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Abstract Control by action representation and input

selection (CARIS) is a modeling framework for task-

switching experiments, which considers action-related

effects as critical constraints. It assumes that control

operates by choosing control parameter values, represent-

ing input selection and action representation. Competing

CARIS models differ in whether (a) control parameters are

determined by current instructions or represent a persev-

eration, (b) current instructions apply to the input selection

and/or to action representation. According to the chosen

model (a) task execution results in a default bias in favor of

the executed task thus creating perseverative tendencies;

(b) control counteracts these tendencies by applying a

transient momentary bias whose locus (input selection or

action representation) changes as a function of task prep-

aration time; (c) this happens because the task-cue (e.g.,

SHAPE) initially attracts attention to the immediately

available cue-information (e.g., target shape) and then

attracts it to inferred or retrieved information (e.g., ‘‘circle’’

is related to the right key press).

Introduction

Long-term adjustment to novel situations is often achieved

through learning. However, in the short term, when the

behavioral goal is changed, one may be required to act

in a manner discordant with the learned skill or habit

(Desimone & Duncan, 1995; Miller & Cohen, 2001;

Norman & Shallice, 1986). The fact that humans are

equipped with the ability to flexibly respond to such

changing environmental constraints without being enslaved

to their learning history is one key feature in their suc-

cessful adaptation. Failures in such flexible thought and

action have long been associated with psychopathology

(e.g., Fey, 1951), underdeveloped cognition (e.g., Zelazo &

Frye, 1997), and maladaptive behaviors following brain

damage (e.g., Milner, 1964). These are among the reasons

why the study of the mechanisms underlying the flexibility

of human cognitive control has attracted so many

researchers over the past two decades.

The present study attempts to generate an elaborate

quantitative model for a widely studied experimental par-

adigm that examines human flexibility: task switching.

While the elaborate account refers to task switching, it

potentially relates to how attention is used for action con-

trol in changing task contexts in general. We call this

modeling framework Control by Action Representation and

Input Selection, or CARIS, for short. While CARIS builds

on earlier works from our lab (Meiran, 2000a, but see also

Meiran, 2000b; Meiran & Marciano, 2002) it provides a

drastically different account of the phenomena under study

as explained in the General discussion.

In the first section of the article, we present the theo-

retical framework. In the second section, we present our

mathematical theory, which we then develop into several

alternative models. This mathematical theory is, to the best

of our knowledge, the first theory that provides a unified

explanation for switching, preparation, and action-related

effects on mean reaction time (RT), RT distributions and

error rates. In the third part, we use CARIS to model results
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from an experiment comparing switching between object-

based tasks (SHAPE and SIZE) and between spatial loca-

tion tasks (UP-DOWN and RIGHT-LEFT; Yehene &

Meiran, 2007). The results of a study which validated the

modeling conclusion follow. The implications for other

theories as well as the potential extensions and limitations

of CARIS are discussed in the General discussion.

Broad theoretical issues

In the present work, we used CARIS to model results from

the cuing version of the task-switching paradigm (see

Meiran, 2008a; Monsell, 2003, for recent reviews). The

specific cuing paradigms that we used here are depicted in

Fig. 1.

To explain CARIS conception, we adopt a distinction

originally proposed by Narzis Ach in 1910 (Ach, 1910/

2006). He wrote ‘‘The success and thus the efficiency of the

will depend, on the one hand, on the determination, on the

other hand, on the obstacles opposing the determination.’’

(Ach, 1910/2006, p. 5). Note that inner obstacles are rel-

ative. For example, Ach studied habit as an inner obstacle

despite the obvious fact that habit and habit formation

are usually beneficial and become obstacles only in the

relatively rare situations in which one needs to act against

them. In task switching, perseverative tendencies create

inner obstacles. Using Ach’s terms, will power is needed to

ensure that the currently instructed task gets executed even

when there is a strong tendency not to execute it.

According to this framework, the observed behavior

reflects a struggle between opposing forces, making the

estimation of the separate contributions of these forces a

formidable challenge. Accordingly, some theories empha-

size the role of the ‘‘will’’ in proposing a time-consuming

process of task implementation (e.g., Meiran, 1996; Rogers

& Monsell, 1995; Rubinstein, Meyer, & Evans, 2001).

Other theories emphasize the ‘‘inner obstacle’’, by

emphasizing the inertia of task sets (Allport, Styles, &

Hsieh, 1994) or the unintended retrieval of the previously

relevant task rule (Allport & Wylie, 2000; Waszak, Hom-

mel, & Allport, 2003). Intermediate positions were offered

by Koch and Allport (2006), Meiran, Chorev and Sapir

(2000), Meiran and Daichman (2005), and Yeung and

Monsell (2003a) among others.

The chosen CARIS model suggested that both the

‘‘will’’ and the ‘‘inner obstacle’’ operate simultaneously

and that at a given moment, each of them influences a

Non Switch Trial Switch Trial

Time 

Response key setup 

or

a

Response key setup 

Square/Large Circle/Small Square/Small Circle/Large  or

Non – Switch Trial Switch Trial

Time

b

Fig. 1 Schematic representation of the two task switching paradigms. Each response key was associated with two categories. For the Spatial

Paradigm, the Categories (UP, DOWN, RIGHT and LEFT) are indicated by arrows
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separate component of the response selection apparatus.

An especially dramatic example for a case in which the

‘‘will’’ operates on one behavioral component and the

inner obstacle operates on another component was

described by Diamond (1985) who studied Piaget’s

(1954) A-not-B task. In this task, infants were required to

reach to the location where an object was previously

hidden. Diamond reported that infants occasionally look

towards the correct location at the very same moment

that they are reaching perseveratively to the incorrect

location, which was correct beforehand. In these cases,

the looking apparatus is presumably controlled by the

‘‘will’’, whereas the reaching apparatus is controlled by

the inner obstacle. Note than one implication is that the

term ‘‘task’’ does not reflect a unitary representation (or a

unitary ‘‘task set’’). Instead, we view tasks as ad hoc

configurations of control parameters (see also Logan &

Gordon, 2001).

The second broad issue concerns the distinction between

reactive and proactive control (e.g., De Pisapia & Braver,

2006). Specifically, De Jong (2000), Monsell and his col-

leagues (e.g., Monsell & Mizon, 2006; Rogers & Monsell,

1995), Rubinstein, et al. (2001), Sohn and Anderson

(2001), our group (Meiran, 1996, 2000a; Meiran, Chorev,

& Sapir, 2000) and others have emphasized proactive

control; the notion that the relevant task rule must be

implemented before the task is being executed. When the

target stimulus is presented too early, the implementation

of the relevant rule continues (because the task cannot yet

be executed) and this adds to RT. According to these

theories, this added RT is reflected in task-switching

effects. In contrast, others, especially Allport et al. (1994),

Allport and Wylie (2000), Waszak et al. (2003), and Yeung

and Monsell (2003a) emphasized a more reactive form of

control in which the information concerning the currently

relevant task serves to bias processing online (and not in

advance). According to the reactive view, the increase in

RT in switch trials does not reflect task implementation

time but reflects the increased time taken for the system to

settle on a unique solution. We interpret the CARIS model

that we eventually endorsed in the present work as sup-

porting the reactive control position. Note that here we

adopt a different view than in our previous works (espe-

cially Meiran, 1996, 2000a, 2000b; Meiran, Chorev, &

Sapir, 2000).

Relevant background on task switching

Research using the task-switching paradigm has generated

a number of replicable phenomena, which CARIS explains.

Because our model provides an account of these phenom-

ena, we will simply describe them at this point. Their

theoretical account will be provided in the General

discussion.

Switch cost and mixing cost

Following Fagot (1994), we discriminate between three

types of trials. Single-task trials are taken from experi-

mental blocks without task switching. Switch trials are

those in which the task has changed relative to Trial n - 1.

Repeat trials are taken from task switching blocks but

involve a repetition of the task from Trial n - 1. We term

the difference in performance between switch trials and

single-task trials, task-alternation cost. The task alternation

cost is separated into two effects which are additive by

definition: the task switch cost (switch trials minus repeat

trials) and the task mixing cost (repeat trials minus single

task trials). As the terms suggest, switch cost is an effect

associated with having just switched to a new task. In

contrast, mixing cost may reflect more of an ongoing state

(see especially Braver, Reynolds, & Donaldson, 2003; Los,

1996). However, it may also reflect transient control pro-

cesses that are common to switch and repeat trials but are

absent, or present to a lesser degree, in the single-task

baseline (e.g., Altmann, 2007; Rubin & Meiran, 2005, see

also Woodward, Meier, Tipper, & Graf, 2003).

Action-related effects in task switching

There is a growing body of evidence for the pervasive

involvement of action-related effects in task switching.

Accordingly, a relatively unique aspect of CARIS is the

focus on action-related experimental manipulations, which

we define as those related to the physical response (see also

Gilbert & Shallice, 2002; Meiran, 2000a; Kleinsorge &

Heuer, 1999). Our model explicitly accounts for two such

effects but can explain the other effects too (see General

discussion).

The task-rule congruency effect

Figure 2 describes the mapping of stimuli to responses in an

experiment involving SHAPE and SIZE judgments. For

some participants, the right key indicated both LARGE and

CIRCLE, depending on which task was executed, and the left

key indicated both SMALL and SQUARE. The solid arrows

in Fig. 2 indicate the mapping for the SHAPE task, and the

dashed arrows indicate the mapping for the SIZE task. Note

that the mapping is identical for two of the objects, namely

large-circle and small-square. When these objects serve as

target stimuli, the trials are considered congruent. In the case

of the other two objects, the trials are considered incongru-

ent, because in these cases the correct response depends on
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the task. Typically, congruent trials produce faster and more

accurate responses than incongruent trials, and the difference

between the respective RTs is the congruency effect. The

effect was first reported by Sudevan and Taylor (1987) and a

recent review of the relevant literature is provided by Meiran

and Kessler (2008).

Reversal of the response repetition effect in switch

trials

When participants perform a choice RT task, they respond

more quickly when they repeat their response from the

preceding trial (Campbell & Proctor, 1993; Pashler &

Baylis, 1991). Interestingly, the response repetition effect is

reversed in switch trials (see Fagot, 1994; Kleinsorge &

Heuer, 1999; Meiran, 1996; Rogers & Monsell, 1995, for

early examples; see Hübner & Druey, 2006; Mayr & Bryck,

2005; Schuch & Koch, 2004, for recent works). Repetition

effects are not always found when the response categories

are arbitrary (Campbell & Proctor, for choice RT; Ruthruff,

Remington, & Johnston, 2001, for task switching, but see

Kleinsorge, 1999). This result suggests that the repetition

effects are (usually) mediated by meaningful response

codes such as LARGE, CIRCLE, and so forth (see further

Schuch & Koch, 2004).

Costs related to changing response meaning

Task switching often involves a change in response

meaning (e.g., see the paradigm described in Fig. 1), and

this change, in itself, contributes to switch costs. Meiran

and Marciano (2002) found that a mere change in response

meaning, without a change in the relevant stimulus

dimension, caused a marked switch cost. Brass et al.,

(2003), Mayr (2001), and Meiran (2000b, 2005) compared

two response setups. In the bivalent response setup, the

responses of the two 2-choice RT tasks were mapped to the

same set of two keys. Take the SHAPE-SIZE paradigm

(Fig. 1) for example. In this paradigm, one key is used for

both SQUARE and LARGE. Consequently, a switch from

the SHAPE task to the SIZE task, for example, involves a

change in key meaning (from SQUARE to LARGE). In the

univalent response setup, each meaning was assigned to a

separate key-press. Because a key press indicated the same

meaning throughout the entire experiment, a task shift did

not entail a key-meaning change. The results indicated

considerably larger switch costs with bivalent response

setups (where task switching entails a key-meaning

change) than with univalent response setups.

Reduction or elimination of switch costs in trials

following no-go responses

Schuch and Koch (2003, see also Hoffmann, Kiesel, &

Sebald, 2003; Koch & Philipp, 2005; Philipp, Jolicœur,

Falkenstein, & Koch, 2007; Verbruggen, Liefooghe,

Szmalec, & Vandierendonck, 2005; and Verbruggen,

Liefooghe, & Vandierendonck, 2006) found that switch

costs are eliminated following trials in which participants

were instructed to withhold from responding.

Finally, Steinhauser and Hübner (2006) found switch

benefits when the previous trial involved an error. Errors in

incongruent trials usually reflect the execution of the wrong

task (Meiran & Daichman, 2005). Accordingly, the results

of Steinhauser and Hübner show that switch cost results, in

part, from the binding of task-related categories with

physical response codes. Namely, when there was an error

in Trial n - 1, what is nominally a task-switch is actually a

task repetition and what is nominally a task repetition is

actually a task switch.

CARIS

CARIS is a modeling platform that enables the formulation

of a variety of competing models, all of which share the

core assumptions.

Core assumptions

Levels of representation

CARIS deals with two distinct levels of representation. The

first level is pre-selective and it contains information rel-

evant to all the switched-between tasks without prioritizing

any of the tasks. The second level of representation is that

which enters response selection. The information in that

level is a transformed version of the pre-selective infor-

mation, where greater weight is given to information that is

relevant to one task as compared to other tasks. In CARIS,

the pre-selective representation of the target stimuli is one

LARGE / 
CIRCLE

Objects

Mappings

Response keys SMALL / 
SQUARE 

Fig. 2 Task rule congruency demonstrated for the object paradigm.

For congruent trials, the stimulus-response mapping was the same for

the two tasks, whereas for incongruent trials the mapping depended

on the task
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that had already gone through earlier forms of selection

such as those studied in the context of orientation (e.g., see

Lavie, 1995; Pashler, 1991; Shalev & Algom 2000, for

evidence regarding multiple levels of selection). For

example, the pre-selective target information in the

SHAPE-SIZE paradigm described in Fig. 1 involves the

shape and the size with equal emphasis. The post-selective

information is one in which an emphasis is given to one

dimension (shape or size) at the expense of the other (size

or shape).

Shared representational medium for perceived stimuli

and actions

A relatively unique aspect of CARIS is the explicit

assumption of a direct interaction between perception-

related (stimulus) and action-related (response) codes.

Hommel, Müssler, Aschersleben, and Prinz (2001) have

reviewed a large body of research that supports this

assumption. This interaction is so direct that CARIS

assumes that at least some action codes are identical with

some stimulus (input) codes so that the ‘‘similarity’’

between input and action can be determined. In other words,

CARIS deals with very abstract codes.

The formation of the abstract input and action codes can

be described in terms of two transformations. We explain

them in reference to an example. Suppose that the target

stimulus is a LARGE SQUARE, the right key indicates

LARGE and CIRCLE, the left key indicates SMALL and

SQUARE, and the task is SIZE. (For reasons of clarity, we

present the two translation operations in all-or-none terms.

A more precise description will follow.) The first trans-

formation can be represented schematically as

Target ¼ LARGE SQUARE½ �
! Target Representation ¼ LARGE½ �:

This operation involves input selection. The other

transformation may be represented schematically as

Key ¼ LARGE CIRCLE½ �
! Key Representation ¼ LARGE½ �

where ‘‘Key’’ stands for a motor act such as pressing the

right key. Based on earlier works reviewed by Hommel

et al. (2001), we assume that manual motor acts (especially

those involved in choosing between two response keys) are

likely to be represented spatially. This operation involves

action representation. Input selection and action repre-

sentation stand for selective-attention sets, called the Input-

Set (or I-Set) and Action-Set (or A-Set), respectively. In

Meiran’s (2000a) model, which is CARIS predecessor,

they were termed Stimulus-Set (S-Set) and Response-Set

(R-Set), respectively. We prefer the new labels because

they have broader and more generic implications. For

example, the term ‘‘action’’ is not restricted to responses

and may relate to spontaneously chosen movements. This

implies that CARIS predicts that changes in A-Set will also

influence spontaneously chosen actions.

Graded selection is possible

In CARIS, the operation of the I-Set and A-Set is expressed

in terms of the proportion of task-relevant information,

which is selected to enter the post-selection phase. CARIS

allows input selection and action representation to be gra-

ded in nature, like in Treisman’s (1969, cf., Ward, 1982)

classic model. For example, graded selection of the rele-

vant information (say, size) for a LARGE SQUARE target

may be represented schematically as vividly representing

the LARGE information with a faint representation of the

information SQUARE (i.e., Representation = LARGE-

SQUARE). Note that CARIS allows selection to vary along a

continuum ranging from no selection to full (all-or-none)

selection. As such, it represents all-or-none selection as a

special case.

Response selection by similarity

A related assumption is that response selection is based on

a computation of the similarity between the (filtered) rep-

resentation of the target stimulus and the (filtered)

representations of the alternative responses, so that the

response that is ‘‘most similar’’ to the target stimulus is

chosen. Similarity is computed in CARIS in a manner

strictly analogous to that of Hintzman’s (1986) MINERVA

model.

A schematic description of CARIS architecture

Figure 3 presents a schematic description of the CARIS

architecture. CARIS is described by a series of equations

that link CARIS core parameters to the predicted RT. The

core parameters refer to input selection (wI), action repre-

sentation (wA), and the binding of response-codes with

response meanings, wCR, (CR standing for category-

response binding). This last parameter affects the response

representation of the repeated response (see subsequently).

These core parameters are given in units of bias, ranging

from 0 (all the weight given to Task A-related information)

to 1 (all the weight given to Task B-related information)

through 0.5, which indicates that no selection has been

performed and that the two pieces of information (e.g., the

figure’s shape and size) receive equal weights.

Because CARIS explains switch cost and mixing cost, as

described later, it includes two additional parameters,

representing the unexplained switch cost and mixing cost,
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DSWITCH and DMIX, given in ms units. In some respects,

these parameters are similar to disturbance terms in

Structural Equations Models (Loehlin, 1987), which rep-

resent the reliable but unexplained variance. Unlike the

usual treatment of disturbance terms, DSWITCH and DMIX

are given a processing interpretation. CARIS assumes that

the processing of the task cue results in choosing an

abstract task representation (the task vector, see later).

Accordingly, DMIX is interpreted as task decision time.

Given the task uncertainty in the cuing paradigm, this task

decision process is assumed to take place in switch and

repeat trials (cf. Altmann 2007; Gade & Koch, 2007a;

Koch, 2005; Meiran, 2008b; Rubin & Meiran, 2005).

DSWITCH is interpreted as the reduction in cue processing

time due to cue repetition (Logan & Bundesen, 2003; Mayr

& Kliegl, 2003). Importantly, the addition of these duration

parameters was not responsible for the high model fit we

observed. Omitting these parameters from the chosen

model resulted in a tiny (but significant) drop in model fit

that retained an acceptable level by current standards.

The CARIS core

Representation of stimuli and responses

In CARIS, stimuli and responses are presented in the same

manner, as ordered vectors. In the two-tasks, two-responses

per task scenario being modeled here, the vectors have four

elements, with the first two entries representing the values in

one dimension (e.g., CIRCLE and SQUARE, in the shape

dimensions) and the next two positions representing the values

in the second dimension (e.g., SMALL and LARGE, the

values of the size dimension). Each of the entries is assigned

one of two values ‘‘1’’ for ‘‘present’’ and ‘‘0’’ for absent.

Accordingly, letting the ordering be (large small circle

square) a large circle stimulus is represented as:

SLARGE�CIRCLE ¼ 1 0 1 0ð Þ

and a response indicating both LARGE and CIRCLE is

represented identically, as:

RAðLARGE�CIRCLEÞ ¼ 1 0 1 0ð Þ

In the example presented here, there are two response

keys RA ¼ 1 0 1 0ð Þ and RB ¼ 0 1 0 1ð Þ
where RB is used to indicate SMALL and SQUARE.

How control is achieved

Task control in CARIS is represented in two distinct

processes: An all-or-none task decision process and a

graded rule-implementation process. Task decision is

based on cue processing and its product is an abstract task

representation. This representation is then translated into a

more concrete representation, which enables the filtering

of irrelevant information. Finally, the filtered information

serves for response selection. (We cannot rule out the

possibility that such a straightforward translation from a

cue to an abstract task representation may be restricted to

conditions in which the task cues are clearly visible,

remain on the screen and indicate the task with perfect

validity.)

Task decision

Cue encoding results in determining the abstract required

task identity (e.g., Arrington, Logan & Schneider, 2007). In

CARIS, this task decision process results in endorsing one

task and not the other task. It is therefore an all-or-none

decision between two mutually exclusive alternatives. Task

identities are represented by task vectors. The vector rep-

resenting the SIZE task is TSIZE ¼
1

0

� �
and the vector

representing the SHAPE task is TSHAPE ¼
0

1

� �
:

Rule implementation

Once the task has been chosen, there is a process that

translates this abstract task identity into a more concrete

biasing vector (e.g., WSIZE and WSHAPE are the biasing

vectors in the SHAPE-SIZE paradigm). This is repre-

sented by a process of matrix multiplication in which a

general purpose biasing matrix is multiplied by the task

vector, resulting in a biasing vector which suits the task at

hand. The general-purpose biasing matrix W is filled with

w-values (0 B w B 1) representing the graded bias in

favor of the preferred dimension. This general purpose

matrix is:

CARIS
equations

CARIS core parameters: 
wI, wA, wCR,
+ parameters linking 
simulated RT to actual RT: 
RS-Rate and RT-Intercept Switch RT (ms)

Non-switch RT (ms)

Unexplained
switching cost - 
DSWITCH (in ms) 

Single-Task RT (ms)
Unexplained
mixing cost - 
DMIX (in ms) 

Fig. 3 A schematic representation of CARIS
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W ¼

w 1� w
w 1� w

1� w w
1� w w

0
BB@

1
CCA

Regarding the specifics, although we present w as a single

parameter for brevity, it stands for two separate parameters,

wI, representing input selection and wA, representing action

representation. Accordingly, there are two general purpose

matrices, WI and WA, containing the parameters wI and wA,

respectively.

When multiplied by the SIZE vector, the resultant vector

is:

W � TSIZE ¼ WSIZE ¼

w
w

1� w
1� w

0
BB@

1
CCA

and when multiplied by the SHAPE vector it is:

W � TSHAPE ¼ WSHAPE ¼

1� w
1� w

w
w

0
BB@

1
CCA

One may think of the selection vectors, WSIZE and

WSHAPE as filters determining which information will

enter into response selection. These filters may be set by

the current goal (will), as determined by the processing of

the task cue, or by the immediate past experience (inner

obstacle).

The information eventually passing through the filter is

computed by multiplying the input information, S, and/or

the response representation information, RA and RB, by the

selection vector, WSIZE or WSHAPE. Accordingly, there is a

reference in CARIS to filtered representations, S–FILTERED,

RA-FILTERED, and, RB-FILTERED, for the input and two

responses, respectively. Because the computation is the

same for the target stimulus and the two responses, we

present just one example, describing how selection applies

to the target stimulus. The example describes the formation

of the filtered representation of a large-circle stimulus (or

the representation of a response denoting LARGE and

CIRCLE) in a context in which the SIZE task dictates the

selection. The first step is generating the filtered repre-

sentation of the stimulus by multiplying corresponding

elements of the stimulus vector and the selection vector, an

operation denoted by the symbol ‘‘.*’’. Namely,

SLARGE�CIRCLE=FILTERED�SIZE ¼ SLARGE�CIRCLE: �WI�SIZE
0

¼ 1 0 1 0ð Þ: � wI wI 1� wI 1� wIð Þ

¼ wI 0 1� wI 0ð Þ

More generally: SFILTERED = S.*WI
0 and RFILTERED =

R.*WA
0

To give a concrete numerical example, assume that

instruction-based control operates via the filtering of irrele-

vant stimulus information, and that filtering efficiency is 0.90

(meaning that 90% of the relevant information passes the filter

while only 10% of the irrelevant information passes it). In this

case, the representation of a large-circle would be a strong

representation of the attribute large with a weak representa-

tion of the attribute circle, that is :9 0 :1 0ð Þ: Note that

the same example refers also to a case in which a given

response key indicates both LARGE and CIRCLE, because

the representation of that key (1 0 1 0) is the same represen-

tation used for the large-circle target just described.

Response selection in CARIS is based on two compu-

tational steps: (1) computing response potency as the

similarity of the filtered stimulus representation with that of

the filtered response representation, and (2) choosing the

more potent response.

Response potency

Potency, which is a scalar (number) is separately computed

for each response, as P ¼ SFILTERED�RFILTERED
0: We will

give an example. Assume that Response A is used to

denote LARGE and CIRCLE, depending on the task, the

target stimulus is a small-circle, the relevant task is SIZE

and both the input and the action are controlled by the

currently instructed task (SIZE). In this case, the response

potency would be:

PResponse�A ¼ 0 wI 1� wI 0ð Þ:

wA

0

1� wA

0

0
BB@

1
CCA

¼ 1� wIð Þ: 1� wAð Þ

Response selection

The response corresponding to larger potency value is the

one which gets eventually selected. For example, if

PResponse-A [ PResponse-B then Response A gets to be

selected. Although there is likely to be a potency difference

threshold, this is not currently implemented in CARIS.

Modeling RT

The RT is modeled in two conceptually separate compu-

tational steps. The first step involves computing response

strength, or Str. The second step involves relating Str to the

actual RT using a linear regression model. Response

strength is defined as:
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Str ¼ 1= PResponse�A � PResponse�B

�� ��
Using an inverse (1 divided by Str) transforms potency

(in which potent = fast) to latency (in which a small num-

ber = fast). The denominator represents the response

competition. If the competing responses are nearly equipotent,

the denominator becomes small and Str becomes large.

The modeled RT, as predicted by the CARIS core is

defined as:

RT0 ¼ RT-Intercept þ Str � RS-RateþMix � DMIX

þ Sw � DSWITCH ðMix ¼ 0; 1; Sw ¼ 0; 1Þ

where Mix refers to whether the trial is taken from the

mixed tasks blocks (Mix=1) or from the single-task

block(s) (Mix=0), and Sw refers to whether it is a switch

trial (Sw=1) or not (Sw=0).

RT-Intercept and RS-Rate are estimated as a part of the

model fitting process. The slope (RS-Rate, standing for

‘‘response selection rate’’) estimates the rate of the pro-

cesses being modeled in CARIS, which are, broadly

defined, response selection (especially related to response

potency and response competition) and related control

processes. The RT-Intercept is uninformative because it

gives the RT in the case of Str = 0, a case which never

exists. The smallest possible value of Str corresponds to a

case in which there is perfect selection, a perfect similarity

between one response and the target stimulus, and no

competing response. This scenario exists when the

(filtered) response vector and the stimulus vector are

identical and indicate perfect selection as in the case in

which both are (1 0 0 0). In such a case, Str = 1.

Accordingly, RT in a case in which response selection

takes a minimal time equals RS-Rate + RT-Intercept, a

value we call ‘‘corrected intercept’’. The corrected inter-

cept represents the time taken by processes not modeled in

CARIS such as the stimulus’ relatively shallow encoding

and shallow response preparation.

CARIS formulation of the three generic models

The CARIS realizes various task control modes that are

expressed by the generic models described shortly. These

strategies differ from one another with respect to whether

selection is instruction-based (and, by extension, inten-

tional and controlled) or based on the immediate past

experience (perseverative) and thus pose inner obstacles.

When selection is instruction-based, the task vector, T, is

based on the instructed task in Trial n (henceforth Tn). In

contrast, when selection is perseverative, T comes from

Trial n - 1 (henceforth Tn - 1).

According to Model 1, correct response selection is

ensured by filtering out irrelevant input information. In

other words, this model assumes that input selection is

controlled and action representation is perseverative.

Figure 4 demonstrates how the correct response is selected

in spite of the fact that action representation is not filtered

at all. In describing Fig. 4, we will use a concrete inter-

pretation, following the example we have used until now.

This concrete interpretation refers to switching between

SIZE and SHAPE judgments. Accordingly, the vectors

represent the ordered attributes (large, small, circle,

square). The target stimulus in the trial is a large-circle; the

left response indicates either LARGE or SQUARE and the

right response indicates either SMALL or CIRCLE (note

that the trial being described is an incongruent one). The

instructed task is SIZE. Accordingly, the filtered input has

a strong (dark) representation of LARGE and a faint (light)

representation of CIRCLE. Because the model assumes

that control is based on input selection, the other aspect,

action representation is not controlled and hence it is per-

severative. Moreover, because action representation is

perseverative (biased according to Task n - 1) and

because (when there are random switches) these adjust-

ments in the bias cancel each other out over trials (in the

mixed tasks conditions), the filtered action representation

gives a roughly equal weight to the two meanings associ-

ated with each response (gray, namely wA roughly equals

Fig. 4 A schematic representation of control according to Model 1.

The Grayness Scale represents numbers ranging from zero (white) to

unity (black). Each line of squares represents an ordered vector of

attributes such as (large, small, circle, square). In the figure, the task

in Trial n is SIZE, the target stimulus is a large circle. The correct

(Left) response is selected because it shares an attribute that is

emphasized in the target stimulus (large). However, the right response

is also activated because it shares with the target a de-emphasized

attribute (circle)
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0.50). The correct (left) response gains much potency

(heavy line connecting the stimulus and the response)

because LARGE is emphasized in the (filtered) input rep-

resentation. The incorrect (right) response also gains some

potency (thin line connecting the stimulus and the

response), because some CIRCLE information passes the

Input-Set filter and activates the corresponding response

information. As a result, there is either response slowing

(as in the figure, where the irrelevant information activates

a competing response) or facilitation (when it activates the

correct response). Figure 4 depicts a case in which the

action representation is completely unbiased. Our estimates

below suggest that (with little advance preparation) the

action representation is slightly biased in favor of the task

in Trial n - 1. In the case of a task repetition, this bias

causes response facilitation. In the case of a task switch, it

results in response slowing because the adjustment, based

on Task n - 1, is done at the expense of Task n. Fitting

CARIS Model 1 allows the estimation of the degree

of input selection and the degree of bias in favor of Task

n - 1 in action representations. For example, if the

parameter wI is estimated to be 0.95, this implies that 95%

of the relevant input enters response selection (for example,

95% of the size information if SIZE is the required task)

but at the same time 5% (1-0.95) of the irrelevant input

(shape information) also enters response selection. If wA is

estimated to be 0.53, for example, this means that

action representation has been biased according to the n-1

task by 3% (0.53–0.50, where 0.50 represents unbiased

representation).

According to Model 2 (Fig. 5), correct response selec-

tion is ensured by filtering out irrelevant information in the

action representation (see Hommel, 1993). In other words,

the model assumes that action representation is controlled

and input selection is perseverative. Figure 5 demonstrates

how a Model 2 strategy enables correct response selection.

According to Model 2, input selection is biased in favor of

Task n - 1 (e.g., Ward, 1982). The strong bias in action

representation in favor of Task n is what ensures correct

responding.

In Model 3 (Fig. 6), input selection and action repre-

sentation are both instruction-based and controlled

(dictated by Task n). Namely, irrelevant input information

and irrelevant action representation information are both

filtered out. Because both the input and the action repre-

sentation are selected according to the present task, Model

3 does not involve a bias in favor of Task n - 1 aside from

the bias made to the representation of the n-1st response

(see Response repetition).

Formally, the three generic models differ with respect to

the computation of response potency, P. As mentioned

before, all three generic models assume that P ¼
SFILTERED�RFILTERED

0 and that the unexplained switch cost

and mixed cost are represented by DSWITCH and DMIX,

respectively. Their differences are as follows:

According to Model 1, P ¼ SFILTERED n � RFILTERED n�1
0:

The subscripts n and n - 1 refer to whether the representa-

tion is formed based on the instructed task in Trials n

(representing the ‘‘will’’) or n - 1 (representing the

‘‘inner obstacle’’), respectively. According to Model 2,

Fig. 5 A schematic representation of control according to Model 2.

In the figure, the Task in Trial n is SIZE, the target stimulus is a large

circle. The correct (Left) response is selected because the attribute

‘‘large’’ is emphasized in the response representation. However, the

right response is also activated because it shares with the target a

de-emphasized attribute (circle)

Fig. 6 A schematic representation of control according to Model 3.

In the figure, the Task in Trial n is SIZE, the target stimulus is a large

circle. The correct (Left) response is selected because the relevant

attribute (large) is emphasized in both the target and the response,

which makes their representations similar. However, the right

response is also activated because it shares with the target a

de-emphasized attribute (circle)
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P ¼ SFILTERED n�1 � RFILTERED n
0: According to Model 3,

P ¼ SFILTERED n � RFILTERED n
0:Note that Model 4 in which

P ¼ SFILTERED n�1 � RFILTERED n�1
0 is also conceivable.

However, such a model predicts that performance would be

completely perseverative, as observed among some neuro-

logical patients (Yehene, Meiran, & Soroker, 2005, 2008).

This model can be ruled out when accuracy in switch trials is

high.

The bias made in favor of Task n - 1 in the various

models can potentially accumulate over trials. Such an

accumulated bias cannot be (consistently) found in mixed

tasks conditions because bias in favor of one task is quickly

canceled by an opposite bias in favor of the competing

task. In single task condition, the bias is according to the

same task in the entire block and this bias is likely to

accumulate. For this reason, the parameter which repre-

sents a bias according to Task n - 1 has two separate

instantiations: one for the mixed tasks condition and one

for the single task condition. Accordingly, Model 1 has

two separate action-representation parameters, wA and

wA-SINGLE for the mixed-tasks and single-task conditions,

respectively. Model 2 has two separate input selection

parameters, wI and wI-SINGLE,, which represent input

selection in mixed tasks and single-task conditions,

respectively. Note that CARIS Model 3 does not assume

that perseverative bias accumulates over trials because

there is no task perseveration (aside from response repeti-

tion effects) in that model. As a result, the core parameters

are the same in mixed tasks conditions and in single task

condition. Also, because there is no bias in favor of Task

n - 1 in Model 3, in this model, the entire difference

between single-task conditions and mixed-task conditions

is attributed to DMIX. Also, note that Model 3 is still

equipped, in principle, to explain congruency and response

repetition effects. Congruency effects are possible if the

controlled selection is imperfect, so that irrelevant input

information can activate the wrong response in incongruent

trials. Similarly, like all the other models, response repre-

sentation is perseverative, leaving room for response

repetition effects.

Hybrid models and proactive vs. reactive control

As the reader may recall, we distinguish between proactive

and reactive control. Proactive control refers to the advance

setting of the system that ensures task appropriate

responding. When control is reactive, it is accomplished

via online biasing that takes place simultaneously with the

core processing. Our approach to decide between reactive

and proactive control was to model results in two condi-

tions, one with a short preparation interval, not giving

much room for proactive control, and another one in which

there was plenty of room for proactive control (long

preparation interval). Task preparation time was manipu-

lated by the task-cue to target interval. According to our

reasoning, proactive control is consistent with two broad

scenarios. In one scenario, the same processing mode

(represented by say, Model 1) characterizes both the short

and the long preparation intervals (as in Meiran, 2000a). In

the other scenario, Model 1 or Model 2 describes perfor-

mance when preparation time is short. According to these

models, only one aspect (input selection or action repre-

sentation but not both) is controlled by the current (nth

trial) task instructions. The results of the long interval are

best described by Model 3 assuming that both aspects are

controlled by the current (nth) task instructions. The rea-

soning was that, in this scenario, preparation time served to

apply control in steps, beginning with one (input selection

or action representation) and then adding the other (action

representation or input selection) when preparation time

permits.

There are hybrid models that are clearly inconsistent

with the idea of proactive control. These include cases in

which Model 1 is selected for the short interval and Model

2 is selected for the long interval (henceforth, Model 1–2)

or vice versa (Model 2–1) and models in which Model 3 is

selected for the short preparation interval and a less pre-

pared model (Model 1 or 2) is selected for the long interval

(Models 3–1 and 3–2).

We dwell on the interpretation of the latter models

because one of them (Model 1–2) was chosen as the best

description of the results in the present work. Consider

Model 1–2, for example. According to this model, input

selection is willed (based on the nth task) and action rep-

resentation is perseverative (it is biased in favor of Task

n - 1) when the preparation interval is short. The reverse

holds for the long preparation interval. This implies that

input selection that was willed became perseverative

afterwards. This trend is clearly inconsistent with the

proactive control idea according to which the system’s

parameters are changed according to the new task and

retain their new value until the next task is required. Had

this been the case, any parameter that was willed in the

short preparation interval should have remained willed in

the long interval (as in Model 1–3, for example).

Model 1–2 makes perfect sense if one makes the fol-

lowing assumptions: (1) task execution (or perhaps partial

execution, see Hübner & Druey, 2006; Philipp et al., 2007)

results in forming a default bias in favor of Task n - 1; (2)

this holds true for all the parameters; (3) to ensure suc-

cessful willed action, transient momentary top-down

control signals bias the parameters and makes them willed.

This is essentially reactive control; (4) that the I-Set was

willed at one point while the A-Set became willed at a later

point may be explained by assuming that top down control

acts when a particular aspect (input or action) is in the
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attentional focus. The idea here is that the task cue, besides

providing the abstract task identity information may also

direct attention immediately to either the input or to the

action representation. At a later time point, when the cue is

further processed, additional cue information is derived or

retrieved and becomes focused. For example, the dimen-

sion cue SHAPE immediately attracts attention to the

(input) dimension, shape. At a later time point, the action

representation information is retrieved from memory and

becomes focused. Consequently, such a cue is likely to

result in applying the instructed task to the I-Set first

(because the input dimension is initially focused) and

applying it to the A-Set only later on, because action rep-

resentation is not immediately available from the cue and

needs to be derived or retrieved. In other words, dimension

cues are likely to induce the strategy described by Model

1–2. In contrast, there are mapping cues, such as ‘‘CIRCLE

SQUARE’’, which indicate that the left key is used for

‘‘circle’’ responses and the right key is used for ‘‘square’’

responses. With these cues, action representation infor-

mation becomes available quickly, whereas the input

dimension (shape) information is inferred. Such cues are

likely to shift performance towards Model 2–1 strategy.

Below we provide experimental evidence for the final

assumption.

An important note to make is that model choice cannot

be based entirely on relative model fits. The chosen

parameter values should accord with the chosen model’s

assumptions. Take for example a hypothetical scenario in

which Model 1 was selected by its fit for both intervals. To

take this as evidence for proactive control, one of the fol-

lowing should occur. In comparison with short preparation,

long preparation should reflect an improved input selection,

lesser bias in favor of Task n - 1, or at the minimum, that

the reverse trend should not be found. The reasoning here is

that providing more time for selection should result in

better (or at least not worse) selection. Moreover, either

DSWITCH or DMIX should reduce, representing the time

taken to improve selectivity ahead of the target stimulus.

The reasoning here is based on the inserted preparation

stage idea.

Response repetition

The fact that response repetition influences performance

and that the direction of this influence depends on task

switching imposes an important constraint on all the

models. Specifically, these results suggest that for any

model to be plausible, it must assume that perseveration

takes place and at the level of the individual responses.

Within CARIS, perseveration at the level of the individual

response must take place in the A-Set (which discriminates

between the two responses) and cannot take place in the

I-Set, which does not make such discrimination. Accord-

ingly, all the models include an assumption that the

selection vector for the repeated response is incremented

by a small factor, wCR (CR standing for category-response

binding) in favor of Task n - 1. Specifically,

wA-REPEAT = wA + wCR
1. The presently modeled exper-

iments and CARIS models cannot tell if this change in

action representation is due to the strengthening of the

particular category-response association, the inhibition of

the unselected response category, the fact that the target

stimulus retrieves task related response codes, or that a

switch signal taking place at the level of the abstract task

representation propagates uncontrollably to the level of the

response (Kleinsorge & Heuer, 1999). Note that the

inclusion of the wCR parameter is informative in the sense

that it provides a more parsimonious explanation than

given by the standard ANOVA model. Specifically, the

ANOVA provides a two df model of how task switching

modulates response repetition effects. This is the interac-

tion term between Switch (with 2 df) and Response

Repetition (with 1 df). CARIS provides a more parsimo-

nious account with only 1 df.

1 A numerical example will clarify this point. In Model 1, response

representation is perseverative. Let us assume for example that

wA = 0.51. A switch from SHAPE to SIZE would result in

representing Response A and Response B as (.49 0 .51 0) and

(0 .49 0 .51). (Note that in both the cases, the weight given to the

relevant feature, size, is smaller than that given to the irrelevant feature,

shape, reflecting the fact that shape was relevant in Trial n - 1). If

the response used to indicate LARGE and CIRCLE is repeated

wA-REPEAT = wA + wCR (where wA-REPEAT represents wA for the

repeated response) and the selection vector for Response A becomes

:49� wCR

:49� wCR

:51þ wCR

:51þ wCR

0
BB@

1
CCA If wCR = .03, the selection vector for Response A in the

present example becomes

:46

:46

:54

:54

0
BB@

1
CCA: Note that the selection vector is

translated into a response representation such as

:46

0

:54

0

0
BB@

1
CCA; for example.

This implies that the bias in favor of the emphasized dimension in

Response A is increased relative to Response B, for which the bias

vector would be

:49

:49

:51

:51

0
BB@

1
CCA with a response representation that may be

0

:49

0

:51

0
BB@

1
CCA keeping in line with the example. Given that the emphasis is

based on the n-1st task, it is counterproductive in switch trials, and

becomes even more counterproductive if the response is repeated.
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Plausibility bounds on parameter values

All CARIS parameters have realistic bounds. First, all the

core CARIS parameters assume values between 0 and 1,

because they represent the proportion of information

allowed to pass through the filter. Moreover, if the given

CARIS model assumes that control is mediated by input

selection (e.g., Model 1) whereas action representation is

determined by Task n - 1, wI should exceed wA (or

wA + wCR for repeated responses), for otherwise the model

would predict that in incongruent trials the wrong response

would be more potent than the correct response and would

therefore be selected (see explanation below). For the same

reason, if the model assumes that control is based on action

representation (e.g., Model 2), wA should exceed wI.

Additional boundaries are imposed on DMIX and DSWITCH,

which should be equal or larger than zero because it does

not make sense to speak of a negative cue encoding time or

task decision time. Finally, there are also boundaries on the

regression parameters, RS-Rate and RT-Intercept. Specifi-

cally, RS-Rate must be positive, indicating that relatively

fast responses are also relatively strong. Also, there is a

practical boundary on the corrected intercept, (RS-Rate +

RT-Intercept) [ e, where e [ 0, and more realistically is

greater than about 250 ms (i.e., typical mean simple RT).

In the Application below, we first fit the most relaxed

variants of each of the three generic models. In this fitting

process, we treated each preparation time (Cue-Target

Interval) by Paradigm combination as a separate ‘‘replica-

tion’’ of the basic design.

Application: comparing task switching in WHERE

and WHAT tasks

In this section we present our CARIS modeling of a par-

ticular study in which we compared switching in two

different cuing paradigms. For the sake of brevity, we do

not report the experiment in full (see Yehene & Meiran,

2007). The participants in the study were 95 college stu-

dents: about half of each gender. They were tested on two

cuing task-switching paradigms with identical logical

structure, block structure, and trial structure (see Fig. 1).

The first paradigm was object-based and it involved a

SQUARE-CIRCLE task cued by the Hebrew equivalent of

the word SHAPE and a SMALL-LARGE task, cued by the

Hebrew word for SIZE. These tasks were performed on the

four combinations of these values (small-circle, large-cir-

cle, small-square, large-square). Two keys on the lower

row of the keyboard were used for response collection.

The second paradigm was spatial, a paradigm used by

Meiran, Gotler, and Perlman (2001, Experiment 1). It

involved switching between two location tasks: UP-DOWN

and RIGHT-LEFT. Both tasks were performed on the same

set of target stimuli: The four positions within a 2 9 2 grid.

These tasks were cued in advance by two instructional cues:

arrows pointing sideways indicated the RIGHT-LEFT task

while arrows pointing upward and downward indicated the

UP-DOWN task. The responses were two keys on the

numeric keypad, the position of which were compatible

with the nominal categories they indicated. The upper-left

key indicated UP and LEFT while the lower-right key

indicated DOWN and RIGHT. Half of the participants used

this key-setup, while the other half used the upper-right key

and the lower-left key.

Participants were tested on the spatial paradigm in

Session 1 and on the object paradigm in Session 2. Pre-

vious, unpublished studies from our lab indicated that

there is no carryover of practice effects between these

two paradigms (Sosna, 2001). Each session began with 20

warmup mixed-tasks trials, followed by four identical

mixed-tasks blocks of 80 trials each, and ending with a

single block of instructed single-task (80 trials). The task

chosen for that block was counterbalanced. Each trial

consisted of an inter-trial interval of 1,500 ms. Previous

studies using the spatial paradigm indicated that inter-

trial intervals longer than 0.5 s are ineffective in reducing

switch cost (Meiran, Chorev, & Sapir, 2000; Meiran,

Levine, Meiran, & Henik, 2000; Meiran et al., 2001).

During the inter-trial interval, either the screen was

empty (the object paradigm) or an empty grid was pre-

sented (the space paradigm). It was followed by an

instructional cue presented for either a short (100 ms) or

a long (1,000 ms) CTI, followed by the target stimulus

presented along with the instructional cue until the

response was given.

The results obtained in the two paradigms were very

similar. Although there were some significant interactions

with Paradigm, in most cases, these interactions

explained a negligible fraction (less than 2%) of the

effect-variance. There was one exception, the interaction

between Paradigm and CTI, which showed a relatively

large difference between the paradigms in the short CTI.

Aside from this interaction, the pattern of significant

highest-order interactions was the same in both para-

digms. There was a triple interaction between Task-

Switch, Response-Repetition and Cue-Target Interval and

a two-way interaction between Task-Switch and Con-

gruency. When the Cue-Target Interval was short, we

observed a facilitatory response repetition effect in repeat

trials, a reversed response repetition effect in switch trials

and a null effect in single-task trials. This interaction was

considerably flatter when the Cue-Target Interval was

long. In addition, switch cost and mixing cost were larger

in the incongruent condition than in the congruent con-

dition (see Fig. 7).
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Modeling

The 48 RT means in the design [Paradigm (2) 9 CTI

(2) 9 Switch (3, switch, repeat, single-task) 9 Congru-

ency (2) and Response Repetition (2)] were first compared

in a one-way repeated measures ANOVA, yielding a sig-

nificant result, F(47, 4,418) = 147.29, MSe = 18,331.35,

p \ 0.0001. This (admittedly trivial) finding indicates that

there was a significant amount of variance among the 48

means to be explained by the models. For the sake of

modeling, we considered the 48 conditions as four repli-

cations of 12 basic conditions. The 12 basic conditions

were formed by the factorial combination of Task-Switch

(switch, repeat, single-task), Congruency (congruent,

incongruent), and Response Repetition (same or different

response than in Trial n - 1). These 12 conditions were

repeated in each CTI and in each Paradigm.

Model choice

Modeling was performed by minimizing the sum of square

differences between the actual mean RT and the predicted

mean RT, using Microsoft ExcelTM Solver routine. As

recommended by Lorch and Myers (1990), we fitted the

data of individual participants, meaning that the parameter

values were allowed to differ between participants. We

began with the most relaxed variants of the three generic

models. These relaxed variants were formed by allowing

all the parameters to differ between the four replications

(namely, there was a separate parameter set for each CTI

and Paradigm condition). The parameters included the

core parameters: wI, wA and wCR, as well wI-SINGLE or

wA-SINGLE, depending on whether it was Model 1 or Model

2, and additional parameters: DMIX and DSWITCH, RS-Rate

and RT-Intercept. In using the search algorithm to fit these

models, we decided to use bounds that limit the possible

parameter values. Such an approach was needed because

we modeled individual participants’ data, which were not

very stable, and because of the complexity of the model.

The bound we used were chosen to ensure that the selected

parameter values would be realistic. Specifically, the core

parameters were all allowed to vary between 0 and 1. In

addition, the parameters representing willed control, wI

(Models 1 and 3) and wA (Models 2 and 3) had to be above

0.50 (otherwise the wrong task would have been executed,

which we knew to be wrong based on the low error rates).

The parameters representing perseveration, wI (Models 2)

and wA (Model 1) had to be above 0.50 because values

below 0.50 do not indicate perseverative tendencies. In

fact, a value below 0.50 implies that executing Task A in

Trial n - 1 resulted in a bias in favor of Task B.

Because we fitted the results of individual participants,

we obtained three model-fit indices. One was the number of

participants for whom a given model produced the best fit.

The second was the R2 value between the mean predicted

values (across participants) and the mean observed value

(across participants), and the final one was the Root-Mean-

Square Deviation (RMSD) in ms, again between the mean

predicted value and the mean observed value. Before

comparing the models, it is important to mention the fact

that the models did not have the same number of free

parameters. Specifically, in Model 3, neither wI nor wA

were determined by Task n - 1, and therefore Model 3 did

not include a separate instantiation of any of the parameters

for the single-task condition. As a result, (the relaxed

variants of) Models 1 and 2 had 32 free parameters for each

participant (8 parameters for each of the 4 ‘‘replications’’)

and Model 3 had only 28 free parameters for each partic-

ipant (7 parameters for each of the 4 ‘‘replications’’). For

that reason, we also considered the relative fit of the

models in the mixed-tasks conditions, separately, because

the number of free parameters was the same for all models

for these conditions. Before reporting the results, we would

like to emphasize the fact that the number of free param-

eters, 32 or even 28, is obviously excessive. Therefore, we

did not focus on the degree of model fit per-se, which is

inflated due to the number of free parameters. Instead, the

focus was on the relative fit of the three models, because

Long CTI 

   b   Object paradigm 

Long CTI 

  Object paradigm 

Short CTI 

Short CTI 

Task-Switch * Congruency 

  Spatial Paradigm 

Task-Switch * Response-Repetition * CTI 
  Spatial paradigm 

a

a

b

Fig. 7 Actual (dashed line) and reproduced (solid line) mean RT

according to Model 1–2 (diamond switch, triangle repeat, square
single). *We depict the two highest order interactions that were found

to be significant in the ANOVAs. CTI cue-target interval
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the goal in this analytic stage was to choose a generic

model. Only after we chose a generic model, we were able

to considerably reduce the number of free parameters.

The modeled data set included 95 (participants) 9 48

(conditions) = 4,560 data points. The fit results indicate an

R2 = 0.993, 0.986, and 0.983, for Models 1, 2 and 3,

respectively. These R2 values represent the fit between the

mean predicted RT and the mean observed RT (thus

removing individual participants’ related variance). All

these values are very high but they do not indicate a clear

advantage for any particular model. A clearer picture

emerged when we considered the four combinations of CTI

and Paradigm, separately. Table 1 presents the R2 data as

well as the percentage of participants whose data were best

fit by a given model for the different CTI and Paradigm

conditions. As can bee seen in Table 1, Model 1 best fit the

short CTI results, which was true for both paradigms, while

Model 2 best fit the long CTI results in both paradigms.

These differences in model fits are most apparent when

considering the percentage of participants whose results

were best fit by a given model. By chance, a third of the

participants are expected to be best fit by any given model.

The numbers significantly deviated from this expectancy,

v2
(2) = 49.76, 29.87, 60.24, and 66.32, all ps \ 0.000001,

for spatial short-CTI, object short-CTI, spatial long-CTI

and object, long CTI, respectively. The fact that Model 3

was unsuccessful cannot be attributed to the smaller

number of free parameters, because the picture remained

essentially unchanged when only the mixed tasks

conditions were considered, for which the number of free

parameters was the same for the three models. Based on

these results, we endorsed Model 1–2, which was identical

to Model 1 in the short CTI and identical to Model 2 in the

long CTI.

A relaxed variant of Model 1–2 was fit to the data in a

preliminary run. Because we estimated the parameters for

individual participants, we were able to compare them

against critical values using t-tests (see Lorch & Myers,

1990). These critical values were zero (for wCR, DMIX,

DSWITCH, RS-Rate and Corrected RT-Intercept), 0.50 (for

the parameters representing a bias in favor of Task n - 1,

namely, wA for the short CTI and wI for the long CTI), and

1 (for the set parameters dictated by the current task,

namely wI for the short CTI and wA for the long CTI). In

addition, we compared parameters in the four ‘‘replica-

tions’’ for equality again using standard Paradigm 9 CTI

ANOVAs and t-tests performed on the parameter estimates

of individual participants. These preliminary analyses

allowed us to impose equality constraints on some

parameters and to eliminate others, so that we were even-

tually left with 18 free parameters, which were used in the

final fit of Model 1–2 (see Table 2)2 The 18 parameters that

were eventually left in the model were all (a) significantly

different from the relevant comparison level (zero, .50,

1.0); (b) where applicable, significantly different between

‘‘replications’’.

The resultant 18-parameter model yielded an

R2 = 0.990, with an RMSD = 17 ms (for the mean

observed vs. mean predicted analysis). This R2 value is

underestimated relative to R2 values often reported in the

literature. The reason is that it describes the fit of the mean

predicted RT across participants to the mean observed RT.

In many cases, authors generate a single set of predicted

values and fit it against the group means. When Model 1–2

was fit in this manner, its R2 value was increased to 0.991.

The R2 value we obtained is in the very upper range, and

the RMSD value (17 ms) is in the very lower range of the

values reported by other modelers including Logan and

Bundesen (2003), Schneider and Logan (2005), and Sohn

and Anderson (2001). Figure 7 presents the mean RTs

predicted by Model 1–2 against the actual means. The

figure depicts only the two high-order interactions which

were found to be significant in both paradigms in the

standard ANOVAs.

Table 1 Model fit (R2) and the proportion of participants whose

results were best fitted by a given model (%N)

Model Condition

Short CTI Long CTI

Spatial Shape Spatial Shape

All conditions

1 R2 0.995 0.990 0.986 0.984

% N 67.4 57.9 27.4 14.7

2 R2 0.979 0.976 0.983 0.993

% N 14.7 12.6 68.4 72.6

3 R2 0.972 0.980 0.959 0.980

% N 17.9 29.5 4.2 12.6

Mixed tasks only

1 R2 0.989 0.943 0.976 0.918

% N 66.3 57.9 25.3 15.8

2 R2 0.897 0.853 0.954 0.983

% N 10.5 12.6 65.3 72.6

3 R2 0.933 0.918 0.932 0.910

% N 23.2 29.5 9.5 11.6

CTI Cue-target interval

2 In comparison, the number of significant degrees of freedom

(including the intercept term) in the standard 5-way ANOVA was 21

(actually almost 22 because of an additional parameter with p =

0.059). To determine these numbers we needed to break down the

2-df Switch variable into orthogonal contrast. The contrasts were

switch cost: switch vs. repeat, and mixing cost: switch + repeat vs.

single task. This was done for the main effect of Switch and all the

interactions involving Switch).
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In order to test the statistical significance of the devia-

tion of the model from the data, we compared the observed

and predicted RTs using Source (observed vs. predicted) as

an independent variable in ANOVAs (see Altmann, 2006).

Because this test appears to have excessive statistical

power, we ran an additional analysis on a group of ran-

domly selected 20 participants and note when a given

effect was significant also for this smaller group. Indeed,

significant effects that did not pass this criterion were very

small, sometimes as small as 3 ms.

In the first stage, we conducted an ANOVA with Source

and Condition as within-participant variables, with Con-

dition having 48 levels corresponding to the factorial

combination of all the experimental variables. This single

Table 2 Parameter estimates for the chosen Model 1–2 (with 18 free parameters)

Parameter Description Mean

value

95% Confidence

interval

# Reached the bound

wI—spatial short CTI Weight given to the relevant stimulus

dimension in Trial n
0.932 0.919–0.945 8 v2

(1) = 65.69

wI—object short CTI Weight given to the relevant stimulus

dimension in Trial n
0.954 0.945–0.963 9 v2

(1) = 62.41

wA—spatial short CTI Weight given to what was the relevant

action representation in Trial n - 1

0.540 0.520–0.559 30 v2
(1) = 12.89

wA—object short CTI Weight given to what was the relevant

action representation in Trial n - 1

0.512 0.506–0.517 57 v2
(1) = 3.80, NS

wA-SINGLE short CTI

both paradigms

Weight given to what was the relevant

action representation in Trial n - 1

(single-task)

0.691 0.662–0.720 Spatial 1 v2
(1) = 91.04 object 1 v2

(1) = 91.04

wA long CTI both

paradigms

Weight given to the relevant action

representation in Trial n
0.920 0.897–0.943 Spatial 7 v2

(1) = 69.06 object 0

WI long CTI both

paradigms

Weight given to the relevant stimulus

dimension from Trial n - 1

0.533 0.515–0.551 Spatial 32 v2
(1) = 10.12 object 13

v2
(1) = 50.12

wI-SINGLE long CTI

both paradigms

Weight given to the relevant stimulus

dimension from Trial n - 1 (single-task)

0.664 0.625–0.703 Spatial 10 v2
(1) = 59.21 object 5

v2
(1) = 76.05

wCR—both CTIs both

paradigms

A change in weight in favor of the

representation related to the response

executed in Trial n - 1

0.022 0.017–0.027 Spatial-short 26 v2
(1) = 19.46 spatial-long 32

v2
(1) = 10.12 object-short v2

(1) = 69.06

object-long 7 v2
(1) = 69.06

DSWITCH—spatial

short CTI

Unexplained switch cost (cue repetition

effect)

37 ms 22–51 ms

DSWITCH—object

short CTI

Unexplained switch cost (cue repetition

effect)

68 ms 44–91 ms

DSWITCH—long CTI

(both paradigms)

Unexplained switch cost (cue repetition

effect)

12 ms 3–31 ms

DMIX—spatial short

CTI

Unexplained mixing cost (task decision

time)

84 ms 52–115 ms

DMIX—object short

CTI and long CTI in

both paradigms

Unexplained mixing cost (task decision

time)

57 ms 36–77 ms

RS-Rate—spatial short

CTI

Response selection rate 368 ms/

Str.

unit

310–427 ms/Str.

unit

RS-Rate—object short

CTI

Response selection rate 511 ms/

Str.

unit

458–563 ms/Str.

unit

RS-Rate—long CTI

(both paradigms)

Response selection rate 277 ms/

Str.

unit

228–326 ms/

Str.unit

Corrected RT-
Intercept (both

CTIs, both

paradigms)

Predicted RT without response selection

(time taken for shallow stimulus

encoding and response preparation)

301 ms 254–349 ms

CTI cue-target interval. ‘‘# reached the bound’’ represents the number of participants (out of 95) for whom the chosen parameter had a value

identical with the imposed a-priori bound. See text for details
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test was conducted to control for Alpha inflation due to

multiple comparisons. The interaction between Source and

Condition reached significance, indicating a significant

discrepancy between the predicted and the observed

results, F(47,4418) = 3.85, MSe = 3,593.32. This was

true also when the analysis was performed on 20

participants.

In the next phase, we tried to probe the source of the

discrepancy between predicted and observed RTs by con-

ducting more focused comparisons. This was achieved by

replacing Condition with the five independent variables

(Paradigm, CTI, Task-Switch, Congruency and Response-

Repetition). Three interactions involving Source reached

statistical significance even when we analyzed the results

of 20 participants. These include the three-way interactions

between Source, Congruency and CTI, F(1,94) = 19.19,

MSe = 1,363.21, Source, Task-Switch and Response-

Repetition, F(2,188) = 25.16, MSe = 2,256.13, and Source,

Paradigm and Response-Repetition, F(1,94) = 58.75,

MSe = 3,424.86.

These significant effects reflect the fact that (a) there was a

small observed reduction in the Congruency effect as a result

of increasing the CTI (from 75 to 70 ms), which was non-

significant. However, the predicted pattern indicated a sharper

reduction (from 76 to 57 ms); (b) there was a significant

interaction between the Switch-Repeat contrast and Response

Repetition reflecting a reversed response repetition effect in

the switch condition (25 ms) and a facilitatory effect in the

repeat condition (38 ms), whereas the predicted pattern was

less sharp (19 and 17 ms, respectively). This pattern is caused

by the fact that the model does not predict an interaction

between Switch and Response Repetition in the long CTI,

whereas such an interaction was found. The 4-way interaction,

which reflects this trend reached significance in the full

analysis, F(2,188) = 5.51, MSe = 2,157.79, but did not

reach significance when the ANOVA was performed on the

results of 20 participants; Finally (c) the Response–Repetition

effect was reversed in the observed RT and not in the predicted

RT for the spatial paradigm, -14 versus 3 ms respectively,

F(1,94) = 26.93, MSe = 3,382.46, and was larger in the

observed than in the predicted RT for the object para-

digm, 23 versus 4 ms, respectively, F(1,94) = 27.51,

MSe = 4,019.46.

Several additional interactions were significant but only

when the entire sample was analyzed and not when the

analysis was performed on the small group. These include

the four-way interaction between Source, Congruency,

Response-Repetition and CTI, F(1,94) = 5.39, MSe =

2,010.98; the three-way interaction between Source, Par-

adigm and Congruency, F(1,94) = 8.08, MSe = 3,249.97;

and two-way interactions between Source and Task-

Switch, F(2,188) = 13.71, MSe = 2,505.72, and Source

and Congruency, F(1,94) = 9.84, MSe = 1,914.41.

In summary, although the predicted RTs differed sig-

nificantly from the observed RTs, the discrepancies, by

and large, were relatively small. Moreover, the model was

able to generate the qualitative replicable patterns of

results, and failed, at occasions in predicting patterns that

seem to be unique to the present experiment such as the

triple interaction between Congruency, Response Repeti-

tion and CTI that was observed here, not usually observed,

and not predicted by the model (see Pitt, Kim, Navarro, &

Myung, 2006). Finally, the level of fit exhibited by the

present model is, in most cases better, and certainly not

worse than that of other models of task switching in the

literature.

Implications of the chosen parameter values

Table 2 presents the mean parameter values across partici-

pants along with their 95% confidence intervals. In some

cases, using confidence intervals to examine if a parameter

value differs from 0, 1 or 0.50 was problematic because of

the a-priori bounds imposed on the parameters. For this

reason, we used another method to test whether the param-

eters are different from the critical value. In this method we

checked the number of participants for whom the estimated

parameter value has reached the a-priori bound (0.5 or 1).

We further reasoned that if the true parameter value was (a)

equal to the bound and (b) the parameter distribution was

symmetrical, one would predict that for 50% of the partic-

ipants, the estimated parameter would hit the a-priori bound.

Based on this line of reasoning, we used v2 tests to examine

if the actual number of participants whose estimated

parameter hit the a-priori bound was significantly different

from the predicted 50%. As the rightmost column of Table 2

shows, the conclusions were the same as those reached when

considering confidence intervals. Here we list the implica-

tions of the chosen parameter values:

1. The corrected RT-Intercept had a value close to the

typical simple RT. The fact that we obtained similarly

reasonable values in four replications (CTI 9 Para-

digm) provides important validation to the modeling

process.

2. The parameters representing control (wI for the short

CTI, wA for the long CTI) had very high values, but

still values that were significantly different than unity.

The reason for that is that, if they had a value of 1, the

congruency effect would have been eliminated in the

predicted results, as seen when their values were

manually changed to unity (see Fig. 8a). One inter-

pretation of this result is in terms of control failure.

Namely, the best selection is represented by a param-

eter value of 1, and smaller values show that this
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best level of performance was not achieved. Another

interpretation which we believe to be more plausible is

that it may not be beneficial to focus too narrowly on

one piece of information, when the other piece of

information may soon become relevant (Goschke,

2000). Specifically, perfect selection on say size-

related information would be very beneficial in

executing the SIZE task. However, the SIZE task is

performed in conditions where the SHAPE task is also

performed. Keeping an ‘‘open window’’ for shape-

related information may therefore be beneficial in

these situations.

3. The parameters representing a bias in favor of Task

n - 1 were significantly higher than 0.50, showing

that such a bias existed. As can be seen in Fig. 8b, the

small but significant deviation from 0.50 was critical to

fully reproduce the Switch by Congruency interaction.

4. wCR had a value significantly higher than zero,

suggesting that executing a given response led to a

binding of that response (and/or related stimuli) with

the given task-dependent interpretation. This value

was essential to reproduce the interactions involving

Switch and Response-Repetition, as seen in Fig. 8c.

5. The parameters dictated by Task n - 1 had higher

values in the single-task condition than in the mixed

tasks condition, which explained a considerable

portion of the mixing cost. As can be seen in Fig. 8d,

when the parameters in the single-task condition were

manually changed to the value chosen for the mixed

tasks condition, the predicted RT for the single-task

condition was substantially higher than the observed

RT.

6. The unexplained switch cost was significantly larger

than zero, and importantly, was smaller given a long

preparation time. The preparation-related reduction in

the unexplained switch cost was 25 ms in the spatial

paradigm (37–12 ms) and 56 ms in the object para-

digm (68–12 ms).

7. The unexplained mixing cost was also significantly

larger than zero. It was reduced by preparation in the

spatial paradigm (from 84 to 57 ms) but not in the

object paradigm (57 ms for both CTIs). According to

our interpretation, these parameters represent the time

taken to make a task choice.

8. The RS-Rate was larger when the CTI was short than

when it was long, which indicates a generally more

efficient response selection given optimal preparation

(Hackley & Valle Inclan, 1998, 1999, see also Meiran

& Chorev, 2005).

9. Paradigm content dictated the parameter values in the

short CTI condition but not in the long CTI condition.

Validation study

To validate our choice of Model 1–2, we ran an additional

experiment on 31 participants who performed the Shape–

Size paradigm using task cues that provided the category-

response mapping directly (e.g., ‘‘SQUARE CIRCLE’’).

The paradigm was otherwise identical to that modeled

earlier. We reasoned that the new cues would either reverse

the results to fit Model 2–1 (Model 2 for the short CTI and

Model 1 for the long CTI) instead of Model 1–2 or at least

would shift the proportion of best-fit participants in this

direction. Note that one could argue that the dimensional

cues (e.g., SHAPE) that were used by Yehene and Meiran

(2007) conveyed less information than the mapping cues

that were used in the validation study. We argue that this

criticism is incorrect given the fact that the same pair of

task cues was used throughout the experiment, so that the

information provided by the cue (after the cue has been

processed) was which one of two cues was currently in

effect.

The results supported our predictions. Specifically, the

proportion of participants whose results fitted Model 2 in

the short CTI (11 out of 31, 35%) increased relative to the

results modeled earlier (Yehene & Meiran, 2007, Shape–

Size results; 12 out of 95, 13%) when category-response

cues were used. Concomitantly, the proportion of partici-

pants whose results fitted Model 1 (15/31 = 48%)

decreased relative to the results of Yehene and Meiran (55/

95 = 58%). This change in proportions was significant,

v2(1) = 5.99. In the long CTI, the proportion of partici-

pants whose results fitted Model 2 (15/31 = 48%)

decreased relative to the results of Yehene and Meiran (69/

95 = 72%). Concomitantly, the proportion of participants

whose results fitted Model 1 increased (9/31 = 29%) rel-

ative to the results of Yehene and Meiran (14/95 = 15%).

This change in proportions was also significant,

v2(1) = 4.70. The present results provide important vali-

dation to our interpretation of the model as well as to

model choice. Specifically, they are consistent with the

interpretation that dimensional cues (e.g., SHAPE) such as

those used in the experiment of Yehene and Meiran (2007),

modeled before, initially attract attention to the input, and

attention is drawn to action representation only later,

because this information is derived or retrieved rather than

more directly available. Mapping cues (e.g., such as those

used in the validation study, ‘‘SQUARE CIRCLE’’) attract

attention initially to action representation, and only later

attention is drawn to the input dimension, because in this

case, this information is derived. The fact that the mapping

cues only shifted the proportions in the predicted direction

rather than reversing them could be explained by the fact
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Fig. 8 Exploring the contribution of the model’s parameters. Actual

(dashed line) and reproduced (solid line) mean RT according to

Model 1–2 (diamond switch, triangle repeat, square single), a with

the parameter wI manually changed to 1.00 in the short CTI and the

parameter wA manually changed to 1.00 in the long CTI; b with

the parameter wI manually changed to 0.50 in the long CTI and the

parameter wA manually changed to 0.50 in the short CTI; c with the

parameter wCR manually changed to zero; d with the parameter

wI-SINGLE manually changed to the estimate of wI in the long CTI and

the parameter wA-SINGLE manually changed to the estimate of wA in

the short CTI; CTI cue-target interval
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that the cue was visual, regardless of its type, which in

itself attracts attention to the input. Alternatively, input

selection may be a more flexible function than action

representation. Diamond’s (1985) A not B results hint in

this direction because looking (which is input selection)

was not perseverative while the action of reaching was

perseverative.

We also compared the mean Shape–Size RT results

from Yehene and Meiran (2007) (the results which were

modeled here, based on dimension cues) to the new

experiment involving the same tasks but with category-

response cues. The triple interaction between Switch, CTI

and Experiment was significant, F(2, 252) = 10.59,

MSe = 2811.99 (Fig. 9). It reflected the fact that when

category-response cues were used, switch costs did not

decline significantly with increasing CTI, F \ 1, for the

simple interaction between CTI and Switch in the new

experiment, while such a trend was found for dimension

cues, F(1, 126) = 62.93, MSe = 2447.31, for the simple

interaction between CTI and Switch conducted on the

results of Yehene and Meiran. These results fully confirm

the results of Mayr and Kliegl (2000) in our paradigm.

CARIS account of RT distribution and error rates

CARIS, as described so far, does not deal with RT distri-

butions and error rates. The present section is added to

show that, while this aspect of CARIS is admittedly under-

developed, CARIS is not inherently limited in this respect.

To account for RT distributions and error rates we ran a

simulation study. In this study, we concentrated on the

spatial paradigm because the two paradigms yielded very

similar results. We simulated 10,000 trials per each of the

24 conditions. Specifically, in each ‘‘trial’’ the value of the

core (wI, wA, wCR) CARIS parameters was randomly

chosen by sampling them from their respective distribu-

tions (see subsequently). For simplicity sake, the remaining

parameters were taken from Table 2 and were constant. All

these parameter values, when entered into the CARIS

equations, uniquely determined the simulated RT. This

process was repeated, generating simulated RT distribu-

tions. Note that the simulated RTs vary between trials

because wI, wA, wCR varied between trials in the simula-

tion. Because the chosen model was different for the two

CTI conditions we ran two separate simulations, one based

on Model 1 (for the short CTI) and one based on Model 2

(for the long CTI).

To randomly choose CARIS core parameters, it was

important to make a-priori assumptions concerning their

distributions. The assumptions that we adopted were that

the values of the Task n control parameters (wI for Model

1, wA for Model 2) vary exponentially. We used the

exponential function because it is the simplest special case

of the Weibull function, used to model failures and unre-

liability. Here, a failure implies imperfect selection

according to the instructed task. Although the Weibull

function is often used to model accumulated failure as a

function of time (which does not apply in the present case),

this is not always the case, and the Weibull function is used

to model failure that accumulates over other domains as

well (e.g., Zhao, 2005). The parameter determined by Tn–1

(wA for Model 1, wI for Model 2) was assumed to be dis-

tributed normally, with a mean as in Table 2. Because wCR

was practically bounded at zero (meaning that its distri-

bution cannot be symmetric), we assumed that it too, was

distributed exponentially.

Errors and task choice

CARIS assumes that errors result from two reasons. One is

that the there was an error in the choice of the task vector.

This point is elaborated in greater detail later. The other

reason why errors occur is the fact that, in some trials, the

values of parameter(s) which are determined by Task n - 1

(‘‘inner obstacle’’) exceed that of the control parameter

(those chosen based on Task n). Specifically, in CARIS,

response selection is based on a competition between the

correct response and the incorrect response. In congruent

trials, no such competition exists because the irrelevant

stimulus dimension activates the correct response.

Fig. 9 Mean RT according to CTI, Switch and Experiment (Yehene

& Meiran, 2007, shape–size results, N = 95, who used dimension

cues vs. the validation experiment with category-response cues).

CTI cue-target interval
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Figure 10 depicts the simulation of the short CTI con-

dition. Figure 10a presents the univariate distribution of

simulated trials according to their wI and wA values. As can

be seen, wI tends to be larger than wA, but in some cases,

wA is larger than wI. If this is a switch incongruent trial,

this means that the potency of the wrong response is higher

than that of the correct response, resulting in an error3.

Figure 10b presents the bivariate distribution of simulated

trials according to wI and wA. It depicts the trials in which

wI [ wA, and a correct response is chosen (marked as ‘‘+’’

and occupying the upper left side of Fig. 10b) and the trials

in which wA [ wI (and the wrong response is chosen in

incongruent-switch trials. These trials are marked as ‘‘.’’

And they occupy the lower right side of Fig. 10b).

As mentioned previously, errors may result from

choosing the wrong task vector, representing ‘‘task

errors’’. Meiran and Daichman (2005), who used Multi-

nomial Processing Tree modeling (Riefer & Batchelder,

1988) to explain the error rates in the presently studied

spatial paradigm, showed that these rates are best

explained by a model assuming (among other things) that

participants occasionally execute the wrong task (see

further Steinhauser & Hübner’s, 2006). Importantly,

Meiran and Daichman showed that the rate of ‘‘task

errors’’ increased in the switch condition relative to the

repeat condition, and this switch effect was eliminated in

the long CTI condition. Therefore, in simulating the short

CTI condition, we assumed that, on a randomly chosen

0.05 of the switch trials, the wrong task was chosen.

In each of the two simulations (one for the short CTI, the

other for the long CTI), we manually varied three values

until a reasonable fit to the observed results was observed.

These included the parameter of the exponential functions

(Lambdas), and the Sigma of the normal distribution. This

variation was done under the constraint that the mean

parameter value would remain the same as the estimated

mean4. Figure 11 presents the simulated RT distributions

and Table 3 presents the mean simulated error rates. The

observed RT distributions were computed after forcing the

mean RTs of individual participants to equal the sample

mean. This adjustment was needed to compensate for the

fact that the simulation did not involve individual differ-

ences. As can be seen in Fig. 11 and Table 3, the

simulation generates RT distributions and error rates that

are quite similar to those we observed. Note again that the

observed results are just an approximation partly because

they are not taken from a single participant, who was tested

over many sessions, but are an aggregate (after equating

mean RT across participants) of many participants who

performed the paradigms only for a short period of time.

General discussion

In the present study, we presented CARIS, which is a

modeling framework for task-switching experiments. Our

results led us to endorse a particular CARIS model. Below

we discuss the implications of the modeling results, explain

how the chosen model explains the observed RT effects,

compare the model to other models in the literature, discuss

the limitations of the present work, and discuss the broader

implications for cognitive control.

Implications of the chosen model

We chose Model 1–2, which is a hybrid model that, as

elaborated before, is best interpreted as reflecting reactive

control rather than proactive control. Unlike proactive

control, which is based on setting the system in advance to

perform a given task, reactive control is based on online

biasing which takes into account the changing context (task

goal). CARIS Model 1–2 is unique in that it proposes that

3 Specifically, response selection is based on a competition between

the correct response and the incorrect response. In congruent trials, no

such competition exists because the irrelevant stimulus dimension

activates the correct response. Competition arises in incongruent trials

because the irrelevant stimulus dimension activates a competing

response. Correct responding in these trials therefore depends on the

fact that the correct response is more potent than the incorrect

response. Without loss of generality, let us consider a special case in

which the two response keys are: RAðLARGE�CIRCLEÞ ¼ 1 0 1 0ð Þ
and RBðSMALL�SQUAREÞ ¼ 0 1 0 1ð Þ and an incongruent target,

say, SLARGE�SQUARE ¼ 1 0 0 1ð Þ: Let us assume further that the

task is SIZE. In such a case, the correct response is RA (the target is

LARGE). The potency for that response according to Model 1 is

either wS � wR in the case of a task repetition or wS � (1 - wR) in the

case of a task switch. The potency of the competing response

RB is (1 - wS) � (1 - wR) in the case of a task repetition and

(1 - wS) � wR in the case of a task switch. For RA to be chosen, the

following inequality must hold: PResponse-A [ PResponse-B. Replacing

PResponse-A and PResponse-B with their values, as defined above shows

that the inequality translates into wS [ (1 - wR) for task repetitions

and into wS [ wR for task switches. The competition between the two

responses becomes even stronger in the case of a response repetition,

where wA is replaced by wA + wCR. Less formally, the processing

strategy represented by Model 1 ensures correct responding by a

strong-enough input selection that overcomes the counterproductive

adjustment of action representation. Similarly, Model 2 strategy

ensures correct responding by a strong enough bias in the action

representation which counteracts the counterproductive adjustment in

input selection.

4 Because the exponential distribution has only one parameter,

Lambda, this parameter dictates both the variance (1/Lambda square)

and the mean value (1/Lambda). Having decided to maintain the

mean value the same as that estimated (Table 2) could have

implicated that we could not vary the distribution to enable better

fit to the data. To allow more freedom there, we changed Lambda and

added a constant so that the variance could change without changing

the mean.
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different pieces of cue-related information are used for

control depending on the amount of time allowed for

advance preparation. It is suggested that the processing of

task cues initially attracts attention to either the input or the

action. When more time is allowed for cue processing,

other (inferred or retrieved) information attracts attention

to the other aspect of response selection. The portion of the

response selection apparatus on which the current control

bias operates depends on the current focus. With dimen-

sional cues such as SHAPE, control first operates on the

input end. Biasing of action representation takes place only

later, after the related information was retrieved. These

points are demonstrated in Fig. 12. The fact that the I-Set

and the A-Set were very rarely controlled simultaneously

(Model 3) suggests that they cannot be controlled simul-

taneously, reflecting some kind of an attentional

bottleneck, perhaps. We cannot rule out the possibility that

under favorable conditions and perhaps more appropriate

task cues, such parallel control may take place

nevertheless.

Aside from the model fit and the results of the validation

study, it is interesting to see if there are additional sources

of evidence for the plausibility of Model 1–2. A recent

imaging study seems to provide evidence that is at least

compatible with our conclusions. Specifically, Ruge et al.

(2005) studied the spatial paradigm that was employed here

in an event-related functional magnetic resonance imaging

study. Their results show that brain areas which showed an

oxygen consumption switch-related increase when the cue-

target interval was short did not show this increase when

the interval was long. Additionally, there was no switch-

related activity during the preparatory interval, only when

the target was presented that such an activity was observed.

Finally, both switch trials and repeat trials involved the

activation of portions of the pre-frontal—parietal network

known from other studies to be involved in task switching.

Although Ruge et al. endorsed a different interpretation,

CARIS Model 1–2 is compatible with them. We suggest

that the network activated by both switch and repeat trials

represents task decision, whereas the switch-specific acti-

vation represent the transient control bias required to

overcome perseverative tendencies. The presence of task-

decision related activity in the long CTI in the absence of

evidence for temporary biasing is incompatible with

models which assume proactive control because task

decision should complete before task implementation. The

fact that temporary biasing was evident only in the short

CTI is explained by the fact that Model 1 prevails in that

interval. Furthermore, because the control strategy that this

model represents is relatively ineffective there was a

greater demand for top-down effort, as reflected in the

activation in regions believed to be involved in imple-

menting such control. When the top-down biasing strategy

was effective (the long cue target interval, where Model 2

prevails), lesser control effort was involved in imple-

menting it.

Subsequently, we discuss how Model 1–2 explains the

RT effects that were listed in the Introduction.

Task switch cost

Model 1–2 explains switch cost in the cuing paradigm as a

result of two processes. First, regardless of preparation time,

some aspect of the task set is perseverative (based on Task

n - 1) rather than instruction-based (Task n); namely, the

switch cost was determined, in part, by a task-set carryover

effect (Allport et al., 1994; Allport & Wylie, 2000; Meiran,

1996, see also Yeung, et al., 2006). The second contribution to

switch cost is an inserted processing stage, represented by

DSWITCH, which was larger in the short CTI condition than in

the long CTI condition. This inserted processing stage is

possibly responsible for cue-repetition effects as discussed by

Logan and Bundesen (2003) and Mayr and Kliegl (2003).

Fig. 10 The wA and wI values used to simulate RT in the Short CTI.

For the correct response to be selected, wI (which is determined by the

task in Trial n) should exceed wA (which is determined by the task in

Trial n - 1). a Uni-variate distributions, wI dashed line, wA solid line;

b bi-variate distribution (errors appear on the lower-right corner,

where wI \ wA. See text for details
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Fig. 11 Simulated (gray) and Observed (black) RT distributions-spatial paradigm. CTI cue-target interval
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Task mixing cost

Mixing cost is explained by two processes. One is captured

by DMIX and the other is captured by the CARIS core. As

mentioned before, DMIX is interpreted as the time taken to

make the task decision, which is made more complicated

given the bivalent stimuli that we used (see Rubin & Meiran,

2005, for direct support). The other process is reflected in the

fact that action representation (in the short CTI) and input

selection (in the long CTI) was more strongly biased in sin-

gle-tasks conditions than in mixed-tasks conditions. Note that

in mixed-tasks conditions, a bias according to the n - 1st task

is productive in repeat trials but counterproductive in switch

trials, in which the bias is in favor of the wrong task. In

contrast, in single-task trials, the bias is always productive

because the nth and n - 1st tasks are always the same in

single-task blocks. This single-mixed difference could reflect

one of the two processes: A consistent accumulation of

updating over trials permitted in single-task conditions or an

increased task commitment in single-task conditions (e.g.,

see Monsell, Sumner, & Waters, 2003, for the concept of task

commitment).

Preparation

Preparation is a widely discussed topic in the task-

switching literature (see Meiran, 2008a; Monsell, 2003, for

reviews). CARIS Model 1–2 provides an account for

preparation as well. Preparation had a general facilitatory

effect in the mixed tasks conditions and it also reduced

switch cost. Model 1–2 explains these effects by three

factors. First, preparation reduced switch costs as explained

already. Second, preparation had a general facilitatory

effect on the RS-Rate, indicating faster response-selection

in the prepared state. Finally, DMIX and DSWITCH were

decreased with increasing CTI in some conditions.

Reduction of switch cost in the long cue-target interval

This effect is explained both by a reduction in the unex-

plained switch cost and by the change in strategy (Model 2

vs. Model 1). The reduction in the unexplained switch cost

supports our interpretation of the DSWITCH parameter as

reflecting cue processing time. The present modeling

results therefore provide an interesting piece of converging

evidence that cue processing time contributes to switch

costs (Logan & Bundesen, 2003; Mayr & Kliegl, 2003).

The fact that Action-Set based control (Model 2) rep-

resents a more efficient strategy than an Input-Set based

control (Model 1) is supported by Mayr and Kliegl’s (2000)

who showed smaller switch costs (given short preparation

time) with mapping cues than with dimensional cues. Our

validation study confirms these results in the present par-

adigm. Note that Mayr and Kliegl interpreted their results

in terms of an inserted processing stage involving the

retrieval of the category-response mapping information.

Accordingly, the switch costs observed in the short CTI

were interpreted as being increased because of the extra

time needed to retrieve this mapping information. Our

interpretation is quite different. According to us, the larger

switch costs observed in the short CTI result, in part, from

the fact that correct responding is possible even without

adopting the appropriate (Trial n) A-Set, but the price paid

is a larger switch cost.

Congruency

The congruency effect is due, to a large extent, to the less

than perfect input selection coupled with the almost

Table 3 Observed (and

predicted, in brackets)

proportions of errors—spatial

paradigm

CTI cue-target interval. Across

condition Pearson correlation

between observed and predicted

is r = 0.92

Response–Repetition Congruent Incongruent

Switch Non-switch Single Switch

Short CTI Same 0.00 (0.01) 0.01 (0.01) 0.01 (0.00) 0.08 (0.11)

Different 0.02 (0.00) 0.00 (0.02) 0.00 (0.00) 0.10 (0.11)

Long CTI Same 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.05 (0.06)

Different 0.01 (0.00) 0.00 (0.00) 0.00 (0.00) 0.06 (0.06)

Input is focused Mapping information 
is focused 

Temporary I-Set 
biasing when the 
target is presented 

Temporary A-Set 
biasing when the 
target is presented 

Successful
responding
increments the bias, 
which affects the 
next trial 

CTI

Fig. 12 Description of the hypothesized sequence of events when the

task cue indicates the relevant stimulus dimension (e.g., SHAPE). Cue

processing first attracts attention to the relevant dimension and then

the extracted category-response mapping (e.g., CIRCLE ? right key

press) information attracts attention to action representation. Top-

down biasing takes place when the target is presented. The type of

biasing (I-Set or A-Set) is dictated by the currently attended

information. Successful responding increments the default control

parameter in the direction of the n - 1st Task. CTI cue-target interval
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unbiased action representation (short CTI); as well as the

less than perfect action-representation coupled with an

almost unbiased input selection (long CTI). As a result of

these two features (imperfect control-based selection and a

nearly unbiased learning-based selection) irrelevant stim-

ulus information can enter response selection. In congruent

trials, this activation facilitates responding because the two

types of information, relevant and irrelevant, are linked to

the same response. In incongruent trials, the relevant

information makes the correct response potent, whereas the

irrelevant information makes the wrong response potent.

The consequent response competition is reflected in slow-

ing. The increased congruency effect in switch trials results

from the greater emphasis given to the n - 1st task in the

parameters representing perseveration. This, in turn,

increases the potency of wrong responses and weakens the

potency of the correct response.

Response repetition

The results indicated a facilitatory response repetition

effect in repeat trials, a reversed effect in switch trials.

Model 1–2 explains these effects by wCR, which changes

the action representation in favor of the n - 1st task. It

therefore increases the bias in favor of the correct repre-

sentation in repeat trials but decreases this bias in switch

trials.

Action-related effects not explicitly modeled

Broadly speaking, the action-related effects not explicitly

modeled are qualitatively compatible with Model 1–2 as

explained later. The reduction or even elimination of

switch effects following stop trials is explained by the fact

that responding (Philipp et al., 2007) or response activa-

tion (Hübner & Druey, 2006) is necessary to establish a

default bias in favor of Task n - 1. Moreover, if the

response is made according to the wrong task rule, the

default bias accord with this (wrong) rule, which results in

the reversal of the switch effect (Steinhauser & Hübner,

2006). The larger switch effect found with bivalent

response setups (Mayr, 2001; Meiran, 2000b) is explained

by the fact that, when the response setup is univalent, the

category-response mapping is consistent and is not mod-

ified by task switching. As we have shown earlier, the

change in action representation is a major contributor to

the switch cost, which also explains why a change in

response meaning is associated with a cost (Meiran &

Marciano, 2002).

A recent paper by Dreisbach, Goschke, and Haider

(2006) provides an interesting challenge to our conclu-

sions. This study compared conditions in which the

participants were given stimulus-response instructions to

conditions in which the same stimuli and responses were

involved but were instructed in task switch terms. Switch

costs were found only when task switching was instructed

but congruency effects were found regardless of the

instructions. We simulated the performance in the condi-

tion with S-R rule instructions in the spatial paradigm, by

using the chosen parameters from Table 2 and by intro-

ducing the following changes to these parameters. We

assumed that DSWITCH to be zero (no conscious task

decision taking place). In addition, the default bias in favor

of the n - 1st Task was greatly reduced, assuming that the

conscious focusing on this task contributes to the formation

of a bias in favor of Task n - 1. WCR was set at zero for

similar reasons. With the following set of simulated

parameters (wI-Short = 0.95, wA-Short = 0.502, wI-Long =

0.505, wA-Long = 0.95), switch cost became negligible, 6

and 12 ms in the short and long cue-target interval,

respectively, but the congruency effect remained sub-

stantial as in the study of Dreisbach et al, 82 and 62 ms,

respectively. Although this simulation is only suggestive, it

points to an interesting and non-trivial implication that

being conscious of the task contributes to perseveration,

presumably because it helps consolidating the bias in favor

of that task after its execution.

Limitations, potential extensions and future directions

An apparent limitation is that CARIS had been applied to

tasks involving what may be crudely defined as perceptual

classification. We argue that the limitation is more

apparent than real because CARIS can potentially deal

with semantic classification (Sudevan & Taylor, 1987)

and episodic memory retrieval (Mayr & Kliegl, 2000) as

well. For example, in switching between HIGH-LOW

(than 5) and ODD-EVEN tasks, the description of the

stimuli could be based on ordered vectors like (high low

odd even).

Interestingly, the above does not hold for Stroop task

switching (e.g., Allport et al., 1994). It seems that CARIS

may not be able to account for this kind of switching

because task control in this case cannot be based on

choosing between different response-categories (Input-

Set), because these categories are the same for the two

tasks (color names). Similarly, selective action represen-

tation cannot be applied because the mapping of categories

to overt responses is the same for both tasks. Evidence that

Stroop task switching is a special case is the fact that this

form of switching appears to be necessary to generate a

phenomenon called ‘‘switch asymmetry’’ (Allport et al.,

1994; Yeung & Monsell, 2003a, 2003b). This phenomenon

refers to the larger switch cost that is observed in the easier

task. Another case in which switch asymmetry is found is

in language switching (Meuter & Allport, 1999). In that
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study, input selection was disabled because the stimuli

(Arabic digits) were univalent, they had one dimension

only (their value). Action representation was also disabled

as a control strategy because there was no overlap between

the responses. Switching between compatible and incom-

patible spatial responding (e.g., De Jong, 1995) also

produces switch asymmetry and for similar reasons.

There are three additional true limitations. First, while we

acknowledged the fact that task decision and cue encoding are

time-consuming processes, CARIS only estimates their

duration and does not truly explain them. Other models are

better developed to deal with these issues (e.g., Altmann &

Gray, 2002; Logan & Bundesen, 2003). Second, we examined

two extreme cue-target intervals. Given our choice of Model

1-2, an intriguing possibility is that performance in interme-

diate cue-target intervals is characterized by a mixture of trials

involving Model 1 and Model 2 strategy. This idea is very

similar to De Jong’s (2000) idea in which switch costs

sometimes represent a mixture of fully prepared and fully

unprepared trials. A final limitation is that, at present, CARIS

does not account for backward inhibition (Mayr & Keele,

2000), namely slowed switch trials involving returning to a

just-abandoned task. This limitation is mentioned partly

because backward inhibition has been shown to be related to

action (Gade & Koch, 2007b; Philipp et al., 2007; Schuch &

Koch, 2003).

Comparison to Meiran’s (2000a) model

CARIS builds on Meiran’s (2000a) model in several

respects and the two models share core assumptions such

as graded selection, the description of the response selec-

tion process as composed of two components, which are

independently controlled and several key features of the

formalism. This, however, is where the similarity ends.

Unlike its predecessor, CARIS (a) has an explicit inclusion

of task decision; (b) includes residual, unexplained switch

cost and mixing cost; (c) involves the generalization to

three competing models and hybrids; (d) has improved

inferential statistics—most notably, being able to test the

model’s lack of fit and statistical testing on the model’s

parameters; (e) involves an explicit representation of cat-

egory-response binding effects as opposed to implied

representation in Meiran (2000a); (f) allows testing of core

assumptions. For example, Meiran’s model is closest to the

present Model 1, while here we contrasted Model 1 with

Models 2 and 3; (g) CARIS suggests an account for RT

distributions and error rates. Most importantly, Model 1–2

that we endorsed supports reactive control, whereas Mei-

ran’s model assumes proactive control. Accordingly, the

present account of preparation effects on switch costs is

drastically different than that offered by Meiran.

Comparison to other models

There are already quite a few formal models explaining

task switching. Each one of these models emphasizes dif-

ferent phenomena. Probably the phenomena that attracted

most of the attention of modelists are preparation and

switching effects (Badre & Wagner, 2006; De Jong, 2000;

Gilbert & Shallice, 2002; Logan & Bundesen, 2003;

Rubinstein, et al. 2001; Schneider & Logan, 2005; Sohn &

Anderson, 2001; Yeung & Monsell, 2003a). In addition,

Altmann and Gray (2002) modeled phenomena related to

goal forgetting. Only four of the existing models in the

literature explain the action-related effects that we men-

tioned: congruency (Gilbert & Shallice, 2002; Schneider &

Logan, 2005; see also Brown, Reynolds, & Braver, 2007)

and Response-Repetition (Brown et al.; Kleinsorge &

Heuer, 1999). To the best of our knowledge, no model had

so far attempted to explain switching, preparation, and

action-related effects on mean RT, RT distributions and

error rates, all within the same framework (which also

implicates that it explains the various interactions among

these variables). We wish to mention a recent connectionist

model by Badre and Wagner (2006) that seems to resemble

CARIS in some respects. Namely, the link between stimuli

and responses is mediated by conceptual categories.

Moreover, task execution results in incremental changes in

the pattern of connectivity within the network, and the role

of control is in overcoming these carryover effects. It

remains to be shown whether this model can account for

preparation and action-related effects.

Implications for cognitive control

The present work suggests some principles which bear

implications to cognitive control in general:

1. Task execution requires setting up the values of control

parameters. Switch costs are observed when these

parameters change. While we focused on input

selection within a sensory modality and action repre-

sentation, there are additional parameters such as those

involving sensory modality change (Quinlan & Hill,

1999), response modality (Philipp & Koch, 2005), and

the sequence of sub-tasks (Luria & Meiran, 2003,

2006). This means that, at least at some level, there is

no such thing as a task set or a schema. Instead, ‘‘task

sets’’ represent ad-hoc configurations of control

parameters.

2. Task execution (possibly, only partial execution, see

Hübner & Druey, 2006) causes perseverative tenden-

cies. It creates a default bias in favor of the executed

task.
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3. The role of online control is to counteract these

carryover effects.

4. Online control is accomplished by information selection.
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