm1,m2 are the density matrix elements and
〈F,m2, F,−m1|κ, q〉 are the Clebsch-Gordan coefficients
(CGC). The PMs of ranks κ = 0, 1 and 2 are propor-
tional to the population, the dipole moment (or orienta-
tion), and the quadrupole moment (or alignment), of the
relevant |F 〉 state, respectively [10–13]. For a full map-
ping of the density matrix it is essential to measure the
hyperfine population ρ(0). While unpolarized light from
lamps [14–16] or polarized light from lasers [17] were pre-
viously used to optically pump atomic vapor and monitor
its relaxation process, these measurements had limited
accuracy in estimating the hyperfine population.

Here we demonstrate for the first time the existence of
a magic frequency for which the light absorption of lin-
early polarized laser radiation is independent of the pop-
ulation distribution among the Zeeman sub-levels and of
the angles between the light and the magnetic field. At
the magic frequency the absorption is proportional only
to ρ(0) and can therefore serve as an accurate and robust
measure of the hyperfine population.

In general, different Zeeman sub-levels |F,mF 〉 have
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FIG. 1. (Color online) Outline of the magic frequency effect.
At these frequencies, the absorption from all Zeeman sub-
levels is equal, namely, the overall absorption depends only on
the total population in the hyperfine state, and is independent
of the internal population distribution. Plotted is a ∆ΓF

surface, proportional to the differences of the absorption rates
of light (D2 line) by 87Rb atoms (T = 295K) in different
Zeeman sub-levels of the |F = 2〉 hyperfine state [Eq. (7)],
for a small external DC magnetic field |B| < 1 G. The magic

frequency where ∆ΓF = 0, is found at ∆Magic
L = 385 MHz

(and at −318, not shown), where ∆L is the light frequency
detuning from the |F = 2〉 to |F ′ = 0〉 energy difference. The
light, propagating in direction k, is linearly polarized with
an angle φ = 0 (i.e. polarized in the B-k plane). The plot
also shows that the magic frequency is independent of θ, the
angle between B and k. The overall transition strength SF

[Eq. (8)] is shown in the background. For clarity, ∆ΓF is
multiplied by 3.

different contributions to the absorption rate, due to dif-
ferent optical transition matrix elements. To find con-
ditions that nullify these differences, we define the value
∆ΓF , which measures the difference in the absorption
rates from different Zeeman sub-levels in a specific hy-
perfine level |F 〉, and which depends on the probe fre-
quency, its direction, polarization and the vapor temper-
ature. The model produces surfaces of ∆ΓF (Fig. 1),
showing if and where ∆ΓF = 0, thereby identifying the
magic frequency.
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Our model is based on the Wigner-Eckart theorem [10].
Working in the spherical basis (ê±1 = ∓(x̂±iŷ)/

√
2, ê0 =

ẑ), we write the electric dipole matrix element for an
|F,mF 〉 → |F ′,m′F 〉 transition as [18]:

〈F,mF |erq|F ′,m′F 〉 = 〈J‖er‖J ′〉(−1)F+J+1+I×
√

2J + 1
√

2F ′ + 1

{
J J ′ 1
F ′ F I

}
〈F,mF |F ′, 1,m′F , q〉,

(2)

where q = −1, 0, 1 is the spherical basis index, 〈J‖er‖J ′〉
- the reduced matrix element, J - the total electron an-
gular momentum number, I - the nuclear spin number,
the curly brackets hold the Wigner’s 6J symbol, and the
last factor is the CGC.

Let us examine the absorption of light at frequency fL
by an alkali vapor (atomic mass m, temperature T ). For
any |F,mF 〉 → |F ′,m′F 〉 transition (of frequency fFF ′)
the light is detuned by ∆FF ′ = fFF ′ − fL. The light ab-
sorption rate is proportional to the square of the dipole
matrix element, to the intensity of the relevant light com-
ponent and to the fraction of vapor atoms having the ve-
locity that Doppler shifts the light by ∆FF ′ . This frac-
tion is proportional to exp[−(∆FF ′/σD)2/2], with the
Doppler standard deviation σD = fFF ′ ·

√
kBT/mc2.

We define the relative light absorption rate ΓrelmF , as:

ΓrelmF =

F ′=F+1∑
F ′=F−1

e
− 1

2

(
∆
FF ′
σD

)2

(2F ′ + 1)

{
J J ′ 1
F ′ F I

}2

×
q=1∑
q=−1

|E−q|2〈F,mF |F ′, 1,m′F , q〉2, (3)

where we sum over all the possible transitions from a
particular |F,mF 〉 sub-level. Being only interested in the
relative light absorption rates, we ignore all factors in
Eq. (2) that are independent of mF ,m

′
F and F ′. We

also ignore the natural line width, the laser line width
and the Zeeman splitting, as these are small compared
to the Doppler broadening. In case the pressure shift and
broadening are significant (e.g. in vapor cells containing
buffer gas), one should modify the transition frequencies
fFF ′ with the relevant shifts and replace the Doppler
term in Eq. (3) with the appropriate Voigt function [19].

The normalized polarization components Eq (|E|2 =
1) are defined in the coordinate system where ẑ is the
direction of the magnetic field B (the quantization axis).
As E0 = Ez and E±1 = (Ex ± iEy)/

√
2, one finds for a

linear polarization vector:

E0 = − sin θ cosφ; E±1 = (cos θ cosφ± i sinφ)/
√

2 (4)

where θ is the angle between B and the light wave-vector
k and φ is the angle between the polarization vector E
and the B-k plane. Consequently, |E+1| = |E−1| and
|E0|2 = 1− 2|E+1|2.

For any two ground state Zeeman sub-levels |F,m1〉,
|F,m2〉 the absorption rate of linearly polarized light will
be the same if:

Γrelm1
(fL)− Γrelm2

(fL) = 0. (5)

Using the definition of ΓrelmF [Eq. (3)] and the explicit ex-
pression for the CGCs, the condition of Eq. (5) becomes:

(1− 3|E+1|2) · (m2
1 −m2

2) ·
F ′=F+1∑
F ′=F−1

e
− 1

2

(
∆
FF ′
σD

)2

×
{
J J ′ 1
F ′ F I

}2

· (3δFF ′ − 1)(2F ′ + 1) + F − F ′

2F ′(F ′ + 1)
= 0,(6)

where δF,F ′ is the Kronecker delta, and where for F ′ = 0
the fraction in the sum equals −1. Let us emphasize that
it is the inherent properties of the CGCs which enable to
factor out the (m2

1 −m2
2) and the (1 − 3|E+1|2) compo-

nents when moving from Eqs. (3) and (5) to Eq. (6).
Eq. (6) has two trivial solutions corresponding to

the first two factors: the first when m2 = −m1, im-
plying that always ΓrelmF = Γrel−mF , and the second when
the three polarization components have equal intensity
(|E+1|2 = 1/3, or cos2 θ = 2/3 when φ = 0), the lat-
ter being responsible for the two ∆ΓF = 0 lines at
constant θ clearly visible in Fig. 1 (θ = 0.615 and
θ = π − 0.615). This condition is automatically valid for
unpolarized light, and indeed it is well known that when
all light components have equal intensity, the absorption
is independent of mF [18].

The third factor in Eq. (6), which sums three terms,
is the subject of this work. At specific frequencies where
this sum is zero, the absorption rate becomes indepen-
dent of mF regardless of the direction of polarization.
Magic frequencies always exist for every F state, as the
sum must have zero values for specific laser frequen-
cies fL. To show this, we note that while the exponent
and the squared 6J symbol are always positive, only the
F ′ = F term is positive. The three terms are weighted
by the Doppler distributions. If fL is at resonance with
F ′ = F then this term dominates and makes the sum pos-
itive, while if fL is resonant with one of the F ′ = F ± 1
states, the sum is negative. This is ensured by the fact
that the sum vanishes if the weights on all F ′ terms are
equal, namely, in a situation where the Doppler distribu-
tion is much broader than the hyperfine splitting of the
J ′ level. As the sum is a continuous function of fL, it fol-
lows that it must vanish at least at one magic frequency
between two resonances with F ′ states.

Fig. 2 presents plots of ΓrelmF vs. light frequency.
Let us denote the light frequency fL by its detuning
∆L from the frequency matching the energy difference
between the hyperfine ground state |F 〉 and the low-
est |F ′〉 state in the relevant excited hyperfine manifold.
Fig. 2a shows 5 plots of ΓrelmF for mF = 0... ± 4 of the
62S1/2, F = 4 → 62P3/2 transitions of cesium (D2 line),



3

interacting with linearly polarized light. Two frequencies
at which all ΓrelmF are equal are clearly visible. These are

the magic frequencies ∆Magic
L . Fig. 2b contains plots

for the 52S1/2, F = 2 → 52P1/2 transitions of 87Rb (D1

line), again demonstrating the magic frequency. Similar
results may be observed for 85Rb, sodium and other alkali
atoms.

Finally, in order to characterize the difference between
the absorption rates of light by atoms in each of the Zee-
man sub-levels of a given |F 〉 state, we define :

∆ΓF ≡
[
max(ΓrelmF )−min(ΓrelmF )

]
/SMF , (7)

where the max/min scan the mF space, and where

SMF = max(SF ), with SF ≡
1

2F + 1

F∑
mF=−F

ΓrelmF , (8)

where the max scans the frequency space.
∆ΓF is a function of ∆L, θ, φ and the temperature.

The quantity SF , defined to represent absorption when
all the Zeeman sub-levels are equally populated, serves
as a measure of the total atom-light interaction strength.
It is a function of ∆L, but is independent of both θ and φ
by definition [in Eq. (8) all sub-levels are equally popu-
lated so there is no preferred direction]. As, at the magic
frequencies, all Zeeman sub-levels contribute equally to
the absorption rate, and as their sum SF is independent
of θ and φ, the interaction with each sub-level must be
independent of these angles as well. Thus, from a fun-
damental point of view, the magic frequency represents
a unique cancelation effect in which light-matter interac-
tion becomes rotationally invariant although the atomic
sample as well as the light beam and its polarization all
have a well defined direction. As ρ(0) is the only PM
which is a scalar, this means that the contributions of all
other PMs cancel out.

We numerically analyze ∆ΓF for the |F = 2〉 D2 tran-
sitions of 87Rb using the surface shown in Fig. 1 and find
that ∆ΓF = 0 for two magic frequencies: ∆Magic

L = 385
and −318 MHz. For the lower frequency SF [Eq. (8)] is
very small, indicating a negligible interaction with laser
light for such detuning. We also find that the value of
this frequency is very sensitive to the temperature and
to the type of broadening (Doppler or Voigt). Thus, it
is of little practical value. On the other hand, the higher
magic frequency, ∆Magic

L = 385 MHz, is located near the
maximum value of SF , is only very weakly dependent on
the temperature (∆Magic

L changes by < 50 kHz/K), and

for a range of about ±10 MHz around ∆Magic
L we find

∆ΓF < 0.01, indicating a nearly equal absorption rate
from all the Zeeman sub-levels. We conclude that the
absorption of a laser beam tuned to this magic frequency
is insensitive of θ, φ and mF , so that it can be used for
an accurate measurement of ρ(0).

We have preformed an exact calculation of absorp-
tion rates based on numerical diagonalization of the full
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FIG. 2. (Color online) Relative absorption profiles [nor-
malized Γrel

mF , Eq. (3)] for Zeeman sub-levels of cesium

and rubidium. At least one point where all the Γrel
mF are

equal (i.e. ∆ΓF = 0) always exists. These points de-
fine the magic frequencies. Shown are profiles for (a) the
62S1/2, F = 4 → 62P3/2 transitions of cesium (D2 line), and

(b) the 52S1/2, F = 2→ 52P1/2 transitions of 87Rb (D1 line).
∆L is the detuning of the light from the frequency difference
between the ground state |F 〉 and the lowest |F ′〉 hyperfine
state. Transition frequencies to all F ′ levels are indicated by
arrows. These absorption plots are given for linearly polar-
ized light with φ = 0 (both), θ = π/2 in (a) and θ = 0 in (b)
[Eq. (4)], and T = 295K.

atomic Hamiltonian including the interaction with an
external static magnetic field, and have found that in
weak magnetic fields magic frequencies indeed exist as
predicted by our simple model (the full calculation gives
∆ΓF < 0.01 for |B| < 1 G for any set of parameters).

To experimentally demonstrate the magic frequency we
change the population distribution between the Zeeman
sub-levels and show that at ∆Magic

L the optical probe
becomes insensitive to these changes. We use a 87Rb
vapor cell with 7.5 Torr of neon buffer gas. We indepen-
dently measure a pressure shift (due to the buffer gas) of
−30± 10 MHz (similar to previous measurements [19]),
bringing our prediction of the magic frequency in this cell
to ∆L = 355± 10 MHz.

We use a setup similar to the one used by Bhaskar [20].
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Applying a 26 G DC magnetic field and laser beams to
the 87Rb vapor, we optically pump the vapor to the |2, 2〉
Zeeman sub-level. Then, utilizing an 18 MHz RF field,
we induce Rabi oscillations between the |2, 2〉 and the
|2, 1〉 sub-levels for a variable Rabi time tR. Next, we
measure the absorption due to the |F = 2〉 level: we turn
off the RF field, adiabatically reduce the magnetic field
to 1 G, turn on a strong π polarized probe beam (tunable
in a range of ±200 MHz around the magic frequency) and
record the optical density (OD) of the cell from the onset
of the probe beam until the OD reaches an asymptotic
value. The probe beam is strong enough to pump all the
87Rb population to the |F = 1〉 hyperfine state within
250µs (short relative to the 8 ms thermal relaxation time
in the cell used here), thus bringing the OD of the cell to
an asymptotic value that corresponds to zero population
at the |F = 2〉 hyperfine state. For each Rabi time tR we
calculate ∆OD - the difference between OD at the onset
of the probe beam and the asymptotic value of OD. We
normalize ∆OD so that for vapor in thermal equilibrium
∆OD=5/8.
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FIG. 3. (Color online) Experimental demonstration of the
magic frequency. (a) An example of three plots of ∆OD vs.
tR, showing the contrast of Rabi oscillations for different fre-
quency detunings ∆L of the probe beam. Note the π phase
difference between the two outer plots. This is exactly as
expected from the reversing of the relative absorption rates
on the two sides of the magic frequency, as may be observed
in Fig. 2. (b) Contrast of Rabi oscillations vs. detuning,
showing that the contrast of the oscillations between Zeeman
sub-levels drops to zero as the detuning of the probe frequency
is nearing 339 MHz, in good agreement with the magic fre-
quency predicted by our model (with the pressure shift).

In Fig. 3(a) we show three example plots of ∆OD vs.
tR for different frequency detuning ∆L of the probe beam.
The data points are fitted to the function ∆OD = a+ b ·
tR + c · e−tR/τ · sin(2πf · tR + Φ), where c is the Rabi
oscillation contrast. When the probe frequency detuning

∆L is far from the magic frequency, the Rabi oscillations
are clearly visible. However, when it is close to the magic
frequency, the Rabi oscillations are not visible, although
they do exist. Note that our measurements are sensitive
enough to clearly observe Rabi contrast of less than 1%.

In Fig. 3(b) we present the Rabi oscillations’ contrast
c as a function of the probe beam frequency detuning
∆L, for two sets of data: pumping all the population
to |2, 2〉, or to |2,−2〉. In both cases the Rabi contrast
goes to zero for a probe beam detuning of ∆L = 339± 5
MHz, clearly demonstrating the existence of the magic
frequency. The observed value of the magic frequency is
in good agreement with our simple model.

To conclude, in this Letter we present a simple model
for the interaction of linearly polarized light with al-
kali atoms. The model reveals a magic frequency for
which light is equally scattered by all the Zeeman sub-
levels of the hyperfine ground state. We show analyt-
ically that such a magic frequency always exists based
on the Wigner-Eckart theorem and on inherent proper-
ties of CGCs. We explore numerically the properties of
the model, and use an exact calculation to determine its
validity in the presence of a magnetic field. We exper-
imentally demonstrate the magic frequency. We expect
the magic frequency to be useful in a wide range of ap-
plications, in addition to the robust measurement of the
hyperfine population ρ(0). From a fundamental point of
view, the magic frequency represents a unique cancelation
effect in which light-matter interaction becomes rotation-
ally invariant although the atomic sample as well as the
light beam and its polarization all have a well defined
direction. As ρ(0) is the only PM which is a scalar, this
means that the contributions of all other PMs cancel out,
a phenomenon which may shed interesting new light in
the realm of group theory.
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