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We propose an optical ring interferometer to observe environment-induced spatial decoherence of massive
objects. The object is held in a harmonic trap and scatters light between degenerate modes of a ring cavity. The
output signal of the interferometer permits to monitor the spatial width of the object’s wave function. It shows
oscillations that arise from coherences between energy eigenstates and that reveal the difference between pure
spatial decoherence and that coinciding with energy transfer and heating. Our method is designed to work with
a wide variety of masses, ranging from the atomic scale to nanofabricated structures. We give a thorough
discussion of its experimental feasibility.
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I. INTRODUCTION

The Schrödinger cat is a well-known example of the dif-
ficulty in clearly defining the border between the classical
and quantum worlds. In this example, quantum theory allows
for a macroscopic superposition of a dead and a live cat to
exist while we have never been able to observe such a mac-
roscopic superposition in nature. Indeed, this enigma has
been the source of a century long debate.

To the best of our knowledge, only few attempts have
been made so far to artificially create macroscopic superpo-
sition states. One attempt dealt with a superposition of two
states of a multiphoton cavity field[1]. A second dealt with a
superposition of a magnetic-flux direction, formed by two
macroscopic counter propagating electron currents[2]. Spa-
tially separated superpositions of a trapped ion have been
prepared and probed[3], and Bose-Einstein condensates
have been examined[4]. Work on handedness of chiral mol-
ecules may also be considered relevant to this topic[5]. Mi-
croscopic, mechanical oscillators have been extensively dis-
cussed as well[6,7], and experiments are now entering the
regime where quantum effects become observable[8].

In this paper, we discuss a general oscillating massive
object and its decoherence in the position basis, the basis
which stands at the base of our classical perception. This
spatial decoherence, also called “localization,” is predicted
by numerous models for environment-induced decoherence
that are put forward to explain the appearance of classical
reality from an underlying quantum world[9]: objects be-
come localized in position due to their interaction with the
environment. Of special interest is “pure” decoherence where
localization can happen even without the transfer of energy,
e.g., in a double-well potential. In order to reproduce the
absence of macroscopic superpositions, most decoherence
models use the mass of the decohering object as a central
parameter along with parameters such as time and spatial
splitting of the superposition. Indeed, recent seminal experi-
ments on matter wave diffraction have tried to explore a
region of mass values beyond the usually experimentally fea-
sible masses of elementary particles[10]. The visibility loss

in the diffraction pattern is then a measurable signal of spa-
tial decoherence.

Interference experiments with freely propagating objects,
however, become increasingly hard to perform with larger
masses for two main reasons: first, the de Broglie wave-
length becomes smaller and the required diffraction gratings
become more difficult to fabricate. Second, the spatial super-
position created by diffraction is increasingly sensitive to
decoherence because it is more difficult to isolate the freely
propagating system from its environment. This renders a
controlled experiment with large masses extremely difficult.

In this paper we propose an interference experiment in
which no grating and no free propagation are needed. In fact,
we avoid all together the need to create a well separated
spatial superposition, and hence the way should be open to
perform controlled decoherence experiments with large
masses. Our experiment is based on an optical interferometer
to probe the state of an oscillating mass, e.g., a nanobead or
a mechanical oscillator. Contrary to previous work concern-
ing oscillating mirrors[7,11], a symmetric ring interferom-
eter is used, and the oscillator is not required to have a high
reflectivity. This feature is advantageous when very light
(thin) nano objects are investigated, as high transmittance
does not pose a problem. We show that this setup can distin-
guish between different models of decoherence dynamics so
that information about this subtle process can be obtained
experimentally.

The next section describes the experimental setup. The
theoretical model is presented in Sec. III, and solved ap-
proximately in Sec. IV. In Sec. V the experimental require-
ments are evaluated for specific examples. General conclu-
sions are put in Sec. VI.

II. EXPERIMENTAL SETUP

The experimental setup we propose is sketched in Fig. 1:
an object of massm is confined in a potentialsPd which can
for all practical purposes be arranged in such a way that only
the motion along one direction is relevant, thex axis, say. We
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assume in this paper a harmonic confinement,Vsxd
=mV2x2/2. The object is held at the center of a ring inter-
ferometer, formed by massive mirrorssMd and an in-out cou-
pling mirror (CM). The symmetry axis of the harmonic po-
tential coincides with the plane of the beam splitter(BS), and
hence with the symmetry axis of the whole setup. The BS
and phase shifter(PS) prepare a symmetric photon mode,
which excites a superposition(with zero phase shift) of right
and left circulating traveling waves in the ring cavity. The
BS and PS also act as a measurement apparatus for the out-
going modes, sending all antisymmetric modes into the de-
tector D. This is so because antisymmetric modes of the
cavity are constructed from right and left circulating beams
with a p phase shift. These are coupled out of the cavity
through the CM in two separate directions. The PS reduces
their phase difference top /2 as in a normal Mach-Zehnder
apparatus, whereby the BS determines constructive interfer-
ence in the direction ofD.

The experimental procedure we have in mind is the fol-
lowing: at t,0 the object is prepared in some equilibrium
state at a given temperature. Att=0 the preparation stops,
and the environment, be it a thermal bath or some tailored
environment, becomes dominant in the dynamics of the sys-
tem. At t= tp, a probe light pulse is sent into the ring inter-
ferometer and interacts with the object. The consequent mea-
surement of the probe pulse which exits the interferometer
after the interaction, determines if the even symmetry of the
initial photon has been altered. In principle also the energy
change of the outgoing photon may be measured, but in this
paper we make no use of this option.

We note that the operation of the ring interferometer is not
qualitatively affected when working with a “transparent” ob-
ject like an atom or a weakly scattering nanoparticle. For the
ease of demonstration we first describe a single atom. The
potential could be provided in this case by a magnetic trap
[12]. Following that, we extend the treatment to a massive
nanoparticle to show how the experimental sensitivity scales
with mass and temperature.

To conclude, the scheme provides an experimental mea-
sure of decoherence which may be used for probing large
mass objects. It is interesting to note that future technologies
may enable confinement of massive objects also in potentials
other than harmonic, in which case decoherence can lead to a
clearer signature of spatial localization without energy trans-
fer (“pure” decoherence). However, in this work, we show
that already for the most feasible of large mass potentials
(the harmonic well), the ring interferometer is able to distin-
guish between different decoherence scenarios, and hence we
truly present a realizable scheme for the probing of decoher-
ence with large masses.

III. MODEL

We use standard techniques of open system quantum dy-
namics to model the experiment sketched in the previous
section. The initial state of the system(atom or nanoparticle)
is described by a density matrixrA, which represents thermal
equilibrium in the harmonic trapping potential at temperature
T0. Up to some probing timet= tp, the system evolves ac-
cording to a Liouville–von Neumann equation

ṙA = −
i

"
fHS,rAg + LfrAg, s1d

with the harmonic oscillator Hamiltonian

HS=
p2

2m
+

mV2

2
x2 s2d

and a dissipative functionalL that describes the influence of
the environment on the system. Its expression is detailed
below.

Around timetp, a light pulse is injected into the cavity to
probe the state of the oscillator. The pulse sent into the cavity
has a center frequency close to a cavity resonance and a
narrow bandwidth compared to the free spectral range(FSR,
which will be denoted byn). We assume that the oscillation
frequencyV is much smaller thann so that the interaction of
the system with the field can only couple degenerate cavity
modes. For simplicity, we also neglect the light scattered by
the object into higher transverse cavity modes. The field in
the cavity can then be described by only two degenerate
modes with even and odd symmetry. As shown in the Ap-
pendix, the interaction Hamiltonian is given by

Hint = "gfsae
†ae − ao

†aod coss2kxd + sae
†ao + ao

†aedsins2kxdg,

s3d

whereae andao are the boson operators for the even and odd
cavity modes, respectively,k=2p /l is the cavity wave num-

FIG. 1. Setup of the experiment. An atom or a more massive
oscillating object, e.g., a nanoparticle, is held in a harmonic poten-
tial sPd. An incoming photon is split and “hits” the object from both
sides. The sourcesSd, the beam splitter(BS) and the phase shifter
(PS) form a preparation system which ensures that the photon mode
is symmetric with respect to the symmetry axis.(PS compensates
the phase difference between the reflected and transmitted wave at
the beam splitter.) The same system acts as a detection system
whereby the antisymmetric photon mode is sent to detectorD. The
potential is symmetric about the symmetry axis as well. If, for ex-
ample, the object is initially prepared in a state of well defined
parity (e.g., the ground state of the potential), its final state will
remain a parity eigenstate unless decoherence breaks the initial
symmetry of the photon1object system.
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ber andg is the coupling strength. The excitation of the even
mode is governed by the term

Hpump= − i"fae
†hstd − h†stdaeg, s4d

where the pump amplitudeh is an operator whose state al-
lows to describe any photon statistics of the incoming pulse.
The leakage of photons out of the cavity is determined by the
transmissivity of the coupling mirror(CM). This process is
accounted for by the Liouville functional

LcavfrAFg = 2ko
i=e,o

SairAFai
† −

1

2
fai

†ai,rAFg+D , s5d

where k is the finite cavity linewidth[half width at half
maximum(HWHM)], f. , .g+ denotes the anticommutator, and
rAF is the joint density operator of the system and the cavity
field modes. We assume for simplicity that all photons leak-
ing out are actually detected with unit efficiency. Thus the
photon rate at the “odd” detectorsDd is given by 2k times
the number of odd photons in the cavity.

As a signal, we will consider the average photon number
detected within in the time intervalftp,tfg, given by

No = 2kE
tp

tf

Trfao
†aorAFstdgdt. s6d

The upper bound of the integration,tf, is chosen such that the
detected photon rate is negligibly small by this time. The
pulse length, and hence the detection window, is kept short
compared to the decoherence time scale of the system.

We focus in this paper on two different dissipative func-
tionals that describe opposite extremes of dissipation and
decoherence. We require the time evolution to be a com-
pletely positive semigroup, i.e., of Lindblad type[13]. The
functional

LdecfrAg = −
D

"2†x,fx,rAg‡ s7d

describes the limit of pure spatial decoherence(D is the clas-
sical momentum diffusion coefficient). It corresponds to the
limit of weak friction and high-temperature environment in a
Caldeira-Leggett model(see, e.g., Ref.[14]). We obtain a
pure thermalization Liouvillian by adding the requirement of
detailed balance to the complete positivity. In terms of the
creation and annihilation operators of our harmonic system
Hamiltonian(2),

LthermfrAg = G↓SbrAb† −
1

2
fb†b,rAg+D

+ G↑Sb†rAb −
1

2
fbb†,rAg+D . s8d

The stationary state of this functional is a canonical en-
semble, with temperaturekBT0="V / lnsG↓ /G↑d [9,13]. In
both cases, the description in terms of a master equation is a
reasonable choice if the coupling to the environment is weak.

Pure spatial decoherence can localize a system without
the transfer of energy, for example in a deep double-well
potential or through recoil-free scattering of probe particles.

In quantum Brownian motion, this corresponds to the limit
where the environment correlation time is so short that the
rotating wave approximation with respect to the system’s
oscillation frequency cannot be made and terms likeb2 and
b†2 are retained in the interaction with the environment[14].
These terms drive the system from the initial ground state
rAs0d= u0lk0u to a squeezed state. Therefore, after some time
tp.0, its density matrix in the energy basis will contain
higher excited states such that off-diagonal elements become
populated. Thermalization(8), on the other hand, simply re-
distributes the weights of the diagonal elementsknurAunl. The
coherences of the energy eigenstates produce a breathing
motion of the spatial density which can be detected by the
probe pulse astp is varied. This signal then distinguishes
spatial decoherence from thermalization, and allows us to
probe pure decoherence for a massive body.

IV. ANALYTICAL SOLUTION

In this section, we work out the system density operator
under the action of the decoherence models of the previous
section, and analyze how it leaves a characteristic trace in the
cavity mode operators.

A. Approximations

We summarize first the approximations we make to arrive
at an analytical solution.

(i) The most significant difference of our approach com-
pared to related work on mobile mirrors is the “sudden ap-
proximation”: we assume that the durationt of the pulse is
short compared to the system oscillation period. Since the
damping ratek also determines the actual pulse length inside
the cavity, we require

V ! mins1/t,kd. s9d

In this limit, the system’s motion is “frozen” while the pulse
is applied, and the Heisenberg equations for the photon mode
operators can be solved without taking into account the dy-
namics of the system operators.

(ii ) At the same time, the pulse must be sufficiently long
in order to restrict the cavity dynamics to the two degenerate
modes mentioned previously. This is valid when the inverse
pulse length is small compared to the cavity free spectral
rangen. Combining this with the “bad cavity limit” assumed
below skt@1d, but excluding a too small cavity finesse, we
have

1/t ! k , n. s10d

(iii ) Decoherence can be described by a dissipative func-
tional as in Eq.(1) if the system is weakly coupled to its
environment and decoherence is happening slowly on the
time scale set by the oscillation period 2p /V. This requires
the inequality

Gth ! V s11d

for the thermalization models8d. For the pure spatial deco-
herence models7d, we require that it takes more than one
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oscillation to increase the average system energy by one
quantum"V. This leads to

G ! V, s12d

where the rate

G ;
D

"Vm
s13d

gives the depletion of the system ground state, see, e.g., Fol-
man et al. in Ref. [12]. Given Eq.(12), depletion happens
slowly on the scale of the oscillation period. In both cases,
the oscillator has a large quality factor.

B. Decoherence

We now show that the dissipative evolution can be inte-
grated in terms of the system covariances in position and
momentum. For the equilibrium initial state we consider
here, the mean valueskxl, kpl vanish at all times by symme-
try. Using the spatial decoherence functional(7), we get from
the Liouville–von Neumann equation(1)

d

dt
kx2l =

1

m
kpx+ xpl, s14ad

d

dt
kp2l = − mV2kpx+ xpl + 2D, s14bd

d

dt
kxp+ pxl =

2

m
kp2l − 2mV2kx2l. s14cd

Characteristic for spatial decoherence is that only the mo-
mentum width is increased by the diffusion coefficientD.
This “squeezes” the system state in the phase plane, while
the dynamics in the harmonic potential subsequently leads to
a rotation. The coupled equations(14a)–(14c) can be solved,
with the result(see, e.g., Ref.[14])

kx2lt = kx2l0 +
"G

2mV2s2Vt − sin 2Vtd, s15ad

kp2lt = kp2l0 +
"mG

2
s2Vt + sin 2Vtd, s15bd

kxp+ pxlt =
"G

V
s1 − cos 2Vtd, s15cd

where the decoherence rateG has been defined in Eq.(13).
We have used that equipartition holds in the initial state,
kp2l0/m=mV2kx2l0, which is obviously true for an initial
thermal state. Note that the decoherence Liouvillian does not
describe a stationary solution in the limitt→`, this is be-
cause we neglected friction.

For the thermalization model(8), the variances can be
computed similarly, and we find

kx2lt = kx2l0 +
EsTed
mV2 s1 − e−2Gthtd, s16ad

kp2lt = kp2l0 + EsTedms1 − e−2Gthtd, s16bd

kxp+ pxlt ; 0, s16cd

Gth =
G↓ − G↑

2
, s16dd

whereEsTed= 1/2"Vcoth s"V /2kBTed is the average oscil-
lator energy at equilibrium with the environment(tempera-
ture Te), and where the rateGth characterizes both the ap-
proach towards thermal equilibrium and the damping of the
system’s average position and momentum.

The key benefit of this formulation in terms of covari-
ances is that it provides an exact solution for the system
density operator[15,16]. The reasons for this are the thermal
initial state we consider here and the Liouville functionals
(7) and (8) that are bilinear inx,p. We shall work with the
Wigner representationWsx,p,td of the density operator that
has properties similar to a classical phase space distribution
[17]. For example, expectation values of symmetrized sys-
tem operatorsSsx̂, p̂d are computed according to

kSsx̂,p̂dlt =E dxdp

2p"
Ssx,pdWsx,p;td. s17d

Given the covariances, we find the Wigner function

Wsx,p;td = Nstdexpf− Gsx,p;tdg, s18ad

2Gsx,p;td =
x2

kx2lt
+

1

kp2lt
Sp −

Ctx

At
D2

, s18bd

Ct

At
=

kxp+ pxlt

2kx2lt
, s18cd

1

Nstd2 =

kx2ltkp2lt −
1

4
kxp+ pxlt

2

"2 . s18dd

Note that for the normalization factor, one findsNstdø2
because of the uncertainty relations.

C. Short probe pulse

In a frame rotating at the cavity resonance frequency, the
Heisenberg equations for the photon operators are

ȧe = − igfcoss2kxdae + sins2kxdaog − kae + hstd + je,

s19ad

ȧo = igfcoss2kxdao − sins2kxdaeg − kao + jo, s19bd

whereje,o are quantum noise operators that can be neglected
as long as we calculate normally ordered quantities, such as
the intensity. In the sudden approximation, we assume that
the system position operatorx does not change during the
pulse duration. It can then be treated as a constant that com-
mutes with the photon operators.
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The initial condition just before timetp is vacuum for both
cavity modes. The evolution of the odd mode is then given
by (neglecting terms with vanishing expectation value)

aostp + td = − i sins2kxd 3
g − ge−ktcosgt − ke−ktsin gt

g2 + k2 h

s20d

for 0ø tøt, wheret is the pulse length, and the pulse shape
was taken as a mesa function:hstp+ td=h for 0, t,t, oth-
erwise it vanishes. With this choice,h=Îk / s2tdain, where
ain is the boson operator of the probe pulse incident on the
cavity.

The average number of odd photonsNo at the detector
during the time windowftp,tfg can be calculated by integrat-
ing 2kao

†stdaostd; see Eq.(6). As mentioned in Sec. IV A, we
consider here the bad cavity limit wherekt@1. In this limit,
we may settf = tp+t, and the integration yields the simple
result

No = Rkain
† ain sin2s2kxdl s21d

with

R=
g2k2

sg2 + k2d2 . s22d

The average over the field and system operators in Eq.(21)
can be computed independently because we have assumed
that the system1field density operator factorizes att= tp. The
signal is thus proportional to the mean photon number of the
probe pulse,kain

† ainl=Nin. We discuss the signal fluctuations
in Sec. IV D below. For the average over the system, the
Wigner function(18b) gives, after one elementary integra-
tion,

ksin2s2kxdltp
=E dx dp

2p"
sin2s2kxdWsx,p;tpd

=
1 − expf− 8k2kx2ltp

g

2
, s23d

where the variancekx2lt has been calculated in Eqs.(15a)
and (16a).

We observe that the solution(20) illustrates how our de-
tection scheme conserves parity. Consider an incident pulse
in a single photon state,uCstpdl=ain

† u0l, and assume that the
odd detector clicks. This updates the system state to

“odd click ” :rA ° K sins2kxdrA sins2kxd, s24d

whereK is the normalization. If the system has been in a
staterA with definite parity, this state has the opposite one.
Similarly, a click in the even mode detector updates the sys-
tem state to a state with the same parity. In both cases, the
“collapse” of the wave function does not lead to an
a-symmetric state with less well defined parity. This ensures
that symmetry of the system state can only be changed by
decoherence.

The factorR in Eq. (22) gives basically the probability
that an incident photon actually interacts with the system.
This can be seen from the number of even photons that is
given by

Ne = R̄Nin + RNinkcos2s2kxdl, s25d

whereR̄=k4/ sg2+k2d2. The first term is independent of the
system position and gives the photons that did not interact
with the system. This number reduces toNin for a vanishing
coupling,g→0. The second term has a similar structure as
Eq. (21), with the difference that here only the system opera-
tor with even parity occurs. It adds up withNo to RNin,
similar to the two output ports of an interferometer. The frac-

tion of “useful” photons is thusR/ sR+R̄d=g2/ sg2+k2d.
For typical experimental conditions that we discuss in

Sec. V A, the probe wavelength is large compared to the
width of the system position distribution(“Lamb-Dicke
limit” ). We can then expand the exponential in Eq.(23) to
get

No < 4RNink2kx2ltp
, s26d

so that a larger signal is obtained with a shorter probe wave-
length. This scaling breaks down, however, in the extreme
case ofl being comparable or shorter than the position width
(“anti-Lamb-Dicke limit”). This may also occur in the long-
time limit, after heating has significantly broadened the po-
sition distribution. The signal then no longer increases lin-
early with kx2ltp

. The exponential in Eq.(23) vanishes, and
the signal saturates atNo=RNin /2 regardless of the value of
the kx2ltp

. In this limit, the probe pulse is no longer able to
extract information about the system.

We note that the same resultNo=RNin /2 may be arrived
at on much shorter time scales(even for tp=0) when the
initially prepared system is already in the anti-Lamb-Dicke
limit. The system then heats as a result of photon scattering
(“back action”). The exponential exps−8k2kx2l0d in Eq. (23)
is in fact the Debye-Waller factor for this scattering process.
It gives the probability of the system still occupying the
ground state after the photon pulse has impinged on it. In the
anti-Lamb-Dicke limit, the Debye-Waller factor is zero, and
the system makes with probability unity a transition to a
vibrationally excited state. Since the detection of an odd pho-
ton is directly correlated, due to symmetry conservation, to a
transition from the even ground state to an odd state, it oc-
curs for one half of all useful photonsRNin that actually
interacted with the system.

One may also understand this result in the position basis.
In the anti-Lamb-Dicke regime, the system position is
smeared out over many probe wavelengths so that the phase
of the backscattered light varies randomly from 0 to 2p. On
average, one-half of those photons that interacted with the
system are sent into the odd detector.

D. Signal fluctuations

For the discussion of the signal-to-noise ratio in Sec. V B,
we also need the fluctuations of the odd detector signal(21).
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The varianceDNo
2 can be computed from the factorized

staterAFstpd as well. For a probe pulse in a coherent state, we
find

DNo
2 = R2sNinsNin + 1dksin4s2kxdltp

− Nin
2 ksin2s2kxdltp

2 d

s27d

and

ksin4s2kxdltp
=

1

8
s3 − 4 e−8k2kx2ltp + e−32k2kx2ltpd

< 3s4k2kx2ltp
d2. s28d

In the last step, we made the long-wavelength expansion as
in Eq. (26).

If the system were located at a fixed position, the terms
proportional toNin

2 in Eq. (27) would cancel, leading to num-
ber fluctuations limited by shot noise. This is not the case
here, however, because of the finite position uncertainty. For
the Gaussian distribution at hand, the fluctuations ofx2 are of
the same order and even somewhat larger than their mean
value kx2l itself. In the long-wavelength limit, Eq.(27) be-
comes

DNo
2 = R2s4k2kx2ltp

d2s2Nin
2 + 3Nind. s29d

For completeness, we also give the opposite limit of a short
wavelength, although it is experimentally more challenging.
Recall that the average signalNo<RNin /2 arises because the
phasef=2kx is uniformly distributed between 0 and 2p, and
the fraction of photons in the odd detector proportional to
ksin2fl= 1

2. The variance then becomesDNo
2=R2s 1

8Nin
2

+ 3
8Nind, where the second term is due to shot noise and the

first is due to the varianceksin4fl−ksin2fl2= 1
8. This esti-

mate agrees with the anti Lamb-Dicke limit of the general
Eq. (27).

V. DISCUSSION

We show in this section that experimental conditions
should exist where it is possible to spot the difference be-
tween spatial decoherence and thermalization by measuring
the photon signals outside the cavity.

A. Example I: Single atom

The system we consider in the first example is a single
rubidium atom trapped in a tightly confining magnetic trap.
The chosen parameters are listed in Table I. The oscillation
frequency is similar to those achieved with magnetic traps on
atom chips[12]. For such trapping frequencies, ground-state
cooling leads to a spatial widthkx2l0

1/2 of the order ofs0

;s" /2mVd1/2<34 nm. Trapped ions cooled to the ground
state with sideband cooling are also a good system for this
purpose. We note that a cold thermal state would be suffi-
cient as well. For the sake of this example, we choose a
relatively long wavelength close to theD1 rubidium line.
This gives a resonantly enhanced ac polarizability, while ab-
sorption and spontaneous emission can still be minimized
with a detuning of several linewidths. The corresponding

coupling strengthg is estimated in the Appendix. Pulse
length, cavity linewidth, and free spectral range are chosen to
comply with the approximations defined by Eqs.(9) and
(10).

The last quantity, the decoherence rateG, depends on the
specifics of the system. For an atom in a miniaturized elec-
tromagnetic trap on an atom chip, estimates for heating due
to magnetic field fluctuations are in the range ofG,1 s−1

[12]. Other environmental perturbations can be added at will
to enhance this rate in a controlled way. In fact, a tunable
decoherence source is suitable for the unambiguous, experi-
mental discrimination between decoherence and
thermalization-induced dynamics.

The signal in the odd photon detector given by Eqs.(21)
and (23) is plotted in Fig. 2, using the spatial decoherence
model (7) and the parameters given in Table I. The signal
shows an overall increase because the environment heats the
system and broadens its position distribution. The important
feature of this plot are the superimposed oscillations. They
stem from the breathing motion of the wave packet and are a
telltale sign of spatial decoherence that affects position and
momentum in a nonequivalent manner. Indeed, Eq.(14b)
shows that decoherence only increases the momentum width
which leads to a squeezed phase space distribution. The dy-

TABLE I. Realistic experimental parameters for a Rb atom ful-
filling the validity conditions of the calculation, and yielding a
signal-to-noise ratio larger than 3 in a spectral analysis[as dis-
cussed around Eq.(34)].

Vibration frequencyV /2p 50 kHz

Pulse lengtht 20 ns

Cavity linewidthk /2p 50 MHz

Free spectral rangen 1 GHz

Wavelengthl 795 nm

Lamb-Dicke parametersks0d2 0.073

Coupling strengthg/2p 10 kHz

Decoherence rateG /2p 1 kHz

FIG. 2. Average photon numberNostpd hitting the odd detector
sDd for Nin=109 incoming photons, as a function of the delay time
tp in microsecond at which the measurement takes place. In the
inset the initial oscillations are magnified. Parameters are given in
Table I (Rb atom). The coupling to the environment is taken in the
pure decoherence form of Eq.(7). A thermalizing environment[Eq.
(8)] would not lead to the superimposed oscillations, but to an oth-
erwise similar behavior.

HENKEL et al. PHYSICAL REVIEW A 70, 023810(2004)

023810-6



namics in the harmonic potential makes this elongated dis-
tribution rotate at the frequencyV so that its projection onto
the position or momentum axis oscillates in width at an an-
gular frequency 2V [as expected from Eqs.(14)].

B. Signal visibility

Next, we discuss ways to extract the oscillations at 2V of
the odd detector signal that are characteristic for spatial de-
coherence.

Let us consider probing timestp in the range where the
system is in the Lamb-Dicke limit. That is, in Fig. 2, we are
well before the saturated regime, i.e.,tp,100 ms. The num-
ber of odd photons is then given by Eq.(26) which, com-
bined with Eq.(15a) yields the peak-to-peak amplitude of
the breathing oscillations

Nouoscu = 8NinRsks0d2 G

V
, s30d

wheresks0d2="k2/2mV is the so-called Lamb-Dicke param-
eter. It is interesting to note that the oscillation amplitude
(30) depends neither on the initial system state nor on the
delay timetp for the probe pulse[18]. However, the last three
factors,R, ks0, andG /V, are all less than unity, and a sig-
nificant photon number can only be obtained with a bright
probe pulse,Nin@1. In the example given above,Nin,109

for a 20-ns pulse(10−10 J per pulse), and this large number
compensates for the small fraction of “useful photons”R
<sg/kd2,10−8. The signal can be improved a lot with a
larger coupling strengthg. For the optimal valueg=k, the
ratio R takes its maximum value 1/4. The signal amplitude
can also be increased with a shorter probe wavelength as
long as one remains in the Lamb-Dicke limit.

The contrastCosc of the breathing oscillations is defined
by dividing the oscillation amplitude(30) to the smoothed
background signal. Since that background increases withtp
(in the Lamb-Dicke regime), the contrast is time dependent.
In terms of the initial system temperatureT0,

Coscstpd =
2G/V

coths"V/2kBT0d + Gtp
, s31d

where the dependences on photon number, detection prob-
ability, and probe wavelength have canceled. The initial con-
trast is maximized for low temperatureskBT0ø"V when the
system is cooled close to the ground state. Even then it is
limited by the small ratioG /V; see Eq.(12). For higher
temperatures, the contrast decreases like"G /kBT0!1. The
contrast reduction with increasingtp happens on the time
scale coths"V /2kBT0d /G, where decoherence has approxi-
mately doubled the position variance compared to its initial
value. This time scale is of order 1/G if the initial tempera-
ture is low. Otherwise, when the initial position distribution
is already quite broad, it is of orderkBT0/ s"VGd, so the
decoherence needs longer to double the initial width.

To get a realistic estimate for the visibility of the oscilla-
tions, however, one has to take into account the fluctuations
of the detector signal. The varianceDNo

2 is given in Eq.(29)
for the Lamb-Dicke limit. It shows a super-Poissonian scal-

ing with Nin
2 to leading order so that we get a signal-to-noise

ratio

S/Nstpd =
Nouosc

DNo
=

Coscstpd
s2 + 3/Nind1/2, s32d

which is much smaller than unity. In order to resolve the
oscillations, theS/N ratio has to be enhanced by repeating
the experiment a number of times,

nex < 10/fS/Nstpdg2, s33d

which ensures that the measured oscillation amplitude at an
antinode exceeds the background noise level by three stan-
dard deviations. For short enough times this condition yields
a number ofnex,sV /Gd2@1 recordings for a given timetp.

Alternatively, the oscillations can be extracted from the
signal frequency spectrum in terms of the peak they give at
2V. If we assume that the increase of the background is
negligible on the time scale 2p /V, the signal fluctuations
give an approximately white noise. In terms of the weight of
the peak at 2V, we find an improvement by a factorsT/Dtd1/2

with respect to the signal-to-noise ratio(32), whereT is the
maximum probing time in the data set andDt<t the time
resolution. This shows that the sudden approximation(a
small value oft) is actually required to extract the signal. We
can take into account the slow increase of the background in
an approximate way by writing the spectral signal-to-noise
ratio as

S/Ns2Vd < sT/td1/2S/Nstp = T/2d

=
sT/td1/2

s2 + 3/Nind1/2

2G/V

coths"V/2kBT0d + GT/2
. s34d

The signal-to-noise ratio shows a maximum for a specific
observation time

Topt =
coths"V/2kBT0d

G
s35d

which is Topt,1/G for low initial temperatures. It is inter-
esting that the system should be monitored up to the time
where the contrast(31) of the oscillations decreases. As a
characteristic of the efficiency of the detection process, we
obtain the maximumS/N,

max S/Ns2Vd < SG tanhs"V/2kBT0d
V2t

D1/2

. s36d

The spectral signal to noise ratio can be significant, i.e., we
get maxS/Ns2Vd.3 for the system parameters of Table I,
and it thus provides an evidence for the oscillations. Note,
however, that this signal is obtained from the records for the
whole time series from 0 toTopt. That is, a measurement
repetitionnex<Topt/t<1/sGtd is necessary. On taking into
account that a time resolutiont,0.1 G /V2 is required for
getting such a significantS/N, we arrive at a necessary num-
ber of measurementsnex<sV /Gd2@1. This condition is
similar to the one we obtained for the resolution of the os-
cillations at a single pointtp. This result also justifies the use
of a controlled decoherence source to enhance the decoher-
ence rateG. For example, with the parameters given in Table
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I, about 104 measurements are required for evolutions in the
range of 0–100ms to get the signal-to-noise ratio larger than
3.

C. Example II: Nanoparticle

Finally, we come back to the main motivation of this
work and consider the decoherence of massive systems. As
examples of such a nanoparticle we think of recently realized
nanoelectromechanical oscillators(NEM’s) [19] or beads,
which may be put in an harmonic confining potential by
holding their edges or by suspending them in midair by elec-
tric (e.g., Paul trap in case they are charged), magnetic(in
case they posses a magnetic moment which maintains a
metastable state), or optical interaction(optical tweezers for
small beads).

The crucial parameter is the initial temperature which
makes a difference with respect to the case of single atoms.
While atoms can be routinely cooled down to the ground
state of oscillation in a trap by various optical methods, there
is no such efficient cooling scheme for arbitrary massive ob-
jects. We can safely assume that nanoparticles can be cooled
down to below 1 K or even, in the near future, to the mK
range, using, e.g., special cryogenics or optomechanical
feedback[20] (for experiments, see Cohadonet al. in Ref.
[11]). With experimentally feasible trapping frequencies in
the range of MHz, such temperatures are still large,"V
!kBT0, and the initial vibrational state of the system is
highly excited.

On the other hand, for large enough masses, such a tem-
perature range is sufficiently low to reach the Lamb-Dicke
regime,

k2kx2l0 = sks0d22kBT0

"V
! 1, s37d

where againsks0d2="k2/2mV is the Lamb-Dicke parameter
[see Eq.(30)]. According to Eq.(23), this is the basic nec-
essary condition for the proposed detection scheme to work.
We can then use the general result of Eq.(36) and expand the
tanh function to lowest order:

max S/Ns2Vd < S "G

2kBT0 Vt
D1/2

, s38d

and similarly from Eq.(35):

Topt <
2kBT0

"VG
. s39d

The requirements for the experiment can be quantitatively
estimated on the basis of these equations, regardless of the
specific implementation of the scheme.

One important quantity is the number of measurements
needed to get a statistically significant signal of the oscilla-
tions in the odd photon detector. First, a number ofTopt/t
measurements has to be carried out to monitor the decoher-
ence evolution fromtp=0 to tp=Topt. Second, this full evo-
lution has to be recorded a number of about 10/smax S/Nd2

times to reach, by spectral analysis, three standard deviation
from the noise level. The total number of measurements is
then

nex < 10/smax S/Nd2 3 Topt/t , 10s2kBT0/"Gd2, s40d

which heavily depends on the initial temperature. It follows
that the decoherence rate should be artificially enhanced to
the maximum level allowed by the condition(11), i.e., G
=0.1 V.

Estimates for a reference nanoparticle are assembled in
Table II. For a trapping frequencyV=2p 1 MHz, the deco-
herence rate can be as large asG=2p 100 kHz. In order to
maximize the signal-to-noise ratio, the pulse length can be as
short askt<10. For a cavity linewidthk=2p 50 MHz, as
the one in the Rb atom example, an initial temperatureT0
=1 mK yields the ratio maxS/Ns2Vd<0.1, and we get a
numbernex<106 where one measurement takes a time of
aboutTopt/2<100 ms (not including the preparation time).

In many possible physical realizations, the coupling to the
nanoparticle is independent of its mass, e.g., the spring con-
stant of the trap,K=mV2, and the parameterD of the deco-
herence functional(7). It is very interesting thatG /V
=D /K and hence the maximum signal-to-noise ratio in Eq.
(38) is independent of the mass of the particle. This proves
that the scheme can be extended to monitor the decoherence
of massive particles. The mass, in fact, can be scaled up to a
limit mcr without degrading the signal. This limit is related to
our assumption that the particle remains smaller than the
wavelength so that it couples to the light field via its polar-
izability. The upper mass limit ismcr;rl3,10−15 kg, i.e.,
about 1010 Rb atoms, for a typical material density and vis-
ible light. The optimum time period to reach the maximum
spectral visibility, on the other hand, depends on the mass
Topt,m 2kBT0/D and makes the necessary conditions of ob-
serving decoherence less demanding for smaller masses.

VI. CONCLUSION

To conclude, we have addressed the problem of observing
the decoherence process in massive objects. Experimentally
quantifying the process for large masses and different envi-
ronments is of paramount importance for the accurate theo-
retical modeling of this subtle transition from quantum to
classical.

TABLE II. First block: parameters for a reference nanoparticle
fulfilling the validity conditions of the calculation. Second block:
calculated maximum of the signal-to-noise ratio of the spectral
analysis and the maximum recorded evolution time. Third block:
the estimated number of experimental runs in order to achieve three
standard deviations and the verification of the decoherence signal.

Massm ,10−15 kg

Vibration frequencyV /2p 1 MHz

Pulse lengtht 30 ns

Decoherence rateG /2p 100 kHz

Initial temperatureT0 1 mK

Max S/N 0.1

Topt 100 ms

nex 106
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Specifically, we have shown that it should be possible to
study the decoherence of systems that are trapped. In contrast
to conventional spatial dephasing experiments, in which the
observed object is freely propagating, the presented scheme
will allow for more isolation, and hence for a better control
over the coupling to the environment. This is made possible
by making use of a photon probe that scans the object for
changes in its wave function. Furthermore, the suggested ex-
perimental scheme, bypasses the need to create a clearly
separated spatial superposition. This need presents an ever
growing technical difficulty for large masses in terms of the
actual preparation procedure and in terms of the rate of de-
coherence. A “pure” decoherence signal is apparent even
when no superposition was created initially. The only re-
quirement in the present scheme is to prepare the system in
an equilibrium state of an harmonic potential. This is a fur-
ther advantage over the ground-state cooling required by nu-
merous other schemes.

These features will greatly enhance the feasibility of a
decoherence experiment with a scalable object mass. In ad-
dition, the interaction with optical cavity modes can be used
to tailor the object’s environment and to induce “decoher-
ence on demand”[21].

In this paper, we have limited ourselves to objects smaller
than the wavelength that weakly scatter light. Future work
will address moving mirrors that lead to a stronger optical
signal. The fact that our scheme does not require strong re-
flectivity will allow the use of very light double sided mir-
rors (foils) with high transmittance. Preliminary results show
that a similar Hamiltonian accounts for the coupling to the
cavity modes so that most of the present analysis can be
carried over, but with more favorable parameters.

Finally, we have focused on environmental decoherence.
However, if the system may be isolated well enough so that
the coupling to the environment does not mask other weaker
processes of localization, then one may perhaps be able to
study also other proposed models[22,23]. For estimates of
the parameters required for optomechanical tests, see Boseet
al. and Marshallet al. in Ref. [7].
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APPENDIX: INTERACTION HAMILTONIAN

We describe the interaction between the electromagnetic
field and the object by 1/2aE2, wherea is the polarizability
andE the (linearly polarized) electric field. In second quan-
tization, keeping only the even and odd cavity modes, the
field can be written

E =Î"vc

e0V
haecosskxd + aosinskxd + H.c.j, sA1d

wherevc is the(common) mode frequency, the wave number
k=vc/c, V is the cavity mode volume. In the rotating wave
approximation and adopting normal order, we hence find for
the interaction

Hint =
a"vc

2e0V
hae

†ae + ao
†ao + sae

†ae − ao
†aodcoss2kxd

+ sae
†ao + ao

†aedsins2kxdj. sA2d

We see here that the scattering from even into odd modes is
accompanied by an antisymmetric excitation of the object. If
the photon leaves the cavity in the same mode, however, the
object state is changed by the symmetric function coss2kxd.
For the interaction Hamiltonian used in the main text, we
have left out the partae

†ae+ao
†ao involving the total photon

number. Since this is a conserved quantity, it only contributes
a global phase factor to the system1field wave function.

Writing "g for the prefactor in Eq.(A2), we get the cou-
pling constantg. With an atom as system, we adopt a two-
level model for the ac polarizability and cast the coupling in
the form

g =
3vc

8pvA
n

gA

vA − vc

lA
2

A
, sA3d

where vA is the atomic resonance frequency and 1/gA the
corresponding radiative lifetime.A is the cross section of the
cavity modes andn=c/L the free spectral range. Equation
(A3) assumes an excitation not too far off resonance,uvA
−vcu!vA. Typical parameters aren,109/s, A/lA

2 ,103,
uvA−vcu /gA,10, and giveg,104/s. This can be increased
further with tighter focusing, smaller cavity lengths, and
working closer to resonance. A far off-resonant excitation
with a shorter wavelength would improve the resolution of
the position measurement. This is likely to be overcompen-
sated by the smaller polarizability, since forv well above a
resonance transition,a~1/v2→0.

If the system is a nanoparticle with size smaller than the
wavelength, the polarizability can be written in the Clausius-
Mossotti form

asvd = 4p«0a
3«svd − 1

«svd + 2
, sA4d

where «svd is the particle’s permittivity. The factorm
=f«svd−1g / f«svd+2g shows a resonance, for example, in
metallic particles(collective plasma oscillation). A value m
,5 seems realistic while avoiding too large absorption
losses. This gives a coupling

g = s2pd2mn
l2

A

m

mcr
, sA5d

where the “critical mass” is defined in terms of the mass
density % as mcr=rl3. Typical numbers(%=1 g/cm3, l
=1 mm) give mcr,10−15 kg. With the same numbers for the
cavity mode as before, we get the fairly large valueg
<nsm/mcrd.
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