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Abstract. Superconductors are considered in view of applications to atom chip devices. The main features
of magnetic traps based on superconducting wires in the Meissner and mixed states are discussed. The
former state may mainly be interesting for improved atom optics, while in the latter, cold atoms may
provide a probe of superconductor phenomena. The properties of a magnetic side guide based on a single
superconducting strip wire placed in an external magnetic field are calculated analytically and numerically.
In the mixed state of type II superconductors, inhomogeneous trapped magnetic flux, relaxation processes
and noise caused by vortex motion are posing specific challenges for atom trapping.

PACS. 37.10.Gh Atom traps and guides – 85.25.Am Superconducting device characterization, design, and
modeling

1 Introduction

One of the high priority goals in atom chip research is to
increase lifetime and coherence time for ultracold atoms
trapped in magnetic potentials close to the surface. This
is important for both scientific aims and technological ap-
plications. Progress towards this goal demands the control
and reduction of magnetic noise produced by the metal-
lic components of the atom chip. Randomly fluctuating
magnetic fields are generated by thermal current noise
in the conducting chip elements and reduce the num-
ber of trapped atoms (losses), increase their temperature
(heating) and lead to a phase uncertainty in the atom’s
state (decoherence) – see, for example [1–3] and refer-
ences therein. Theoretical analysis of the magnetic noise
generated by a normal metal [4–7] predicts a fast reduc-
tion of the lifetime with the decrease of the distance zt

between the trapped atom and the metal surface (trap
height); this is in excellent agreement with lifetime mea-
surements [8–10]. The noise level depends on material re-
sistivity, thickness and temperature. For conductors, de-
creasing film thickness and conductivity reduces the noise,
but requires weaker currents to avoid heating. In most of
experiments, the thermal magnetic noise induced by a con-
ductor exceeds all other harmful influences on the atom
cloud (technical noise due to the current supply instability,
residual gas collisions, stray magnetic fields) and provides
the dominant limit for the lifetime, when the trap height
is less than 10 . . .20μm [1,3]. In the last few years, the
application of superconducting materials to atom chips
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has been widely discussed as a perspective to extend the
lifetime of cold atoms [7,11–14]. A recent theoretical es-
timate [13] of the magnetic noise caused by a supercon-
ductor in the Meissner state showed that the lifetime of
atoms trapped above a superconducting layer would be,
at least, six orders of magnitude longer than above a nor-
mal metal in the same geometry. The analysis presented
in [14] predicts an atom lifetime of 5000 s at a trap height
of 1μm. For comparison, at the same height in a normal
metal trap and working at room temperature, the lifetime
is less than 0.1 s [9]. Due to the dependence of resistiv-
ity on temperature, the noise produced by a normal metal
cooled to 4 K is about the same [15]. At larger heights, the
lifetime in a superconducting niobium chip can be much
larger (up to 1011 s at temperature T = 4.2 K).

Two first realizations of atom chips with superconduct-
ing elements have been reported in references [16,17]. In
both setups, the trapped atoms were 87Rb. In the experi-
ment by Nirrengarten et al. [16], the current-carrying wires
(in “U” and “Z” shape) were made of niobium and oper-
ated at about 4.2 K. The obtained atom spin relaxation
time was estimated as 115 s. This value is comparable
to the best one achieved for atoms trapped near normal-
metal wires [18]. In the second experiment [17], special
efforts have been undertaken to reduce the influence of
technical noise. Using a MgB2 film, a “Z”-shaped wire
was fabricated as a part of a closed superconducting loop
and operated in the persistent current regime. This per-
mits to disconnect the current supply and get rid of its
instability, i.e. technical noise. To our knowledge, in both
experiments the trap lifetimes were limited by processes
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Table 1. Critical parameters of selected type II superconductors. The critical current density values are referring to the highest
quality superconducting films and tapes (Nb3Sn and (Pb,Bi)2Sr2Ca2Cu3O10). Below the first critical field Bc1, the material
is in the Meissner state (vortex free), between Bc1 and Bc2 in the mixed state (with vortex penetration). The temperature is
4.2 K unless otherwise quoted. Data collected from references [16,23–31].

Superconductor Tc (K) Bc1 (mT) Bc2 (T) jc (A/m2)

Nb 9.3 140 0.28 5 × 1010 (B = 0)

Nb3Sn 18 40 27 6 × 1010 (B = 1 T)

MgB2 39 30 15 3.5 × 1011 (B = 0)

YBa2Cu3O7−δ 92 25 (B‖ab, T → 0) >100 (77 K) 7.2 × 1011 (B = 0)

(YBCO) 90 (B‖c, T → 0)

(Pb-Bi)2Sr2Ca2Cu3O10 108 13 (B‖ab, T → 0) > 100 (77 K) ≈1010 (B = 0)

other than the magnetic noise generated by the supercon-
ducting elements of the atom chip.

Aside from magnetic noise reduction (thermal and
technical), the application of superconductors in atom
chips may be advantageous due to high current densities
without Joule heating, and practically zero electric fields
across the superconducting elements. Atom traps with
high currents and strong confinement, as needed for some
applications, may not be operated in the Meissner state
because of too low critical parameters. One can then use
superconducting wires in the so-called mixed state where
magnetic flux partially penetrates the chip structures.
This is an issue that we address in this paper, comple-
menting previous approaches that focus on the Meissner
state [19]. It is well-known that in addition to atom op-
tics, one may use cold atoms as sensitive probes of current
distribution and noise in the nearby surface of the atom
chip [20,21]. As the mixed state of a superconductor ex-
hibits vortex phenomena and flux noise much higher than
that of the Meissner state, it may be an interesting object
to study in this context, beyond the advantages of carry-
ing larger supercurrents. The results reported here iden-
tify a fairly large parameter window where atom chips can
be designed with superconducting elements, both in the
Meissner and mixed states.

In the following Section, we review typical properties
of superconducting materials, in particular critical param-
eters in view of atom chip applications. Section 3 analyses
side guide traps formed by combining a bias field with the
supercurrent of a rectangular wire. We show analytically
and numerically how the current distribution is signifi-
cantly modified due to screening and flux penetration and
identify the consequences for trapping and transporting
atoms on a chip. We also give an overview on magnetic
noise in mixed-state superconductors. Section 4 discusses
the confinement of the magnetic trap, compared to normal
metal wires. The analytically solvable case of a cylindrical
wire and the method used for numerical calculations are
described in the appendices.

2 Typical superconductors

Let us briefly survey the properties of superconductors
which are important for building a superconducting atom

chip. At low enough fields and temperatures, supercon-
ductors exhibit the Meissner effect: magnetic fields are
expelled from their interior. In this regime, the field pen-
etrates into a superconductor only over a small depth
λ from the surface – the London penetration depth. At
T = 0, λ is of the order of 50 nm and increases with
temperature as [1 − (T/Tc)4]−1/2, where Tc is the critical
temperature.

Superconducting materials are classified as type I and
type II superconductors that differ in their behavior as
the magnetic field is increased. Type I superconductors
(pure metals as Pb, Al, Hg, In) are in the Meissner state
over the whole sub-critical ranges of temperature T < Tc,
external magnetic field B0 < Bc, and current I < Ic.
Their critical parameters are quite low, however, which
is the main problem for applications. The highest values
are observed for lead: Tc = 7.2 K, critical magnetic field
Bc = 0.055 T at T = 0 K, and surface (sheet) critical
current density Jc = Bc/μ0 = 4.4 × 104 A/m in zero
external magnetic field at T = 0 [22] (μ0 is the free space
permeability).

Much higher critical parameters are observed in type II
superconductors. We give typical examples of this type
in Table 1, including niobium, its compound Nb3Sn, as
well as the high-temperature superconductors (HTSC)
YBa2Cu3O7−δ and (Pb-Bi)2Ca2Sr2Cu3O10. These mate-
rials exhibit the Meissner effect below the lower critical
field, B < Bc1, which is relatively small (less than 200 mT
at 0 K). The largest value at T = 4.2 K is found for
niobium (Bc1 ≈ 140 mT) [23]. With increasing tempera-
ture, the lower critical field falls down approximately as
Bc1(0)[1 − (T/Tc)2], and other parameters (Bc2, jc) also
decrease towards zero as T → Tc. The details of these
laws depend on the type of superconductor and its fab-
rication [22]. In Table 1, we present main critical param-
eters at T = 4.2 K. For highly anisotropic HTSC with
layered crystal structures, the lower critical field (as well
as the critical current density) depends on the direction
of the field relative to the ab-planes [32]. In magnetic
fields (external or caused by a transport current) higher
than Bc1, the magnetic flux penetrates into a type II su-
perconductor in the form of vortices that arrange into
a more or less regular flux-line lattice (Abrikosov lat-
tice) which is pinned by inhomogeneities of the mate-
rial [22]. Each vortex carries one quantum of magnetic
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Fig. 1. (Left) Superconducting strip carrying a current and placed in an external magnetic field. z = 0 is at the surface of the
strip facing the atom trap. (Right) Illustration of the surface current distribution (arrows) for the strip wire. Top: screening
supercurrents in an external field B0, parallel to the top wire surface (this direction will be noted “horizontal” in the following).
The screening currents are particularly large at the corners, but have opposite directions on the top and bottom faces; the total
current is zero. Bottom: transport current without an external field. The current density is maximal near the corners (see also
Eq. (1)).

flux Φ0 = π�/e = 2.07 × 10−15 Tm2 (e is the elec-
tron charge and � the Planck constant). In the simplest
(isotropic) case, it looks like a cylindrical tube of radius
∼λ in which superconducting screening currents circulate
around a normally conducting core of radius ∼ξ (super-
conductor coherence length). Both λ and ξ depend on tem-
perature, with λ � ξ for most type II superconductors.
The mixed state is observed up to the upper critical field
Bc2 where the vortex cores merge and the superconduct-
ing state is destroyed.

If a superconducting material is used in atom chips,
it is particularly important that the lower critical field
Bc1 and the critical current density jc be large. The sec-
ond critical field Bc2 for most type II superconductors is
typically too large to be a relevant limit in the magnetic
fields applied in usual atom chip setups. Both lower critical
field and critical current density are “technology depen-
dent” because they are very sensitive to crystal defects
(for details see Refs. [30,33,34]). The jc values collected in
Table 1 refer to films and tapes of the best quality. For ex-
ample, in the atom chip experiments of references [16,17],
the critical current density was 5 × 1010 Am−2 (niobium
film) and 1011 Am−2 (MgB2 film) respectively.

One specific property, which distinguishes type II su-
perconductors from both normal metals and superconduc-
tors in the Meissner state, is their capability to freeze a
magnetic flux [22]. This effect is due to pinning forces. The
vortices can move under the action of the transport cur-
rent, when the Lorentz force jΦ0 is stronger than the pin-
ning force, which can be estimated as jcΦ0 where jc is the
critical current density. This flux motion results in energy
dissipation and induces a voltage drop along the supercon-
ducting element. A voltage drop of 1μVcm−1 is usually
taken as a criterion to define the critical current. Another
mechanism of energy dissipation predicted by Anderson
operates at sub-critical currents and is connected with
thermally activated jumps of vortices out of pinning cen-
tres, which also generate electric fields [35]. The motion
of vortices under various conditions has been investigated
by many authors, see for example references [33,34].

3 Side guide traps with superconducting wires

3.1 Rectangular wire in the Meissner state

We consider magnetic traps in the “side guide” configu-
ration to illustrate the differences between normal metal
and superconducting chips. In this section we analyse a
trap based on wires having the form of a thin strip which
is the usual shape in present day atom chips. The case of
cylindrical conductors is considered in Appendix A.

3.1.1 Horizontal bias field

Let us start with a superconducting strip wire in the
Meissner state. The strip is infinitely long along the y-axis,
with a width 2w along x and a thickness d along z, per-
pendicular to the chip surface (Fig. 1). The strip is placed
in an external bias field B0 parallel to the x-axis. If we as-
sume that the strip is thin, d� w, the real current density
distribution can be replaced by a sheet current J(x) (in
A/m) determined by integrating the current density over
the strip thickness. The conditions under which these as-
sumptions are fulfilled are discussed in [36,37]. Regarding
the magnetic field around a thin superconducting strip,
one expects that the z-dependence of the current density
can be neglected if the thickness is much less than the
observation distance, z � d. The thin strip approxima-
tion is therefore expected to be valid for superconducting
films with typical thicknesses of a few hundred nanome-
ters and trap heights above several microns. We confirm
this expectation by comparing to numerical calculations
that take into account a finite thickness1.

We calculate first the current distribution in the strip
and then the outer magnetic field using the Bio-Savart

1 These calculations are outlined in Appendix B. For the
sake of faster convergence and to avoid singular fields, we have
‘rounded’ the edges of the wires with a radius of curvature
r ≈ w/32.
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Fig. 2. (Top) Magnetic trap (“side guide”) created by a superconducting rectangular wire with a transport current, placed in
a horizontal bias field (as shown in Fig. 1). We plot the modulus of the magnetic field in units of μ0I/(2π2w). For I = 1 A and
w = 1 mm, this unit corresponds to (2/π) G. (top left) infinitely thin wire (analytical calculation); (top right) finite thickness
d ≈ 0.04 × 2w (numerical calculation). (Bottom) Cross-sections along the z-axis and x-axis through the trap centre (x = 0
is chosen in the middle of the top wire face.) Solid lines: analytical results for an infinitely thin strip in the sheet current
approximation; dashed lines: numerical calculation for a finite thickness. Due to the finite thickness, the trap is shifted closer
to the wire surface (compared to the case d = 0 the trap height is reduced from zt = 0.76w to 0.64w). Half of this shift can be
explained by measuring the distance from the center of the wire, and shifting the dashed curve by d/2 would make it coincide
with the solid curve at large distances. The bias field is B0 = −2.5μ0I/(2π2w). The numerical calculations use a thickness
d ≈ 0.04 × 2w, with rounded corners (radius 0.031w).
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law. In this section, we focus on strips in the Meissner
state where magnetic flux does not penetrate. Any mag-
netic field perpendicular to the strip surface is completely
shielded by appropriate screening currents. If a bias field
B0 is applied parallel to the wide strip surface, there are
no screening currents in an infinitely thin strip, and the
sheet current is given by the transport current alone. This
situation is changed when the finite thickness is taken into
account.

For an infinitely thin strip, the sheet current profile
along the x-axis as well as the field distribution around
the strip can be calculated analytically. The sheet current
density is given by [36,37]

J(x) =
I/π√
w2 − x2

. (1)

The magnetic field above the strip is presented in Fig-
ure 2 (top). We actually plot its modulus |B(r)| since this
provides the magnetic trapping potential in the adiabatic
approximation. Due to symmetry, the minimum modulus
of the total field occurs on the z-axis (above the centre of
the strip) where the field caused by the transport current I
is parallel to the x-axis:

Bx(x = 0, z) =
μ0Iz

2π2

w∫

−w

dx′√
w2 − x′2(x′2 + z2)

=
μ0I

2π
√
w2 + z2

. (2)

This can be compared to the field above a normally con-
ducting strip. Here, the current distribution can be taken
as uniform, and the Biot-Savart law gives [2]

normal wire: Bx(x = 0, z) =
μ0I

2πw
arctan(w/z). (3)

The field profiles, described by (2) and (3) as well as the
numerical results for two thickness/width ratios are plot-
ted in Figure 3. By adding a homogeneous bias field along

the x-axis with value B0 = −Bx(x = 0, zt), a magnetic
quadrupole trap is formed at height zt. Similar results are
obtained for a cylindrical wire (see Appendix A).

We see that for a superconducting strip, the required
bias field is smaller than for a normal conductor, by a
factor 2/π at small trap height. This is a result of the
different distribution of current density. Both wires be-
have practically the same above heights z ≥ 2.5w. Con-
sidering a superconducting wire with finite thickness, the
trap height is lowered because the external field introduces
counter propagating screening currents (along the trans-
port direction y) in the top and bottom surfaces of the
wire. In the bottom surface, close to the atom trap, the
current induced by the magnetic field is opposite to the
main transport current creating the trap. Hence the mag-
netic field is reduced at the position where the infinitely
thin wire produces the trap minimum, and the trap height
is lowered. The trap shape in the x-direction (Fig. 2, right,
and Fig. 7 below), is governed by the wire width and the
total current distribution (integrated over the thickness)
which remains approximately the same for both cases.

3.1.2 Vertical bias field

The influence of a magnetic field on the current distribu-
tion in a flat superconducting wire is most pronounced
when the field is perpendicular to the wide surface of the
wire. In a superconducting chip, the wire builds up screen-
ing currents to shield its interior from the vertical field,
and the field profile above the chip becomes significantly
non-uniform. This effect is maximal for superconductors
in the Meissner state and provides the most striking dif-
ference relative to a normal conductor. As vertical bias
fields are commonly used on atom chips (e.g. to transport
a trap along x), care has to be taken to design procedures
which do not include large vertical fields.

As an example, we illustrate in Figure 4 the magnetic
field above a superconducting strip placed in a vertical
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bias. Magnetic field maxima occur at the edges of the
strip (Fig. 4 (left)) that exceed significantly the applied
bias field near the wire surface. This field increase is re-
duced to about 15% at a height of 1.5w, but should be
taken into account for loading the trap. Note that in or-
der to maintain the Meissner state, the total magnetic field
should be less than the lower critical field Bc1 in any point
of the superconductor surface. The vertical magnetic field
near the edges of the superconducting strip increases pro-
portionally to the ratio width/thickness (2w/d) and may
become significant for a wide strip [38]. The same mag-
netic field increase near the strip edges is induced by the
transport current2. This field concentration can result in
the partial transition of the sample into the mixed state
even if the current and magnetic fields are far from the
critical values. Magnetic traps based on superconducting
wires in the mixed states are discussed in the next section.

2 This is a rough approximation which takes into account
only the demagnetisation factor. A more accurate analysis is
given, for example, in [39].

3.2 Superconducting guiding wire in the mixed state

3.2.1 Side guide

Let us consider a side guide trap realized by a type II
superconducting wire in the form of a strip (Fig. 1), car-
rying a transport current I in zero external field. To cal-
culate the current distribution in the strip we use the
Bean critical state model [40]: the current (area) den-
sity can only take three different values: ±jc or 0. Fol-
lowing Brandt and Indenbom [36], the sheet current (in-
tegrated over the thickness of the strip) is determined as
J(x) = (d+ − d−)jc, where d+ and d− are the history-
dependent thicknesses of the regions carrying +jc or −jc,
respectively (d+ + d− ≤ d). The sheet current cannot
be higher than its critical value Jc = djc. This value is
achieved in regions near the strip edges. In the central
part of the strip, a field-free region exists that is shielded
by the current-carrying domains from the magnetic field,
similarly to the Meissner state. In this model for a type II
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superconducting strip, the distribution of the sheet cur-
rent is given by the expression [36]:

J(x, Jc, I) =

⎧⎪⎨
⎪⎩

(2Jc/π) arctan

√
w2 − b2

b2 − x2
, |x| < b

Jc, b < |x| < w
(4)

where b = w
(
1 − I2/I2

c

)1/2, Ic = 2wJc is the maximal
value for a superconducting current in the strip (critical
current); it is achieved at full magnetic field penetration,
b = 0. The distribution of the sheet current is presented
in Figure 5 (top, left). Equation (4) is relevant when the
transport current I has been increased from zero (virgin
state) for the first time (cyclic current change is discussed
below).

Due to symmetry, the side guide is located above the
strip centre when the bias field is parallel to the x-axis.
Figure 5 (bottom left) presents the magnetic field pro-
duced by a current I on the axis x = 0 of an infinitely
thin strip of width 2w in the mixed state. The depen-
dence of the magnetic field on the distance z was cal-
culated numerically for four ratios of the current to the
critical current I/Ic (the same as in Fig. 5 (top left)).
The data should be compared to Figure 3 where a su-
perconductor in the Meissner state and a normal conduc-
tor are considered. The magnetic trapping potential that
is formed in combination with a horizontal bias field (of
magnitude 2.5μ0I/(2π2w)), is shown in Figure 5 (bottom
right). These plots demonstrate the tendency: the closer
the current to the critical current, the closer are the trap
parameters to the values of a normal metal trap.

It should be noted that a superconductor in the mixed
state is essentially a nonlinear system. As can be seen from
the 3D-plot presented in Figure 5 (top right) the magnetic
field is a nonlinear function of the current, in contrast to
both a normal conducting wire and a superconducting one
in the Meissner state. This happens because the shape of
the current distribution depends on the ratio I/Ic (see
Fig. 5 (top left)). The calculations show that for low cur-
rents (I < 0.2 Ic), the nonlinearity is negligible and the
field distribution around the type II superconducting strip
may be described by the expressions obtained for a strip
in the Meissner state in Section 3.1. In the opposite case,
I ∼= Ic, the current density equals the critical value over
almost the whole strip width. The magnetic field around
the strip can then be calculated as for a normal metal,
with a spatially uniform current density.

3.2.2 Trapped magnetic flux and related noise

The capability of type II superconductors to freeze a mag-
netic flux results in the irreversible behavior of the cur-
rent profile in the mixed state strip under cyclic changes of
the external fields or transport currents. Figure 6 presents
the magnetic field above the superconducting strip after
ramping up the transport current to I = 0.85 Ic (curve 1)
and decreasing it again to zero (curve 2). The inset shows
the inhomogeneous current distribution that is left in the

Fig. 6. Illustration of trapped magnetic flux after ramping up
and down a transport current in a type II superconducting wire
in the mixed state. We plot the magnetic field produced by a
transport current I = 0.85 Ic above the centre of a strip wire
(curve 1), and the magnetic field caused by the flux trapped in
the strip, after decreasing the current again to zero (curve 2).
The magnetic field is given in units of μ0Ic/(2π2w). The inset
shows the remnant sheet current J(x) in the strip after the
current cycle, normalised to the critical sheet current Jc. The
calculation follows reference [36]. The residual field and current
density distribution depend on the maximal current Imax in the
cycle. Our calculations were made as an example for Imax/Ic =
0.85. We estimate that this was the maximal ratio reached in
reference [16].

strip as a result of the freezing of the magnetic flux in this
current cycle: in the centre, the current keeps flowing in
the direction of the peak transport current, while near the
edges it flows backwards. At short distance (z < 0.2w) the
frozen magnetic field is about 15% of the field produced by
the maximum current. The ratio of these fields decreases
approximately like 1/z2 and is about 1% at z = 3w. These
calculations were made for zero external (bias) field in the
framework of the Brandt model [36].

The effect of the frozen magnetic field has to be taken
into account for the proper loading and control of the
magnetic trap. For example, in reference [41], it is esti-
mated that vortices in a superconducting film are typi-
cally spaced by ∼ 2 μm and create field (inhomogeneities)
of the order of 1 G. The frozen flux can also be the main
source of magnetic noise generated by the guiding wire be-
cause of the motion of the trapped vortices. Other effects
which can influence the atom cloud above mixed state
wires are the variations of the critical current density due
to local changes in the magnetic field or due to structure
inhomogeneities. In addition to the vortex lattice, these
effects could corrugate the trapping potential at low trap
heights, zt ≤ w. Changes on slow time scales may occur
due to the re-distribution of the frozen flux [42,43].

The magnetic noise (flux noise) due to the motion of
the vortices is much higher than the noise in the Meiss-
ner state. The flux noise was investigated in many exper-
imental [44–46] and theoretical [44,46,47] works, but not
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in conjunction with cold atoms. The only theoretical es-
timate we are aware of in this context has been made by
Scheel et al. [41]. It was shown that the noise is closely re-
lated with the features of the vortex pinning which in turn
depends on material properties and preparation technol-
ogy of the sample. The flux noise intensity is determined
by external conditions as well. When the temperature, cur-
rent and magnetic field are far from the critical values Tc,
Jc, and Bc2, the noise arises from thermally activated,
mutually incoherent hoppings among pinning centres. For
this regime of “flux creep”, SQUID-measurements near
high-Tc films demonstrate that the noise is strongly de-
pendent on the film quality. However, the flux noise pic-
ture is more complicated: the noise level depends on the
magnetic pre-history, it follows not only the number of
the trapped vortices, but also the specific spectrum of
the trapped metastable states. In particular, a long-lived
noisy state may occur in a superconducting wire after a
pulsed transport current if the current is not small com-
pared to the critical value [45,48]. Measurements of noise
made with the usual SQUID technique showed that elec-
tromagnetic noise near a high quality YBCO thin film is
at least 10 times smaller than the noise near a normal
conductor [45]. As far as we know, no experimental mea-
surement of vortex noise has been done with cold atoms.

The influence of the magnetic pre-history is obviously
harmful for controlling cold atom traps near a supercon-
ducting surface. Further to the additional flux noise, the
vortices trapped in the superconductor produce magnetic
disorder because of the arbitrary locations of the pinning
centres. Note that cooling of the wire through the super-
conducting transition in an external magnetic field may
also lead to the freezing of vortices. SQUID studies of the
remnant noise due to vortices trapped in a weak field show
that the flux noise spectral density at low frequencies de-
creases linearly, as the magnetic field in which the super-
conducting transition occurred, is lowered [45,49]. In fact,
the remnant noise is proportional to the number of vor-
tices trapped in the sample in agreement with the Dutta,
Dimon and Horn model [50]. This number is also deter-
mined by the shape of the superconductor: the narrower
the strip, the less vortices are frozen. As was shown in ref-
erence [51], a niobium strip of width 2w = 10 μm placed
in a vertical magnetic field smaller than ≈ 0.5 G does not
freeze vortices while being cooled through Tc. At the same
time, for a width of 100 μm, the critical field for vortex
freezing is less than 4 mG [51]. These observations indicate
the advantageous nature of narrow superconducting wires
for atom chip experiments which require particularly long
lifetimes and coherence times.

To summarise the possibility of using mixed state wires
for atom guiding and trapping, the advantage over the
Meissner state is the higher current, while the disad-
vantage is the expected static potential corrugation and
higher noise. As the noise is estimated to be only one
order of magnitude lower than for normal metals of the
same temperature, one has to compare the disadvantages
of the superconductor (limited current density, inhomo-
geneous current distribution and static corrugation) to

other suggestions made concerning the utilization of al-
loys and crystalline materials which offer comparable noise
levels [15,52].

On the other hand, it may be possible to trap cold
atoms close enough and long enough so that they may be
considered as a probe of the mixed state of type II su-
perconductors. The low-frequency flux noise in the mixed
state could be detected by the spin dephasing rate of
cold atoms on realistic time scales, as estimated in ref-
erence [41]. The high sensitivity of cold atoms to a cor-
rugation of the magnetic potential could be used for
visualization of the static disorder produced by frozen
vortices, analogously to the static current scattering in
normal atom chip wires [20,21,53]. Atom clouds having
high spatial resolution (3 μm) combined with excellent
sensitivity to magnetic field (4 nT) [53] (or even better
than that [54]) could provide complementary information
about the distribution and dynamics of vortices. Accord-
ing to the review in reference [55], such a combination of
resolution and sensitivity would be one of the best among
various vortex observation methods.

4 Comparison between normal
and superconducting magnetic traps

Our calculations show that magnetic traps can be created
in atom chips with superconducting wires. The main dif-
ferences to normal wires are the inhomogeneity of the cur-
rent distribution and nonzero screening currents induced
by bias fields. The current density in a superconducting
wire is smaller in its centre compared to a normal con-
ductor (at the same total current). For this reason, the
magnetic field near the wire surface is weaker, and a side
guide trap (in a given parallel bias field) is closer to the
surface (see Fig. 3).

Let us now analyse in more detail the difference in trap
parameters between side-guide traps created by the nor-
mal and superconducting guiding wires. We also compare
the Meissner and mixed states with respect to their trap-
ping “capabilities”. Note that we do not take into account
here the bending of the wires into “U”- and “Z”-shapes for
3D traps (see, for example, [1–3]). Calculation of the cur-
rent density in bent superconducting wires is complicated
because it requires to solve a three-dimensional problem
even in a planar configuration [19]. Our results can be ap-
plied to the central part of the wires, sufficiently far away
from the bends.

Two figures of merit describing the confinement of cold
atoms in the magnetic trap are used for this compari-
son: the magnetic field gradient at the trap centre and
the depth of the trapping potential. The trap depth is de-
termined as the minimal height of the (total) potential
barrier, from the trap centre to either the surface or away
from it. Here, the gravitational potential is taken into ac-
count. We adjust the trap height by setting the bias field
to the required value and take the same geometry and to-
tal current for a fair comparison between superconducting
and metallic wires.
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Fig. 7. Comparison of trap parameters – magnetic field gradient (black, left scale) and trap depth (red, right scale), calculated
for side-guide traps with superconducting and normal metal wires. (a) Superconductor in the mixed state (YBa2Cu3O7−δ at
4.2 K) and normal metal (solid and dashed lines, respectively). Calculations were performed analytically for infinitely thin
guiding wires of width 2w = 10 μm, and current I = 200 mA ≈ 0.1Ic (assuming a thickness d = 300 nm). The trap height is
varied by adjusting the bias field. (b) Superconductor in the Meissner state (niobium at 4.2 K). Continuous lines: analytical
calculation of the field gradient and trap depth for an infinitely thin wire of width 2w = 10 μm, carrying 20 mA ≈ 0.02 Ic of
current (thickness d = 2 μm). Squares: numerical calculation. Dashed lines: same data for a normally conducting wire (same
geometry, same current). The numerical calculation takes into account the additional screening currents created by the bias
field (negligible for an infinitely thin wire). Dash-dotted (horizontal) lines: minimum field gradient required to stabilize the trap
against gravity and minimum trap depth to confine a cold atomic sample at 1 μK. The trap depth is calculated from the height
of the potential barriers towards or away from the chip, including gravity (“upside down” setup with the trap below the chip).
Note the different scales in the plots. Wire thickness and current for the two superconducting cases were optimised for best
results. For Nb, we take a smaller ratio 2w/d (reducing edge current density) and a smaller current, in order to maintain
the Meissner state throughout the wire. For YBCO, a thickness of 300 nm has been experimentally shown to enable the best
superconducting properties. The current was chosen to fit the allowed current density for gold at 4.2 K. (This is estimated to
be the same as for room temperature: while the drop in resistivity is about two orders of magnitude, the drop in heat transfer
to the cryostat is also appreciable.)

Results for typical flat wires are shown in Figure 7.
Comparing superconducting and normal guiding wires, we
see that the field gradients (left scale) and the trap depths
are essentially the same for trap distances zt ≥ 2w, similar
to what is seen in Figure 3. The difference is maximal in
the range of low trap heights, where one becomes sensitive
to the weaker magnetic field and current density in the su-
perconductor. This result is in qualitative agreement with
the numerical simulations of confinement parameters of
specific superconducting traps performed in [19]. The fi-
nite thickness of the wire does not significantly change the
picture, as can be seen from the numerical data plotted in
Figure 7(b) (symbols). For example, an infinitely thin su-
perconducting strip creates a magnetic field gradient along
the z-direction at the trap centre (height zt = 0.75w) that
is about 1.8 times less than in a normal metal trap. Along
the x-axis the ratio of the gradients (normal metal to su-
perconductor) is about 1.3.

The data presented in Figure 7 are calculated for the
high-Tc superconductor YBa2Cu3O7−δ (YBCO) and for
niobium (Nb) in the Meissner state. If the YBCO film
is used at 4.2 K, the assumed current of 200 mA is
about 10% of the critical value (critical current density
jc ≈ 7× 1011 Am−2 for a thickness of d = 300 nm). Nev-
ertheless, we expect the wire to be in the mixed state, at

least at its edges where the current density exceeds the
values permitting the Meissner state. For niobium, the
critical current density is lower, and this is why we re-
duce the transport current to 20 mA. The horizontal lines
in Figure 7 mark typical criteria for reliable trapping of
atoms at a temperature of 1 μK: the trap depth should
exceed 10 μK and the gradient should be high enough to
protect the atoms from gravity’s pull (corresponding to
15.3 G/cm for 87Rb atoms in the |F = 2,mF = 2〉 state,
where F is the total spin and mF its projection on the
local magnetic field).

According to Figure 7(a), we predict that an atom
chip based on a YBCO superconducting strip can trap
cold atoms in a wide range of trap heights 0.2 . . .300 μm.
For niobium, the range is smaller (1 . . . 75 μm) due to
the lower guiding current (Fig. 7b). The trap parameters
are still high enough, however, to successfully trap cold
atoms, both in the Bose-Einstein condensed phase and
above. It is also seen in Figure 7 that the trap param-
eters in the closest vicinity of the surface (z ≤ 5 μm)
are worse than for a normal strip. However, a signifi-
cant gain in the lifetime due to the reduction of magnetic
noise near the superconductor makes this trap design more
attractive.
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5 Conclusion

We have presented a theoretical analysis of superconduct-
ing atom chips. Our methods have been both analytical
and numerical; they complement the results recently re-
ported in reference [19]. In particular, the analytical ex-
pressions given here can be used for semi-quantitative es-
timates and to identify scaling laws for chip design. We
confirm the possibility of trapping cold atoms in a wide
range of distances (0.2 . . . 300 μm) with the same wire.
This analysis takes into account the specific behavior of
superconductors that carry a transport current in a mag-
netic field. These peculiarities enforce modifications in the
loading procedure and the control of the atom cloud. The
application of superconductors to atom chips may enable
improved atom optics with suppressed effects of noise, as
well as novel insight regarding the noise and current dis-
tribution in superconductors.
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the European Union, from the Bundesministerium für Bildung
und Forschung (Germany, DIP project), the German-Israeli
Foundation for Scientific Research (GIF), the American-Israeli
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Appendix A: Side guide magnetic trap based
on cylindrical superconducting wire

Let us consider a conductor in the form of a cylinder (ra-
dius R) with a DC transport current I in an external
magnetic field B0 (Fig. 8). A normal metal wire does not
influence the external DC field so that the total field is the
superposition of the homogeneous bias field and the field
produced by the current. The total field is zero at θ = 0
and at the trap height

zt = rt −R =
μ0I

2πB0
−R. (5)

A magnetic field cannot penetrate a superconductor in
the Meissner state. If the radius is much larger than the
London penetration depth, the magnetic field is zero in-
side the cylinder. The magnetic field around the super-
conductor without transport current can be described by
the Laplace equation for the scalar magnetic potential ψ.
The boundary conditions are: the radial component of the
magnetic field equals zero at r = R; at r → ∞, the mag-
netic field coincides with the external one. The solution is

Br = −∂rψ = B0

(
1 − R2

r2

)
sin θ (6)

Bθ = −1
r
∂θψ = B0

(
1 +

R2

r2

)
cos θ (7)

r

θ
R

I

B
0

Fig. 8. Cylindrical wire and coordinate system.

where Br and Bθ are the radial and azimuthal compo-
nents of the magnetic field. The magnetic field configura-
tion around the superconductor thus differs from a nor-
mal metal even if a transport current is absent. Due to
the Meissner effect, the magnetic field near the supercon-
ductor at θ = 0 is increased.

If the cylinder carries a transport current, the outer
field is the same as for a normal conductor, due to the
cylindrical symmetry. We find that the minimum of the
total field (Fig. 9 (left)) is located at θ = 0 and distance

zt = rt −R = R
1 +

√
1 − 4h2

2h
−R, h =

2πRB0

μ0I
(8)

from the wire surface. Because of the screening of the bias
field by a superconductor, the same trap height in a super-
conducting chip is achieved with a lower bias field than in
a normal conducting chip (see Fig. 9 (right) and also Fig. 3
(right) for a rectangular wire). This reduction reaches 50%
at small trap heights. The difference decreases with an in-
crease of this height and practically vanishes at zt > 3R.

Appendix B: Numerical calculation
of magnetic field around a finite thickness
superconductor

We consider a wire that is infinitely long in the y-direction
and ignore here boundary effects (these become relevant
for “U”- and “Z”-shaped wires, of course). By symmetry,
the magnetic field is independent of y and lies in the xz-
plane (see Fig. 1). Inside the superconductor, the field is
zero. Outside, we describe the field in terms of a scalar
potential ψ and a vector potential A = eyA

B(x) = −∇ψ(x) + ∇× A(x). (9)

We shall see below that the scalar potential describes
the field caused by an external magnetic field (as in Ap-
pendix A), while the vector potential gives the field caused
by a transport current in the superconducting wire. The
introduction of two potentials may seem superfluous, be-
cause one could work, outside the wire, with the scalar
potential only. But ψ would then become a multivalued
function for a nonzero transport current.
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Fig. 9. (Left) Modulus of the total magnetic field around a superconducting cylinder with a transport current I in a bias
magnetic field B0 = 0.4 × μ0I/2πR. The field minimum is located at the point θ = 0, zt = 0.8R (r = 1.8R). (Right) Required
bias field as a function of the trap height for a cylindrical wire, based on equations (5) and (8): solid line – superconductor;
dashed line – normal metal. In both graphs, the magnetic field is normalised to μ0I/2πR = 2 G(I/1 A)/(R/1 mm).

The magnetic field normal to the superconductor sur-
face is continuous and must therefore vanish. (This cor-
responds to the radial derivative of ψ in Appendix A.)
Writing n(xs) for the normal at surface point xs, we have

n(xs) ·B(xs) = −n(xs) · ∇ψ(xs) − (n(xs) × ey) · ∇A(xs)

= −∂ψ(xs)
∂n(xs)

− ∂A(xs)
∂t(xs)

= 0 (10)

where ∂/∂n(xs) and ∂/∂t(xs) are the normal and tan-
gential derivatives at xs. (The local tangent vector is
t = n × ey.) We construct the potentials ψ and A such
that both terms ∂ψ/∂n and ∂A/∂t in equation (10) are
zero on the wire surface. Note that ∂A/∂t = 0 indicates
that A(xs) is a constant on the surface which we denote
by A0. The tangential magnetic field is nonzero at the
(outer) surface of the superconductor; the interior of the
wire is screened from this field by a surface current (along
the y-axis) of magnitude t · B/μ0.

Considering that outside the wire, both divergence and
curl of the magnetic field are zero, we get

∇2ψ(r) = 0, ∇2A(r) = 0 (11)

where ∇2 is the two-dimensional Laplace operator. These
Laplace equations can be solved with the help of the Green
function

G(x, r) = − 1
2π

log r, (12)

where r = |r − x|, given the values of the potentials and
their derivatives on the wire surface, and an asymptotic
condition at large distance.

The two potentials behave differently with respect to
the current I transported by the superconductor. It can
be seen by recalling the Ampère-Maxwell law (in the static
limit)

μ0I =
∮

S

B(x) · da = −
∮

S

∂A

∂n
da, (13)

where I is the total current flowing through the supercon-
ductor, S is a closed curve including the cross-section of
the superconductor (with oriented line element da), and
∂/∂n is the derivative normal to the curve S and point-
ing ‘outside’. Hence, the vector potential A is proportional
to the transport current. Conversely, the scalar potential
asymptotically goes over into ψ → ψext(r) = −r·B0 where
B0 is the homogeneous bias field. This asymptotic condi-
tion forces ψ to be proportional to B0.

We solve the Laplace equations (11) for the potentials
M = ψ,A in terms of a surface integral equation (r outside
the wire) [56,57]

M(r) = Mext(r) −
∮

S

da(x)

×
(
G(x, r)

∂M(x)
∂n(x)

− ∂G(x, r)
∂n(x)

M(x)
)
, (14)

where Mext is the external potential (nonzero only for ψ),
S is now the circumference of the wire (with scalar line
element da(x)), and the normal derivative ∂/∂n(x) points
‘outside’ the wire. For M = ψ, we have ∂ψ(x)/∂n(x) = 0
on the surface according to equation (10); then there is
only one unknown, ψ(x), in equation (14). When M = A,
we can set under the integral A(x) = A0, constant on the
surface, also according to equation (10). Then the integral
of the second term in the bracket can be shown to vanish,
and there is only one unknown left, ∂A(x)/∂n(x), which
is actually the surface current density, see equation (13).
We always choose A0 = 1 in the beginning, compute the
total current by equation (13) (giving a coefficient like the
wire inductance) and re-scale A(x) and ∂A/∂n(x) to get
the desired current.

The potential M and its derivative on the surface
are obtained by letting r → xs in equation (14) ap-
proach the surface. Note that we touch the singularity
of the Green function G(x,xs) and its normal deriva-
tive ∂G(x,xs)/∂n(x) under the integral when x = xs.
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To handle this, we expand the integrand within a small
neighborhood s of length da around xs and perform the
integration, giving

∫
s

da(x)G(x,xs)
∂M(x)
∂n(x)

≈ 1
2π

∂M(xs)
∂n(xs)

(
1 − log

da

2

)
da.

(15)
∫

s

da(x)
∂G(xs,x)
∂n(x)

M(x) ≈
(

1
2

+
dφ(xs)

4π

)
M(xs). (16)

Here the angle dφ(xs) involves the radius of curvature
R(xs) of the surface: dφ(xs) = da/R(xs), it describes the
angle subtended by the surface element as seen from the
centre of curvature. The logarithmic correction of equa-
tion (15) and the curvature correction (16) greatly im-
prove the convergence of the numerical calculations.

The other parts of the surface integral, excluding the
point xs, are discretized in the usual way, mapping the
integral equation into a linear system [58,59]. For exam-
ple, a rectangle 20.64 μm× 0.84 μm with rounded corners
(R = 0.32 μm) is typically discretized into 420 surface
elements along its circumference. This leads to a linear
system with 4202 matrix elements. Once we have the po-
tential or its derivative on the wire surface, the field out-
side the wire is found from equation (14). We have checked
the convergence of the numerics, for different discretiza-
tions of the wire surface, against the exact solution of Ap-
pendix A for cylindrical wires and against the solution of
reference [60] for rectangular wires with sharp corners.
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