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Abstract

To switch from one cognitive task to another is thought to rely on additional control effort being indicated by performance costs relative
to repeating the same task. This switch cost can be reduced by advance task preparation. In the present experiment the nature of advance
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reparation was investigated by comparing a situation where an explicit task cue was presented 2000 ms in advance of the tar
CTI-2000) with a situation where cue and target were presented in close succession (CTI-100). We mapped the blood-oxygen
ependent (BOLD) activation correlates of switch-related control effort and advance task preparation to test alternative explan
dvance preparation is reducing switch costs. A previously reported control-related cortical network of frontal and parietal b
merged that was more strongly activated for switching between tasks. However, this was true exclusively for CTI-100 where no ad
reparation was possible. At CTI-2000 these same brain areas were equally engaged in both switch and repeat trials. For some o

his common activation was time-locked to the presentation of both the cue as well as the target. Other areas were exclusively ass
arget processing. The overall pattern of results suggests that advance task preparation is a common process of pre-activating
ctivation) the currently relevant task set which does not face interference from a persistingN − 1 task set. During target processing
ame brain areas are re-engaged (subsequent target-locked activation) to apply the pre-activated task set. Though being comm
nd switch trials, advance preparation has a differential benefit for switch trials. This is because the instructed task set has time t
stable state, thus becoming resistant against disruption from the previous task set, which is retrieved by the current target stimu
2004 Elsevier Ltd. All rights reserved.
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. Introduction

Task switching is commonly held to be an appropri-
te paradigm for the exploration of executive control (e.g.
onsell, 2003a). Controlled information processing enables
ehavior that goes beyond inflexible stimulus-driven S–R as-
ociation. Successful behavior in task switching would fail
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if subjects based their performance on fixed S–R mapp
while ignoring task-specific contextual constraints on ac
In compliance with ‘contextual constraints’, subjects are
to mentally structure the configuration of potentially availa
objects-for-action and potential response options (i.e. a
set is formed) in accordance with an internally represe
goal.

Studies on brain-damaged patients (Milner, 1963; Stuss &
Benson, 1986), non-human primates (Miller & Cohen, 2001;
Stuss & Benson, 1986), and brain-imaging studies (Brass &
von Cramon, 2002; Passingham, Toni, & Rushworth, 200;
Seitz & Binkofski, 2000; Toni, Rushworth, & Passingha
2001) suggest an important role of the prefrontal cortex (P

028-3932/$ – see front matter © 2004 Elsevier Ltd. All rights reserved.
oi:10.1016/j.neuropsychologia.2004.06.014
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subserving this kind of goal-directed behavior. Furthermore,
studies that measure PFC and parietal cortex simultaneously
usually show that the PFC acts in concert with the parietal
cortex in order to implement control (Chafee & Goldman-
Rakic, 1998; Dove, Pollmann, Schubert, Wiggins, & von
Cramon, 2000; Sohn, Ursu, Anderson, Stenger, & Carter,
2000).

The task switching paradigm captures two core features
of goal-directed behavior: flexibility and anticipatory con-
trol. Flexibility is realized by introducing frequent changes
of the relevant goal (i.e. the task to be performed), which is
operationalized by the independent variable task transition
(task switch versus task repeat). Anticipatory control comes
into play when the upcoming task can be prepared in ad-
vance, which is operationalized by the independent variable
preparation interval with either a short interval (no advance
preparation) or a long interval (advance preparation).

With this very basic design the present functional imag-
ing study aimed at investigating the nature of advance
task preparation and its relevance for flexibly switching
between alternative tasks. This issue is central for under-
standing the basic cognitive mechanisms underlying task
switching performance and has been causing severe con-
troversy among theorists (Altmann, 2003; Monsell, 2003a,
2003b).
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task set re-configuration’ (Meiran, 1996; Rogers & Monsell,
1995).

According to the second scenario, a previously adopted
task set is dissipating rapidly before the next trial is presented.
Thus, it is not the persistently activated previous task set that
causes interference in a current switch trial. Alternatively, as
recent studies are suggesting, interference might be induced
by the target stimulus itself which is retrieving the previ-
ous task set from memory (Allport & Wylie, 2000; Waszak,
Hommel, & Allport, 2003, in press; Wylie & Allport, 2000).
However, when every new trial starts with a neutral task set
because interference is induced only after the target has been
presented, there is nothing which can be done during prepa-
ration but biasing the initially neutral task set in the direction
of the currently instructed task set—and this is equal for both
switch and repeat trials. It is therefore not immediately clear
why advance task preparation being equally engaged for both
trial types should have a benefit that is differently stronger
for switch trials compared to repeat trials as being indicted
by reduced switch costs. A solution for this paradox is that a
task switch can benefit differentially from advance prepara-
tion because the target-associated previous task set loses its
potential to gain a misleading influence during task imple-
mentation. This is because the instructed task set has time to
settle into a stable state, thus becoming resistant against later
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.1. Two theoretical views of the relation between switc
ost and task preparation

One basic empirical finding is that switching from one t
o another task as compared to repeating the same task im
ehavioral performance. These ‘switch costs’ are supp

o reflect the need for a stronger engagement of contr
nable a task switch. Or, in other words, switch costs re
levated control being necessary to counteract the ten

o repeat the previously performed task. The two scen
utlined below make different assumptions about how
erseverative tendency is mediated.

Another important finding is that switch costs are o
educed with prolonged preparation intervals (e.g.Meiran,
996; Rogers & Monsell, 1995). This observation sugges

hat a task switch can be prepared in advance. Two diff
xplanations for this switch cost reduction are being
rasted in the present study.

According to the first scenario, the system tends to p
erate because the previously adopted task set is pers
ver time into the next trial. Thus, establishing the com

ng task set in a current switch trial requires additional ti
onsuming control effort because proactive interference
he persistently activated, now misleading task set has
vercome. With sufficient preparation time, this same
ess can be finished in advance of target presentatio
roactive interference has already been overcome durin
reparation interval, it is no longer slowing down appropr

ask implementation after the target has been presented
otion to some degree resembles the concept of ‘adv
isruption (see alsoKoch & Allport, submitted for publica
ion). A discussion of related notions can be found in othe
ent publications (Gilbert & Shallice, 2002; Goschke, 2000;
ylie, Javitt, & Foxe, 2003; Yeung & Monsell, 2003).

.2. Brain activation correlates of task preparation

By measuring the subjects’ behavioral performance
nvolvement of a task preparation process can be inferred
ndirectly from the beneficial impact it has during the sub
uent task implementation. Functional MRI can be use
btain a more direct record of the ongoing preparation
ess by measuring the correlated blood-oxygenation-l
ependent (BOLD) activation. In the present study we w
easuring BOLD activation to distinguish between the

heoretical scenarios sketched above, which are both eq
ompatible with the reduction of behavioral switch costs

We realized an explicitly cued task switching proced
i.e. an unpredictable task cue indicated the current task
ntroduced a long preparation interval of 2000 ms (CTI-20
nd a short preparation interval of 100 ms (CTI-100). An
umulating number of previous fMRI studies using cued
witching procedures did not find elevated BOLD activa
or switch trials compared to repeat trials with long prep
ion intervals (Brass & von Cramon, 2002; Braver, Reynolds

Donaldson, 2003; Dove, 2000; Luks, Simpson, Feiwell, &
iller, 2002).
This result intuitively appears to be incompatible with

otion that establishing the instructed task set in switch
ls is facing interference from the persistently activated,
isleading previous task set. The advance resolution o
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interference should require more control effort during prepa-
ration than merely refreshing the task set in repeat trials. This
should be paralleled by stronger BOLD activation for switch
compared to repeat trials.

We suggest to explain this rather unexpected result in
terms of the alternative scenario outlined above, which ac-
counts for reduced behavioral switch costs without assum-
ing that between-task interference is being resolved during
preparation. This account predicts reduced or even absent
additional switch-related control effort when advance prepa-
ration is possible, both during task preparation and during
task implementation. Hence, being easily compatible with
the absence of enhanced BOLD activation at long prepara-
tion intervals.

Furthermore, this account predicts that interference
caused by the target-inducedN − 1 task set impairs task
implementation specifically when advance preparation is not
possible. Thus, high switch-related control demands with a
short preparation interval should be reflected by enhanced
activation in switch trials compared to repeat trials. This is
exactly the patternDove et al. (2000)observed for several
frontal and parietal brain areas realizing a CTI of 0 s.

Different from previous fMRI studies we realized a short
and a long CTI condition within the same subjects which al-
lows to draw stronger conclusions regarding the comparison
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However, if a brain area turns out to be engaged both in the
cue phase as well as the target phase, even for this method,
the 2000 ms CTI is too short to determine the relative quanti-
tative contributions of the respective cue-related and target-
related BOLD sub-components. In this case, the analysis can
nevertheless tell that an activation of unspecified strength
is associated with both the cue and additionally with the
target.

Similarly, potential activation differences between switch
and repeat trials at CTI-2000 can not differentially be as-
signed either to the cue period or to the target period. With
regard to the hypothesis that the CTI-2000 condition would
not differ between switch and repeat trials, this does not pose a
major limitation. Furthermore, it should be noted that, though
BOLD activation at CTI-2000 displays the sum of potential
cue-related and target-related sub-components, activation ef-
fects that are associated with only one sub-component are still
detected by both the standard regression-based whole-brain
analysis as well as our additional temporal analysis.

2. Methods

2.1. Subjects
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f switch-related BOLD effects for different CTIs. Mor
ver, as being delineated below, a fine-grained analys
he temporal structure of the trial-related BOLD respo
as intended to bring about further theoretical constrain

.3. Determining the temporal structure of the
rial-related BOLD response

As argued above, determining the pattern of switch-re
OLD activation for CTI-100 and CTI-2000 can reveal
ortant information. However, it would be even more in
ative to know, whether brain areas that are engaged
TI-2000 condition are involved in cue-related and/or tar

elated processing. Unfortunately, the analysis of fMRI t
ourses notoriously faces problems of decomposing a
elated BOLD response into sub-components associated
eparate within-trial events (cue and target) when the e
re not spaced generously or the event order is not count
nced. This problem also holds for the standard method b
n multiple linear regression (Friston et al., 1998) which we
pplied for detecting relevant activations within the wh
rain volume. Any effect we observe for CTI-2000 thus
ays reflects the sum of effects caused by cue-related

arget-related processing.
To gain at least partial information about the comp

ion of the trial-related BOLD response at CTI-2000 we
lemented a novel temporal analysis of trial-averaged
ourses (Ruge, Brass, Lohmann, & von Cramon, 2003). This
ethod allows to decide whether a brain area of intere
enerally activated cue-related and/or target-related in t
f present–absent judgements.
We measured 22 subjects who all gave written infor
onsent to participate in the present study. Four subjects
xcluded due to movement artifacts, all during the secon
erimental block (see below). The mean age of the rema
8 subjects was 25.5 (range 21–35), 10 were female. No

ect had a history of neurological disorder, major medical
rder, or psychiatric disorder. All subjects were right-han
s assessed by the Edinburgh Inventory (Oldfield, 1971).

.2. Experimental procedure

We adopted a spatial task-switching procedure, which
een introduced byMeiran (1996). The subjects had to ob
ne of two alternative rules: ‘judge if a filled white squ
ppeared up or down’, or ‘judge if a filled white square
eared left or right’. Which task rule to apply next, was c
npredictably from trial to trial with two different prepa

ion intervals. Thus, in one half of the trials subjects ha
hange the rule from trialN− 1 to trialN in the switch con
ition. In the repeat condition the same rule was releva
uccessive trials. The target stimulus could appear in on
f four positions of a two-by-two grid. Subjects had to pr
button located down-left to indicate ‘down’ in one task

left’ in the alternative task. By pressing the second bu
located up-right) subjects had to indicate ‘up’ or ‘right’ c
esponding to the target position (seeFig. 1). Which task rule
o apply was indicated by arrow-cues directing left/righ
p/down and being located at the edges of the grid. The
ue and the target were separated in time either by a
arget interval (CTI) of 100 ms (condition CTI-100) or b
ue-target interval of 2000 ms (condition CTI-2000).
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Fig. 1. Timing for the cue-target interval of 100 ms (CTI-100) and for the cue-target interval of 2000 ms (CTI-2000). In the left-right task subjects had to decide
whether the small square appeared on the left or right side of the two-by-two grid. The up-down task required to indicate the position of the target on the vertical
dimension. Which task to perform was indicated by arrow cues at the edge of the grid (the picture gives an example for the up-down task).

We did not vary the CTI independently from the response-
target interval (RTI) as done in the original procedure
(Meiran, 1996).Meiran, Chorev, and Sapir (2000)could show
that the behavioral switch cost was only minimally affected
by the inter-trial interval beyond an interval of 1 sec. However
the benefit of a prolonged CTI was much more pronounced.
In the present experiment the RTI varied within a relative
large range (4–9 s), a period much longer than required for
reaching asymptotic levels of behavioral switch cost. More-
over, this variation is considerably larger as compared to the
CTI variation (100 or 2000 s). Thus, confounding CTI with
RTI is supposed to be negligible.

At CTI-100, no or minimal advance task preparation
should be possible before target presentation whereas at CTI-
2000 subjects are supposed to have enough time to prepare
for the next task in advance. In order to focus attention on
the upcoming trial, the empty grid was displayed 300 ms be-
fore cue presentation. The final arrangement of grid, cue and
target was maintained until response execution or timeout
after 1500 ms. The timing of the sequence of trials was trig-
gered from the MRI control every 6 s. The trials started with a
variable over-sampling interval of 0, 500 or 1000 ms (time-to-
repetition (TR) was 1.5 s) in order to obtain an interpolated
temporal resolution of 500 ms (Josephs, Turner, & Friston,
1997). According to the TR of 1.5 s one data point is mea-
s e to
t LD
r f dif-
f time
c

ap-
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combination of the two independent variables preparation in-
terval (CTI-100 versus CTI-2000) by task transition (switch
versus repeat). The balanced number of 32 trials per con-
dition (prior to the exclusion of error trials) was obtained
by pseudo-randomization. We controlled for balanced abso-
lute frequencies of the single tasks (approximately 64 trials
each), the single target stimuli (approximately 32 trials each),
the single responses (approximately 64 trials each). Further-
more, an equal number of the three over-sampling intervals
(approximately 11 each) was pseudo-randomly assigned to
the combinations of task transition and preparation interval.
We created different trial sequences for each subject.

We also included 16 null-event trials pseudo-randomly
interspersed (minimal distance of five trials between succes-
sive null-events). Pseudo-randomization guaranteed that the
number of null-events following the four combinations of
task transition and preparation interval was balanced. Fol-
lowing a null-event trial, we inserted a dummy trial which
did not enter into the analysis. Depending on the temporal
structure of the adjacent experimental trials, the duration of
the no-stimulation period varied between 6.5 and 12 s. The
null-events served as a baseline condition for comparison
with the experimental conditions. Errors were followed by
a feedback displayed for 700 ms. Error trials were not re-
peated and together with the following trial excluded from
t

block
w The
c sent
a else-
w ri-
a d
ured every 1.5 s and with ‘jittering’ the trial onset relativ
he acquisition of the BOLD signal, the trial-related BO
esponse is effectively measured at a greater number o
erent time points. Thus, a more accurate estimate of the
ourse can be achieved.

We implemented 128 experimental trials resulting in
roximately (due to excluded error trials) 32 trials for e
he analysis.
The conditions described above were realized as one

ithin a sequence of two different experimental blocks.
ompanion block is not analyzed or discussed in the pre
rticle. The results of a block comparison can be found
here (Brass et al., 2003). The other block contained t
ls with ‘univalent responses’ (Meiran, 2000) as compare
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to ‘bivalent responses’ used in the present block of inter-
est. The order of blocks was balanced across subjects. In
order to exclude transfer-effects, some analyses (specified
below) were restricted to those 11 subjects (mean age 26.5,
range 21–35, five female) who performed the relevant (i.e.
bivalent response) block first. Both blocks were introduced
to the subjects prior to the fMRI scanning procedure by
presenting 20 practice trials each. Prior to the functional
recording of each block, subjects performed another 60 prac-
tice trials with a short and constant response-cue interval of
800 ms.

2.3. FMRI procedure

The experiment was carried out on a 3T scanner (Med-
spec 30/100, Bruker, Ettlingen). Sixteen axial slices (19.2 cm
FOV, 64× 64 matrix, 5 mm thickness, 2 mm spacing) were
acquired parallel to the AC–PC plane and covering the whole
brain. We used a single shot, gradient recalled EPI sequence
(TR 1500 ms, TE 30 ms, 90 flip angle). Prior to the func-
tional runs, corresponding 16 anatomical MDEFT-slices and
16 EPI-T1 slices were acquired. Stimuli were displayed on
a back-projection screen mounted in the bore of the mag-
net behind the participant’s head by using an LCD pro-
jector. Participants viewed the screen by wearing mirror
g
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2.4.2. Whole-brain contrasts
For the computation of whole-brain contrasts, we used

the general-linear-model for serially auto-correlated obser-
vations (Friston et al., 1995). The design matrix for event-
related analysis was based on a model of the hemodynamic
response with a variable delay of the BOLD function (Friston
et al., 1998).

The onsets of the single model BOLD responses for the
construction of the model regressors were synchronized with
the presentation of the task cue. We obtained highly simi-
lar results irrespective of either performing a target-locked
or a cue-locked synchronization and also irrespective of the
number of basis-functions included. This demonstrates the
expected insensitivity of this method for differential contri-
butions of within-trial events. Thus, any effect revealed in
this analysis reflects the sum of effects caused by cue-related
and target-related processing.

To meet a prerequisite of the multiple linear regression,
the model equation including the observation data, the de-
sign matrix, and the error term, was convolved with a Gaus-
sian kernel with a dispersion of 4 s FWHM. Contrast maps
were generated for each subject. A one-samplet-test of con-
trast maps across subjects (random-effects-model consider-
ing subjects as a random variable) was computed to indicate
whether observed differences between conditions were sig-
n
t
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.4. Functional whole-brain-analysis

.4.1. Pre-processing
The analysis of the fMRI data was performed using

IPSIA software package (Lohmann et al., 2001). To align
he functional dataslices with the Talairach 3D stereot
oordinate reference system (Talairach & Tournoux, 1988),
rigid linear registration with six degrees of freedom (th

otational, three translational) was performed. The rotat
nd translational parameters were obtained on the ba

he MDEFT and EPI-T1 slices. The parameters were su
uently transformed to standard Talairach brain size by l
caling. The resulting parameters were then used to tran
he functional slices by using trilinear interpolation, so
he resulting functional slices were aligned with the stereo
ic coordinate system. The functional data were first corre
or movement artifacts. Furthermore, the temporal offse
ween the slices acquired in one scan were corrected by

sinc-interpolation algorithm. Data were smoothed usi
patial Gaussian filter with FWHM = 5.7 mm. A tempo
ighpass filter with a cutoff frequency ranging between 1
nd 1/192 Hz was used for baseline correction. Consid

he ‘design frequency’, the cutoff-frequency was determ
or each subject individually, according to the maximal p
ise temporal distance of trials for the experimental co

ion with this distance being minimal. Both the analysis
hole-brain contrasts and the analysis of trial-averaged
ourses were performed after these pre-processing ste
een finished.
d

ificantly different from zero. Subsequently,t values were
ransformed intozscores.

To obtain meaningful values of activation strength
ignificantly activated regions, we computed percent-sig
hange values extracted from the peak amplitudes of
veraged time courses (see Section 2.5.2).

.5. Post-hoc analysis of regions of interest (ROIs)

.5.1. Temporal analysis of pre-processed
rial-averaged time courses

We analyzed trial-averaged time courses in order to
mine, whether those brain regions, that showed any sw
elated activation difference were either engaged in cue
essing, target processing, or both. The time courses
xtracted from ROIs, which exhibited a stronger activa
or switch than for repeat in the whole brain analysis. The
ailed description and discussion of the procedure desc
elow can be found inRuge et al. (2003).

Below, we are sketching in three steps the basic reas
ehind the method. Firstly, model assumptions are fo

ated showing that a comparison of onset latencies and
atencies between CTI-100 and CTI-2000 can provide u
though not exhaustive) information about whether a b
rea is activated by the cue, the target, or both. Seco
e are describing how jackknife re-sampling can be us
etermine and statistically assess onset latencies and

atencies facing noisy single-subject data. Thirdly, we
escribing how we dealt with the problem that BOLD
ets associated with the current trial are ‘hidden’ within
verlapping BOLD signal originating from the previous tr
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Fig. 2. Schematic model that illustrates how differences between the two
cue-target-interval conditions (CTI-2000–CTI-100) of onset latencies on the
one hand and peak latencies on the other hand, can be used to decide, whether
a brain area is activated cue-locked and/or target-locked. For a full descrip-
tion of the decision scheme see main text. Both graphs (A and B) show
three different curves (solid black, solid gray, dotted black) that depict dif-
ferent model time courses of trial-related BOLD activation depending on
the differential contribution of one cue-related BOLD component and one
target-related BOLD component. Three landmark patterns are illustrated: (i)
Purely cue-locked activation (solid black), (ii) Purely target-locked activa-
tion (solid gray) and (iii) Combined cue-locked plus target-locked activation
(dotted black). Time point zero refers to the onset of cue presentation. The
x-axis is in units of seconds. Graph A depicts the situation for the cue-target
interval of 100 ms (CTI-100). Graph B depicts the situation for the cue-target
interval of 2000 ms (CTI-2000). The arrows illustrate the shift of both the
onset latencies and the peak latencies at CTI-2000 referenced to the corre-
sponding latencies at CTI-100.

2.5.1.1. Model assumptions.Fig. 2 depicts a schematic
demonstration based on the assumption of two BOLD com-
ponents associated with either the task cue or the target stim-
ulus. Three different idealized landmark time courses of the
trial-related BOLD response were constructed correspond-
ing to a purely cue-locked activation (solid black), a purely
target-locked activation (solid gray), and a combined cue-
locked plus target-locked activation (dotted black).1 These

1 When two events occur in close temporal succession, the BOLD activa-
tion induced by the second event is being increasingly suppressed the closer
the events are spaced. At CTI-100, where cue and target are separated by
only 100 ms, the target-induced BOLD activation can be assumed to be al-
most completely suppressed when the same brain area has been activate
by the cue 100 ms before (Glover, 1999). SeeFig. 2(A), where the com-
bined cue/target activation (dotted black) is much smaller then would be
expected for just adding up the two separate components. At CTI-2000 this
suppression can be assumed to be much less pronounced (Dale & Buckner,

three patterns of trial-related BOLD activation are depicted
for CTI-2000 (B) in relation to CTI-100 (A).

Fig. 2(A) shows that for CTI-100, each of the three land-
mark time courses has roughly comparable temporal char-
acteristics as parameterized by onset latencies and peak la-
tencies. Thus, onset latencies and peak latencies obtained
for CTI-100 can be used as reference values which are not
affected by the underlying event structure (i.e. despite of a
purely cue-locked, a purely target-locked, or a combined ac-
tivation). This is different for CTI-2000 (Fig. 2(B)) where
onset latencies and peak latencies do depend on the underly-
ing event structure. Thus, by comparing onset latencies and
peak latencies at CTI-2000 to the reference values obtained
for CTI-100, we are able to gain information about the un-
derlying event structure.

Our schematic demonstration suggests an clear differen-
tiation between the three landmark time courses that were
considered. First, a purely cue-locked activation can be de-
scribed by both equal onset latencies and equal peak latencies
for both CTI conditions. Second, a purely target-locked acti-
vation is characterized by both a shift of onset latencies and
a shift of peak latencies of about 2 s for CTI-2000 referenced
to CTI-100. Third, a combined cue-locked plus target-locked
activation is characterized by a relative shift of onset latencies
of zero and a relative shift of peak latencies of about 1 s. In
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uge et al. (2003)we exemplified the validity of the gene
ssumptions by demonstrating the expected temporal
cteristics for visual cortex (cue-locked plus target-lock
nd motor cortex (target-locked).

.5.1.2. Limitations.First of all, the method relies on va
ble temporal offsets between two different event type

he present experiment 100 ms versus 2000 ms offset be
ue and target). Because the subjects’ response is syn
ized with the presentation of the target stimulus, these
vents can in principle not be separated. Hence, referri
‘target-locked’ activation always means ‘target/respo

ocked’ activation.
Furthermore, in the case of a combined cue-locked

arget-locked activation two questions can not be answ
ased on this decision scheme. First, it is not possible to q

ify the relative contribution of each sub-component. Sec
nd related to the first limitation, it is also not possible to
ign relative activation differences between switch and re
o either of both sub-components.2

997; Glover, 1999). SeeFig. 2(B), where the combined cue/target act
ion (dotted black) approximately corresponds to the sum of the two se
omponents.
2 These limitations could theoretically be overcome by counterbala

he transitions between cue and target (Burock, Buckner, Woldorff, Rosen,
ale, 1998). However, given the present experimental design, this is logi
ot possible for the cue always has to precede the target. Another
ould be to vary the cue-target interval more widely, e.g. between 1 an

Toni et al., 2001). However, this (a) reduces the number of trials that
e presented given a limited amount of measurement time and (b) po

ntroduces a strong working memory component and other uncont
ntervening cognition.
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In conclusion, given the experimental design we chose,
the method we propose here, appears to be the only way to
extract meaningful (though not complete) information about
the underlying event structure from the observed BOLD re-
sponse.

2.5.1.3. Jackknife resampling.In order to implement a quan-
titative analysis of onset latencies and peak latencies, we
applied jackknife statistics, a procedure that has been suc-
cessfully applied for similar problems arising in research
based on event-related electrocortical potentials (Miller,
Patterson, & Ulrich, 1998). The advantage of jack-knifing is
that the parameters of interest are identified in time courses
averaged across subjects (grand-averages). Thus, noise is re-
duced to an extent that allows to identify the relevant fea-
tures reliably without any loss of data (e.g. as compared to
smoothing single-subject data with broad filters). Estimation
errors are obtained via the jackknife re-sampling procedure
(Miller, 1974; Miller et al., 1998). Jackknife re-sampling pro-
vides an elegant tool to create a statistical distribution from
grand-averaged values. Each ofN subjects is excluded from
grand-averaging once. The resulting distribution ofN grand-
averages (each omitting a different subject) can then be used
to calculate estimates of standard-errors or other statistics.
For our purposes we applied the appropriate algorithms for
a
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As being exemplified inFig. 3, the onset of the trial-related
BOLD response under investigation is hidden within the de-
creasing flank of the BOLD response associated with the
previous trial. We considered the inflection point after the
peak of the previous trial as being an appropriate measure
of the onset of the BOLD response associated with the trial
of interest. We did not use the time course of the null-event
condition as a reference as it turned out that in particular
this signal contained a high level of noise (only 16 trials per
subject).

2.5.1.5. Concrete computations.To obtain the inflection
point, we computed the interpolated accurate time-point
when the second derivative crossed thex-axis within a time-
window of 0–4000 ms. This was done separately for each
jackknifed grand-average. The resulting values were then
used to calculate standard errors via an appropriate jackknife
algorithm.

Interpolation proceeded in two steps. First, we linearly
interpolated the original individual time courses (Lohmann
et al., 2001) resulting in one point every 125 ms (consider-
ing 500 ms oversampling due to variable jitter interval). The
jackknifed grand-averages were smoothed (discrete gaussian
approximation considering one adjacent time point) and
derivatives were then obtained by discrete approximation. In a
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ssessing means and mean-differences.

.5.1.4. Considering inter-trial overlap of the BOLD sign
n Fig. 2 the trial-related BOLD activation is shown in is
ation, not considering that this signal is embedded w
ctivation that persists from trialN − 1 and activation tha

s associated with trialN + 1. As the inter-trial interval wa
nly 6 s, a strong overlap of BOLD activation of succes

rials has to be considered (Fig. 3).

ig. 3. Same asFig. 2(B) but considering inter-trial overlap of the BOL
ignal. The black dashed curve represents the null-event time course s
passive decay of the activation associated with the previous trial. On

he time courses associated with the experimental conditions CTI-10
TI-2000 are determined via the inflection point of the curves.
econd step of interpolation, the accurate time point of z
rossing was determined in the jackknifed grand-aver
econd derivative. The zero-crossing was obtained by
uting the crossing point of the time axis with the straight
hich connected the values of two successive time-po
eak latencies were determined correspondingly by est

ng the interpolated zero-crossing of the 1st derivative w
time-window from 3 to 7 s.

.6. Analysis of percent-signal-change amplitudes in
rial-averaged time courses

In order to reveal the detailed structure of significan
ects obtained in the whole-brain analysis, we extracted p
alues in units of percent-signal-change (PSC) from t
veraged time courses. This was done for all those
hich showed a significant switch-related effect in the w
rain analysis. The PSC for single-subject trial-averages
eferenced to the average signal in absolute units ove
hole experimental block (Lohmann et al., 2001). Follow-

ng this averaging process the signal level for each cond
as normalized with reference to a baseline interval of [−0.5

o 0.5 s] to consider the relative deviation from cue ons
s. To obtain discrete PSC-values representing the str
f activation for each single experimental conditions (‘b

ine activation’) the difference between the condition-spe
eak-value and the corresponding value for the null-e
ondition was computed. This was done to compensate
ortions due to the inter-trial overlap of the BOLD sign
he peaks were identified in grand-average time course
stimation errors were obtained by jack-knifing.
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Table 1
Absolute values (RTs and errors) for the interaction task transition by preparation interval

Switch (RT) Repeat (RT) Costs (RT) Switch (errors) Repeat (errors) Costs (errors)

CTI-100 700.1 616.1 84.0 1.9 0.5 1.4
CTI-2000 572.7 553.8 18.9 1.0 0.2 0.8

3. Results

3.1. Behavioral data

As mentioned in the methods section the scanning session
consisted of two different experimental blocks of which only
the block with ‘bivalent responses’ is of interest in the present
paper. The sequence of blocks was balanced across subjects
implicating that the bivalent response block was either the
first one or the second one to be performed by the subjects.
In order to check for potential transfer effects we included the
between-subjects variable block sequence into the analysis.

We computed an ANOVA including the factors task transi-
tion (switch vs. repeat), preparation interval (CTI-100 versus
CTI-2000) and block sequence (first position versus second
position).

3.1.1. Reaction times
Block sequence produced one marginally significant inter-

action, namely task transition by block sequence (F(1, 16) =
3.4 withP(F) = .08), indicating slightly longer RTs for switch
compared to repeat if the relevant block was the second one.
All three effects related to task transition and preparation in-
terval were significant (P(F) < 0.001), including the main
effect task transition (F(1, 17) = 74.6), the main effect prepa-
r an-
s ts
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transfer effect. To obtain more conclusive imaging results we
restricted any analysis, which included the independent vari-
able task transition to those 11 subjects who performed the
block of interest first (i.e. both whole brain contrasts).

3.2. Whole-brain activation maps

We report two contrasts, which are relevant with respect to
the hypotheses, namely the main effect of task transition and
the interaction task transition by preparation interval. These
contrasts are suited to reveal any significant switch-related
activity present in both or in either of both CTI conditions.

A main effect of task transition was found in two regions
(Table 2): the left IFJ (‘inferior frontal junction’, i.e. the junc-
tion of precentral sulcus and inferior frontal sulcus) and the
left pSPL (posterior superior parietal lobule).

The interaction contrast of task transition by preparation
interval revealed a widely distributed co-activation of parietal
and frontal regions (Table 3andFig. 4). Importantly, this also
included left IFJ and left pSPL, hence further qualifying the
main effect of task transition observed for these two areas.
The description of percent-signal change peak-values (Fig. 5
right panels) reveals the detailed structure of this interaction
which is essentially the same for all brain areas. It appears
that stronger activations for switch compared to repeat are
e sent
f

nge
p ainst
n nd
f
m id-
d of
t )
r trac-
t riate
b

3
t

areas
w to
ation interval (F(1, 17) = 61.1), and the interaction task tr
ition by preparation interval (F(1, 17) = 17.0). Switch cos
ere greater for CTI-100 than for CTI-2000 (seeTable 1).

.1.2. Proportion of errors
The interaction task transition by block sequence was

ificant (F(1, 16) = 4.8;P(F) = 0.04), indicating more erro
or switch compared to repeat if the relevant block was
econd one. All three effects related to task transition
reparation interval were significant (P(F) < 0.05), including

he main effect task transition (F(1, 17) = 32.3), the main e
ect preparation interval (F(1, 17) = 13.3), and the interacti
ask transition by preparation interval (F(1, 17) = 4.8). Again
witch costs were greater for CTI-100 than for CTI-2000
able 1).

The general pattern of behavioral results replicates
ious observations (Meiran, 1996, 2000). The influence o
lock sequence on the effect of task transition indicat

able 2
rain areas significantly (P(z) < 0.001) activated in the main-effect cont

ndex∗ Brain region Abbrevia
3 Left inf. front. junction area Left IFJ

12 Left post. superior parietal lobe Left pS
∗ Index numbers refer toFig. 4.
k transition

Talairach z-val
−41 8 34 3.33
−16 −65 49 3.37

vident for CTI-100 but no significant differences are pre
or CTI-2000.

Furthermore, the description of percent-signal cha
eak-values indicates baseline effects (compared ag
ull-event activation) both for switch minus null-event a

or repeat minus null-event in both CTI conditions (Fig. 5
iddle panels). The only exception was the right mIFS (m
le inferior frontal sulcus). However, visual inspection

he trial averaged time courses (Fig. 5, left panel, index #1
evealed that this was an artifact of the null event sub
ion. In this region the null events were not an approp
aseline.

.3. Temporal analysis of pre-processed trial-averaged
ime courses

We furthermore aimed at assessing whether brain
ith significant stronger activation in switch compared
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Table 3
Brain areas significantly (P(z) < 0.001) activated in the interaction contrast task transition by preparation interval

Index Brain region Abbreviation Talairach z-value
1 Right middle inf. front. sulcus Right mIFS 40 24 26 3.34
2 Left middle front. gyrus Left MFG −34 26 38 3.42
3 Left inf. front. junction area Left IFJ −41 6 29 3.59
4 Left ant. insula Left aINS −34 15 2 5.38
5 Right ant. insula Right aINS 31 18 5 4.04
6 Ant. fronto-median cortex (BA32) aFMC 4 18 41 4.38
7 Pre-supplementary motor area Pre-SMA 1 12 50 3.57
8 Left ant. intraparietal sulcus Left aIPS −41 −39 38 3.61
9 Right ant. intraparietal sulcus Right aIPS 49 −45 38 3.51
10 Left post. intraparietal sulcus Left pIPS −32 −51 44 3.95
11 Right post. intraparietal sulcus Right pIPS 22 −57 47 3.60
12 Left post. superior parietal lobe Left pSPL −14 −63 50 3.25
13 Right post. superior parietal lobe Right pSPL 16 −63 50 3.71

Index numbers refer toFig. 4. See alsoTable 2.

repeat are generally involved in cue-related processing,
target-related processing, or both.

For this purpose, we compared the temporal characteris-
tics of pre-processed trial-averaged time courses for CTI-100
and CTI-2000 (seeSection 2). Time courses were averaged

F
a
c

across task switch trials and task repeat trials and all 18 sub-
jects were included.

Fig. 5 (left panels) shows the grand-averaged time
courses (i.e. trial-averages further averaged across subjects)
of all relevant brain areas including the exact difference-
ig. 4. Visualization of significant activations according to the interaction con
reas reported inTable 3. The cross-hairs indicate where the brain sections w
ompared to the left and vice versa).
trast task transition by preparation interval. The index numbers refer to the brain
ere cut in relation to each other (brain sections depicted on the right hand side
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Fig. 5. Summary of the detailed analyses for all those brain areas that s
arrangement of brain areas inTable 3andFig. 4. Left panels: the depicted
most upper-left panel (left IFJ, index number 3) highlights the relevant la
patterns were observed: (i) cue-locked plus target-locked activation, i.e
left/right pSPL. (ii) purely target-locked activation, i.e. shifted onset laten∼
An in-between pattern observed for pre-SMA. Middle panels: maximal p
to the null-event. Right panels: condensed version of the middle panel to
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howed a significant effect of task transition by preparation interval in the whole-brain analysis. The encircled index numbers refer to the
curves represent the grand-average time courses for CTI-100 (solid), CTI-2000 (dashed), and the null-event condition (dotted). The
ndmarks to be considered (onsets and peaks). Time point zero refers to the onset of cue presentation. Three different temporal activation
. same onset latencies for both CTI conditions paralleled by shifted peaklatency at CTI-2000, observed for left IFJ, left/right pIPS, and
cy (2 s) and shifted peak latency (∼2 s) at CTI-2000, observed for aFMC, left/right INS, left MFG, right mIFS, and left/right aIPS. (iii)
ercent-signal-change values extracted from trial-averaged time courses separately depicted for each single experimental condition relative
highlight the relevant structure of the interaction contrast task transition by preparation interval. The error bars indicate the standard-error
ch CTI condition.
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values of onset latencies and peak latencies (±standard-
error).

Brain areas that are activated time-locked to cue presenta-
tion are indicated by equal onset latencies for both CTI con-
ditions (left IFJ, left/right pIPS, and left/right pSPL). With-
out exception each of these cue-locked areas is additionally
activated target-locked, as being indicated by shifted peak
latencies for CTI-2000 relative to CTI-100.

Brain areas that are activated purely target-locked are in-
dicated by shifted onset latencies of about 2 s for CTI-2000
relative to CTI-100 (left MFG, right mIFS, aFMC, left/right
INS, left/right aIPS).

The pre-SMA shows an in-between pattern with a dif-
ference of onset latencies of 1 s. This result is interpreted as
BOLD activation that is elicited in anticipation of the upcom-
ing target/response but triggered by predictive information
delivered by the task cue.

Brain areas that showed a pattern of equal onset latencies
and shifted peak latencies were classified as being activated
cue-related and additionally target-related. However, there
are two alternative interpretations that might potentially ac-
count for this pattern. While this pattern unequivocally indi-
cates that neural activity at CTI-2000 does not cease after an
initial cue-triggered BOLD response (otherwise peak laten-
cies would be equal), it is ambiguous how exactly (neural)
p
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is about twice as large as for the other cue-related brain
areas.

In conclusion, we favor an interpretation that explains
the temporal activation pattern for left IFJ, left/right pIPS,
and left/right pSPL in terms of one initial, transient cue-
locked BOLD response which merges with a subsequent tran-
sient target-locked BOLD response. In contrast, the pre-SMA
might indeed be engaged in a more distributed kind of task
preparation which depends on internally determined time es-
timation, thus being distributed over an interval ranging from
1 to 2 s after cue onset (peak latency is shifted by 1.67 s as
compared to a shifted onset latency of 1.06 s).

4. Discussion

The aim of this study was to further elaborate how ad-
vance task preparation contributes to the flexibility of human
behavior observed in task switching situations. Two differ-
ent scenarios were sketched in the introduction which led to
diverging predictions how advance task preparation should
be reflected in BOLD activation. While both accounts agree
that advance task preparation essentially means to establish
the currently appropriate task set prior to the presentation of
the target stimulus, the conditions under which this happens
a de-
m
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rocessing might have continued.
First, sustained neural activity during the 2 s prepara

nterval would also delay the peak latency at CTI-2000. H
ver, we think this possibility is unlikely for the reason that
xperiment was explicitly designed to avoid working me
ry to be necessary for maintaining the memory trace o
ue. On the one hand, the cue was displayed througho
ntire 2 s interval, and on the other hand, the CTI was c
arably short. Thus, a transient cue encoding process s
e sufficient to provide subsequent processing steps wi
equired cue-associated information.

Second, a preparation process with an onset that rand
aries between the time of cue presentation and the tim
arget presentation would also be reflected by equal o
atencies and a shifted peak latency at CTI-2000. Again
hink the present design is against this interpretation. On
ortant argument for using cued task switching proced
in particular compared to endogenous control proced
ike the alternating runs paradigm) is that the prepara
nset is thought to be well controlled by presenting the

ernal task cue. Thus, task preparation in cued task sw
ng is supposedly not subject to ‘deliberate’ decisions a
hen to start it. A possible scenario that to some de
ssumes ‘deliberate’ temporal control, is that a prepar
rocess is timed such that an optimal, internally determ
reparation interval (e.g. 1 s instead of 2 s) is achieve

his case, the CTI-2000 BOLD onset latency should be
ayed as we observed for the pre-SMA. Moreover, the
bility of this onset should be increased (due to the m
ariable internally driven time estimation) as is the case
he pre-SMA where the standard error for onset laten
re fundamentally different implicating different control
ands.
According to the first scenario, establishing a changed

et in switch trials faces proactive interference from the
istently activated misleadingN− 1 task set. Thus, addition
ontrol effort has to be applied to overcome this inter
nce during the preparation interval (cf. ‘advance task
e-configuration’).

According to the second scenario, between-task inte
nce is to be expected only after target presentation bu
uring the preparation interval because it is the current t
timulus that retrieves the previous and potentially conflic
ask set. Thus, establishing a changed task set in advanc
ot require additional control effort. Virtually as a by-produ

his also reduces the need for additional control during
mplementation which would otherwise (at CTI-100) be
uired to overcome target-induced between-task conflic

Our fMRI results confirm those obtained by other stu
n explicitly cued task switching in showing enhanced a
ation for switch trials compared to repeat trials with sh
TIs (Brass & von Cramon, 2004; Dove et al., 2000) but not
ith long CTIs (Brass & von Cramon, 2002, 2004; Braver e
l., 2003; Dove, 2000; Luks et al., 2002).

We found several frontal (left IFJ) and parietal brain a
bilateral pIPS, bilateral pSPL) that showed this CTI-1
pecific switch-related activation while being engaged
ue-related and additionally target-related at CTI-2000.

We also found several frontal (left MFG, right mIFS,
ateral insula, aFMC) and parietal brain areas (bilateral a
hat showed the CTI-100-specific switch-related activa
hile being engaged purely target-related at CTI-2000.
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We did not find any brain area that was engaged purely
cue-related. No brain area was exclusively activated in switch
trials (see alsoDove et al., 2000; Dreher, Koechlin, Ali, &
Grafman, 2002; Sohn et al., 2000).

The absence of enhanced activation in switch trials for
the long CTI condition intuitively contradicts the notion that
additional control effort is being raised during the preparation
interval to overcome proactive interference from a persisting
N − 1 task set. This holds in particular for brain areas that
are associated with cue processing, i.e. brain areas that are
likely to be involved in advance task set re-configuration.

In contrast, our results confirm both the notion of task
preparation being common to both switch and repeat trials (cf.
Gilbert & Shallice, 2002; Goschke, 2000; Wylie et al., 2003)
and the hypothesis that proactive interference is mediated
by the target-induced re-activation of the competing task set
(Allport & Wylie, 2000; Gilbert & Shallice, 2002; Wylie &
Allport, 2000).

4.1. More detailed theoretical considerations

We are now describing in more detail a framework that
tries to satisfy the observed pattern of BOLD activation sug-
gesting a rather general role of those brain regions found to
be involved in preparatory task control. This functional gen-
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We suggest that the initial cue-locked activation reflects
the encoding of the cue-associated task information by the
posterior lateral prefrontal cortex (IFJ), which in turn is set-
ting up parietal brain areas (pIPS, pSPL) being concerned
with more basic task implementation issues. This fronto-
parietal division of labor is based on the very general as-
sumption of parietal cortices coding ‘pragmatic stimulus
properties’ (i.e. how to utilize visual information for action)
(Goodale & Milner, 1992) and fronto-lateral cortex coding
the appropriate ‘action context’ (Miller & Cohen, 2001) or ab-
stract ‘conditional rules’ (Monchi, Petrides, Petre, Worsley,
& Dagher, 2001; Petrides, 1987). The flow of information is
supposed to be directed from frontal cortex to parietal cortex
(Miller, Erickson, & Desimone, 1996; Tomita, Ohabayashi,
Nakahara, Hasegawa, & Miyashita, 1999).

In particular the concept of ‘conditional rules’ appears to
be suited to specify what ‘action context’ means in the context
of cued task switching where one out of two possible tasks
has to be selected given one out of two different external cues.
Interestingly, the specific prefrontal brain area we found to be
engaged is consistently reported in other explicitly cued task-
switching studies (Brass & von Cramon, 2002, 2004; Dove
et al., 2000) and studies investigating more general aspects
of implementing externally triggered abstract rules (Bunge,
Kahn, Wallis, Miller, & Wagner, 2003; Koechlin, Ody, &
K
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rality became evident in three brain areas (IFJ, pIPS, p
hat exhibited a clear directly cue-locked activation at C
000 suggesting an involvement in advance task prepar
oreover, these areas were not only engaged in prepa

ue-related processing but showed, (a) an additional ta
elated activation at CTI-2000 and (b) were also activate
TI-100 where advance task preparation was not rele

n addition, these areas exhibited at CTI-100 an enha
ctivation in switch trials suggesting an involvement in
ontrol of between-task interference. How does the sce
e sketched earlier relates to the general role these brain
eem to play?

The basic aspect was the assumption that two inte
ng sources of information are involved in the specifi
ion of the current task set. On the one hand, there i
ask cue that delivers definite information about the
ently relevant task relying on unequivocal cue-task ass
ions. On the other hand, there is the current target stim
hat retrieves the task set under which the stimulus it
r any other stimulus sharing features of the previous
imension3 (cf. Waszak et al., in press) has been process
ecently.

3 The notion that target-task associations are generalizing to task-s
arget-dimensions is important to explain trial-by-trial effects. Accordin
ny target stimulus (not only a repeating identical stimulus) in trialN is able to
etrieve theN− 1 task set. In the present experiment one target-dimens
he horizontal alignment of the target and the other dimension is the ve
lignment of the target. For instance, if the current target appears in
pper position and the previous task was to make a ‘left-right’ judgmen
urrent target ‘reminds’ the subject of doing the left-right task again ev
he previous target was presented in the right-lower position.
s

ouneiher, 2003)
The processes this fronto-parietal network is runn

hrough are supposed to be the same for repeat and s
rials: Activating the prefrontal context representation (c
elated activation) and utilizing this information for the c
rol of basic task-related processes (additional target-re
ctivation). When a strong influence of the target-assoc
ompeting task set at CTI-100 challenges appropriate
mplementation, the same brain areas are in higher de
o enforce the cue-associated task set.

Why is it the cue-associated task set that is determ
o win the competition against the inappropriate tar
ssociated task set in switch trials? Regarding the rathe
pecific processing architecture proposed above, this do
eem self-evident.

One reason is that the task set under which
et(dimensions) are being processed changes durin
equence of trials. Thus, the association between
et(dimensions) and task sets is supposed to be w

han the unchanged cue-task associations. In fact, o
mall bias in favor of either of both associations betw
arget(dimensions) and task sets (the most recently
orced) is to be expected. However, as the results for CTI
emonstrate, the misleading target-induced task set ca

mpair performance in switch trials resulting in prolong
esponse times and elevated BOLD activation for sw
rials.

At this point, the role of advance preparation comes
lay. Again, a special module or mode of advance prep

ion does not suit the proposed unspecific processing a
ecture. Therefore, just temporal priority is introduced a
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additional aspect (cf.Gilbert & Shallice, 2002). When the
task cue is presented sufficiently early before the target stim-
ulus, the cue-associated task set has time to settle into a stable
state as specified by the task cue. Consequently, the target
stimulus loses its potential to re-activate the previous task
set although the strength of the target-task association has
not been directly affected (e.g. in terms of re-configuring
the target-task association). Thus, behavioral switch cost de-
creases and a change of the task does no longer pose an ad-
ditional challenge for the fronto-parietal network indicating
that the cue-associated task set does not need to be particu-
larly enforced anymore (see alsoKoch & Allport, submitted
for publication).

While this fronto-parietal preparation-related network
is mediating the reduction of target-induced interference,
interference-related processing demands posed on other
purely target-locked task-implementation-related brain areas
(MFG, mIFS, aFMC, and aIPS) are also relaxed as being re-
flected by the reduction of switch-related BOLD activation
at CTI-2000 compared to CTI-100.

The involvement of the pre-SMA, however, is not fully
clear. The temporal activation pattern of the pre-SMA is
characterized by a one-second shift of the onset-latency at
CTI-2000, indicating that activation starts in the middle of
the preparation interval. This pattern suggests a temporal de-
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5. Conclusion

We presented an interpretation of the typical pattern of re-
sults obtained in fMRI studies of explicitly cued task switch-
ing which had been partly unexplained so far and which has
often been thought to be incompatible with the typical pattern
of behavioral results. The theoretical perspective we adopted
is compatible with recent behavioral findings which (1) in-
dicate that advance task preparation does not necessarily in-
corporate the re-configuration of a persistently activated pre-
vious task set and (2) indicate that control is needed to coun-
teract target-induced between-task interference.

Our interpretation is applicable to one important aspect
namely how control comes into play when the sequence of
tasks is unpredictable and the task cue provides explicit task
information. Under more ‘endogenous’ circumstances (i.e.,
the task sequence is memory-based) advance task preparation
may encounter different demands. Furthermore, this interpre-
tation makes the strong claim that a previously adopted task
set decays rapidly implicating that there is no need for task set
re-configuration in the current trial. It is likely that there are
conditions with a different relationship between decay rate
and control demands during the establishment of a changed
task set.
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