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We observe asymmetric transition rates between Zeeman levels (spin flips) of magnetically trapped

atoms. The asymmetry strongly depends on the spectral shape of an applied noise. This effect follows

from the interplay between the internal states of the atoms and their external degrees of freedom, where

different trapped levels experience different potentials. Such insight may prove useful for controlling

atomic states by the introduction of noise, as well as provide a better understanding of the effect of noise

on the coherent operation of quantum systems.
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Coupling between internal and external (motional) de-
grees of freedom plays a major role in cooling atoms, ions,
and molecules [1–3] and in manipulating their quantum
states, e.g., in logic gates for quantum computation [4–7].
The state of these particles is usually controlled by mono-
chromatic (or transform limited) electromagnetic fields,
while incoherent fluctuations (noise) must be suppressed
in order to prevent decoherence, heating, and loss [8–10].
The latter are usually studied under the ‘‘white noise’’
assumption. Little is known about what happens between
the monochromatic and white noise limits (‘‘colored
noise’’) with respect to control and hindering effects.

To understand how the noise spectrum can affect the rate
of transitions between internal states, consider a system of
two levels representing electronic configurations of an
atom, ion, or molecule, coupled to external (translational,
rotational, or vibrational) degrees of freedom and to a weak
homogeneous field inducing transitions between the inter-
nal levels. If this field imposes a monochromatic perturba-

tion �̂e�i!t, then the rate of transitions from an initial state
jii to a final state jfi is given by Fermi’s golden rule

�i!f ¼ ð2�=@ÞPkjhij�̂jf; kij2�ðEi � Ef;k þ @!Þ, where

k represents the quantum numbers of the external degrees
of freedom of jfi. The transition rates are proportional to
the density of states in their respective final level, and are
therefore asymmetric between two levels that experience
different external potentials. At the other extreme, one has

a fluctuating random field �̂gðtÞ, where gðtÞ has a spectral
density Sð!Þ � R

dt0ei!ðt�t0ÞhgðtÞgðt0Þi which is flat over a

large bandwidth (‘‘white noise’’). This now allows transi-

tions to all k states whose completeness yields �i!f ¼
Sjhij�̂jfij2 such that the external degrees of freedom
decouple from the transition dynamics and the transition
rates between the two levels become symmetric.

Numerous quantum systems proposed for applications
such as quantum information processing are based on
particles trapped in external potentials. A major limitation
of these systems is uncontrolled noise-induced transitions

between the internal states used for the application (e.g.,
qubits) or from the latter to other internal states. Typically,
different states may experience different potentials, and at
times the potential difference is made significant as part of
the application itself (e.g., quantum logic gates). As con-
ventional environments usually contain background or
technical noise which is not white, it is important to under-
stand the interplay between the internal and external
degrees of freedom under these conditions.
In this Letter we study the dynamics of transitions

between two internal atomic states with different external
potentials in the form of two magnetically trapped Zeeman
levels (jF;mFi ¼ j2; 2i and j2; 1i) in the presence of col-
ored noise which is neither monochromatic nor white. We
experimentally observe that the relative transition rates
between the levels strongly depend on the spectral shape
of the noise. While a clear understanding of this depen-
dence is important in order to find effective ways to combat
uncontrolled noise, we demonstrate that this dependence
also allows steering the transitions in the desired direction
by utilizing engineered noise.
We start our experiment with �7� 104 87Rb atoms

evaporatively cooled to �350 nK. This leaves most of
the atoms in the j2; 2i Zeeman level with a residual fraction
of �9% in j2; 1i. The magnetic trap is produced 250 �m
from the surface of an atom chip by a right-angle Z-shaped
wire [11] and a homogeneous magnetic field generated by
distant coils. This creates a harmonic trap with an axial
frequency !x ¼ 2�� 10 Hz (calculated) and radial
frequencies !y ¼ !z ¼ 2�� 96 Hz (measured) for the

j2; 2i level (a factor of 1=
ffiffiffi
2

p
less for the j2; 1i level). In

order to study the effect of the noise spectrum we introduce
controlled magnetic noise with the same function generator
(Agilent 33250A) and antenna used for the evaporative
cooling. To suppress uncontrolled noise, we increase the
Zeeman splitting to 18 MHz. At this range of spin-flip
transition frequencies the uncontrolled noise spectrum is
quite small and flat. The populations N1 and N2 of the
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trapped levels mF ¼ 1 and mF ¼ 2, respectively, are de-
termined by a Stern-Gerlach measurement [12].

Figure 1(a) presents the ratio RðtÞ ¼ N1=ðN1 þ N2Þ as a
function of the time for which the noise is applied, for
different detuning �f between the noise peak frequency
f0 and the Zeeman splittingE0

12=h of the two trapped levels
at the magnetic field minimum. Figure 1(b) presents the
spectrum of the noise we introduce. One may observe a
large difference in the evolution of RðtÞ between red-
and blue-detuned noise. When the noise is red detuned
(�f < 0), the mF ¼ 1 level is populated while when the
noise is blue detuned (�f > 0) the mF ¼ 1 level is de-
pleted. The solid curves are fits to the empirical form

RðtÞ ¼ R1 þ ðR0 � R1Þe�~�t; (1)

which represents an exponential convergence from the
initial value R0 � Rðt ¼ 0Þ to an asymptotic value R1 �
Rðt ! 1Þ. These results show that the relative transition
rates between the levels strongly depend on the detuning of
the noise and significantly differ from the expected rates in
the case of white noise [dashed line in Fig. 1(a)]. The value
of ~� in Eq. (1) strongly depends on the intensity of the noise
at the relevant frequency. At resonance (�f ¼ 0) it is
roughly hundreds of Hz, depending on the exact noise
amplitude used.

The transitions between the atomic levels are caused by

the coupling �̂ ¼ �gF�BF̂ � Bnoise between the magnetic
field noise Bnoise and the magnetic moment of the atom.

Here�B is the Bohr magneton, F̂ is the angular momentum
operator, and gF is the Landé factor. This coupling allows
only transitions with spin change j�mFj ¼ 1, which im-
plies the following rate equations for the populations of the
two trapped levels

_N 1 ¼ �ð�1!2 þ �1!0ÞN1 þ �2!1N2

_N2 ¼ �1!2N1 � �2!1N2:
(2)

We estimate the escape time of an atom in the untrapped
level mF ¼ 0 from the trapping region, due to thermal
velocity and gravitational acceleration, to be �10 ms.
For j�fj> 20 kHz (� 10 kHz due to the variance in ~�)
the atom is lost from the trap before it can make a transition
back to mF ¼ 1 and the transition �0!1 may be safely
neglected. In the limit of white noise, where the motional
and internal degrees of freedom are decoupled, we expect
the ratio between the transition rates to be determined by
the matrix elements of the angular momentum operator,
such that � � �1!0=�2!1 ¼ 3=2, while � � �1!2=
�2!1 ¼ 1 [10,13]. In the following we show that colored
noise dictates different values for � and �.
Next we connect the ratio RðtÞ to � and � and focus on

the asymptotic value R1. Assuming that the transition rates
are time independent, Eqs. (2) yield the solution

RðtÞ � N1ðtÞ
N1ðtÞ þ N2ðtÞ ¼

R1 þ Ce�~�t

1þ �R1Ce�~�t (3)

where C � ðR0 � R1Þ=ð1� �R1R0Þ and ~� � ð1=R1�
�R1Þ�2!1. Note that Eq. (3) reduces to Eq. (1) when
� ¼ 0, and even when � � 1 Eq. (1) is a fair approxima-
tion. The asymptotic value in Eq. (3) is given by

R1 ¼ 1þ �þ �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�4�þ ð1þ �þ �Þ2p
2�

: (4)

This value depends solely on the ratios � (determining the
relative depletion rate to the mF ¼ 0 level) and � (deter-
mining the asymmetry in the transition rate between
the two trapped levels), and is independent of the overall
noise intensity or the initial condition, R0. In the white
noise limit, where � ¼ 3=2 and � ¼ 1, R1 ¼ 1=3 [dashed
line in Fig. 1(a)] and R1 � 1=2 for any value of � [� ¼ 1
band in Fig. 1(a)]. The dependence of Eq. (4) on � for
various values of � is presented in Fig. 2(a).
In Fig. 2(b) we plot the measured value of R1 for

different values of the center frequency of the applied
noise. The band and the three curves represent the theo-
retical prediction for R1, as described below.
In order to gain a qualitative understanding of the results,

we first present a simple semiclassical 1D model of two
thermal distributions of atoms trapped in potentials VjðxÞ ¼
1
2mjM!2

1x
2, whereM is the atomic mass,!1 is the trapping

frequency of themF ¼ 1 level, andmj ¼ mF is either 1 or 2.

Each atomic distribution is represented in Fig. 3 by a typical

atom at an average position dj ¼
ffiffiffiffiffiffiffiffiffiffi
hx2ij

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=mjM!2

1

q
.

As the wavelength of the applied noise is much larger than
the typical size of the system, the atomic recoil is negligible.
The transition of a typical atom from mF ¼ 2 to mF ¼ 1
requires a photon energy E2!1¼E0

12þV2ðd2Þ�V1ðd2Þ¼
E0
12þ 1

4kBT and reduces the energy of the atom relative to

the trap bottom by 1
4 kBT. A transition of a typical atom in
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FIG. 1 (color online). (a) The measured ratio RðtÞ between the
number of atoms in mF ¼ 1 and the total number of trapped
atoms, for different values of the detuning �f. The measured
RðtÞ goes beyond the band 0 � R � 1=2 representing asymptotic
values of RðtÞ in a model where the external degrees of freedom
are decoupled from the transition dynamics (the dashed line at
R ¼ 1=3 is for white noise). Curves are fits to the empirical form
of Eq. (1). Data variance gives an error of �0:01 (not shown).
(b) The noise spectrum we introduce into the system relative
to f0 ¼ 18 MHz [the solid (red) line is the fit used in our
calculations].
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mF ¼ 1 to mF ¼ 2 at d1 ¼
ffiffiffi
2

p
d2 requires a photon energy

E1!2 ¼ E0
12 þ V2ðd1Þ � V1ðd1Þ ¼ E0

12 þ 1
2 kBT and in-

creases the energy of the atom by 1
2 kBT.

The relative transition rates depend on the number of
photons with the two energies E1!2 > E2!1. If the noise
intensity increases with frequency in a wide enough band
(� kBT) around f ¼ E0

12=h [see (blue) arrows in Fig. 3(b),

�f > 0], the transition 1 ! 2 is preferred and the popula-
tion of mF ¼ 1 is depleted, as in the plateau on the right-
hand side of Fig. 2(b). If, by contrast, the intensity de-
creases in this band [see (red) arrows in Fig. 3(b),�f < 0],
the transition 2 ! 1 is preferred and the population of
mF ¼ 1 becomes dominant, as in the plateau on the left-
hand side. Because of these effects, even when the noise
intensity decreases by a few orders of magnitude (side
peaks of the noise), the atoms are still sensitive to the
details of the spectrum, as can be seen in Fig. 2(b). This
may prove to be a useful tool for characterizing noise
features. Note also that the temperature determines the
width of the spectral region the cloud samples; hence,
colder clouds are more sensitive to the fine details of the
noise (e.g., 1 �K gives a resolution of 20 kHz). This effect
is most noticeable at �f 	 0:7 MHz [Fig. 2(b)] where the
temperature band becomes much wider.

To quantitatively explain the results, the ratios � and �
are calculated using a semiclassical expression for the
transition rate which follows from Fermi’s golden rule [14]

�i!f ¼
Z

d!�ifð!Þ
Z d3pd3r

ð2�@Þ3 Piðr;pÞ�ð�VifðrÞ � @!Þ
(5)

where �ifð!Þ ¼ g2F�
2
B

P
j¼y;zjhijF̂jjfij2SjjB ð!Þ, SjjB being

the spectral density of the magnetic fluctuations [8,13],

and Piðr;pÞ is a normalized phase space distribution for
level i. �Vif ¼ E0

if þ Vf � Vi, where E0
if is the Zeeman

splitting calculated using the Breit-Rabi formula, predict-
ing a difference of h� 95 kHz between E0

12 and E
0
01. Vj ¼

1
2mjM

P
k¼x;y;z!

2
1kr

2
k þMgz, where !1k is the trapping

frequency of the mF ¼ 1 level along the kth axis (frequen-
cies given above),mj (j ¼ i, f) are the indices of the initial

and final Zeeman levels, and g is the gravitational accel-
eration which causes a shift of the trap centers relative to
each other. Assuming a Maxwell-Boltzmann distribution,

Pi / e�p2=2mkBTe�Vi=kBT with a constant temperature T for
both levels, Eq. (5) reduces to an integral over dimension-
less space coordinates

�i!f ¼ 4
m3=2

iffiffiffiffi
�

p
Z 1

0
dqq2e�ðmiq

2þ�2=miÞ

� sinhð2�qÞ
2�q

� �ifð! ¼ ðE0
if þ q2kBTÞ=@Þ; (6)

where � ¼ ðg=!1zÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M=2kBT

p
. Trap frequency variations

due to the nonlinear Zeeman effect are neglected.
The theoretical curves are calculated utilizing a fit to the

independently measured spectrum of the noise [(red) curve
in Fig. 1(b)]: a Lorentzian of 1 kHz FWHMmultiplied by a
Gaussian with 	 ¼ 150 kHz for the center peak, two
identical Gaussians for the two side peaks, and a constant
for the background white noise. Finer details of the noise
are ignored. The band in Fig. 2(b) represents the different
theoretical values of R1 for cloud temperatures ranging
from 0:5 �K to 1:5 �K. The 1 �Kwide band accounts for
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FIG. 3 (color online). (a) A simplified model showing the
asymmetry in the transitions between the two trapped levels.
We assume that the atoms are in thermal equilibrium at tem-
perature T, in both levels. We plot the transitions at the mean

atom distances from the trap center, dj �
ffiffiffiffiffiffiffiffiffiffi
hx2ij

q
. A spin flip

from mF ¼ 2 to mF ¼ 1 requires photon energy E2!1, which is
smaller than the photon energy E1!2 needed for the reverse
transition. Ei!f corresponds to the difference between the po-

tentials as the atomic recoil is negligible. (b) The two transitions
sample different frequencies of the noise spectrum (plotted twice
for opposite detuning), giving rise to the asymmetric transition
rates. The two pairs of arrows (blue and red) point to the sampled
noise intensities for each detuning.
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FIG. 2 (color online). (a) The dependence of R1 [Eq. (4)] on �
for various values of �. (b) Asymptotic values R1 taken from
experimental curves as in Fig. 1, as a function of �f, compared
with theory [Eqs. (4)–(6)] with no fitting parameters (T ¼ 0:5�
1:5�K). Error bars are rms of data variance and mean fit error in
Fig. 1, except for the empty points, for which only one mea-
surement is available and the error is the average of the whole
data set. The horizontal error is the uncertainty in the magnetic
field minimum.
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heating due to the transition process [ 14 kBT per 2 ! 1 ! 2

cycle in Fig. 3] and due to uncontrolled background noise.
To further verify our model and to demonstrate control

by noise, we use red-detuned noise (�f ¼ �0:2 MHz) to
prepare our atoms in a specific steady-state ratio [R1 	
0:7, Fig. 2(b)]. Then [t ¼ 0 in Fig. 4(a)] we switched to
�f ¼ þ0:4 MHz, leading to a new steady state where all
the atoms are in mF ¼ 2, as predicted in Fig. 2(b).

It is interesting to consider our model under the two
limits noted previously, namely, white noise and mono-
chromatic radiation. For white noise our theory predicts
R1 ¼ 1=3, which is confirmed by our measurement pre-
sented in Fig. 4(b). The prediction of our model for the
other limit may be estimated by introducing into Eq. (6)
�ifð!Þ / �ð!�!noiseÞ. It follows that transitions occur

only for �f 
 0 and that the ratio � becomes

�mono ¼ 2�3=2 exp

�
2�@�f�Mg2=4!2

1z

kBT

�
: (7)

The factor 2�3=2 is the 3D ratio between the density of
states in the two levels. The second factor in the exponent
is due to the different gravitational shift of the atomic
potential minima. When the transition 1 ! 0 is far detuned
from the transition 2 ! 1 (� ! 0) due to the nonlinear
Zeeman shift, lim�!0R1 ¼ 1=ð1þ �Þ 	 0:92 (1 �K),
0.85 (2 �K), relative to a value of R1 	 0:73 expected
from the density of states ratio alone. This explains the
high theoretical values in Fig. 2(b) near resonance, where
the noise is dominated by a sharp peak. We attribute the
fact that R1 � 0:8 in all our near-resonance measurements
to the fast heating rates which were observed inde-
pendently. Note also that in this region our assumption
regarding thermal equilibrium is invalid. At j�fj< 150�
50 kHz, the collision rate (estimated to be �0:5 Hz) is

slower than the spin-flip transition rates estimated by ~�.
Nevertheless, asymmetry exists in this regime as well,
which may indicate that thermalization is not the funda-
mental source of the observed asymmetry. Indeed, in
Eq. (6) we have used the Maxwell-Boltzmann distribution
as a mere simplifying assumption and we believe that a
more elaborate model would reach similar results without
invoking thermal equilibrium.
To summarize, we have observed that the spectral shape

of noise determines the relative transition rates between
internal levels of trapped neutral atoms, due to the inter-
play of these levels with the external degrees of freedom.
As nonwhite noise spectra are common in background and
technical noise (e.g., in the radio-frequency regime), and
may be very significant in some types of apparatuses such
as atom chips [15], these findings may serve to better
understand how noise couples to quantum systems based
on trapped atoms. Future studies should investigate the
effects of colored noise on the coherence in systems of
trapped particles with few levels, and the possibility that
colored noise may be used for the suppression of decoher-
ence, as proposed in Ref. [16].
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FIG. 4 (color online). (a) Demonstration of control by noise.
We use red-detuned noise (�f ¼ �0:2 MHz) for 200 ms trans-
ferring most of the atoms into level mF ¼ 1 [as predicted in
Fig. 2(b)]. We then (t ¼ 0) apply blue-detuned noise (�f ¼
þ0:4 MHz) which transfers all the atoms into level mF ¼ 2,
again as predicted. (b) Measured ratio RðtÞ when applying white
noise. The measured asymptotic value of R1 ¼ 0:344� 0:004 is
close to the predicted R1 ¼ 1=3. Errors estimated as in Fig. 1.
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