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Abstract

A new equation for self-focusing of extremely focused short-duration intense pulses is derived using a method that

treats diffraction and dispersion to all orders with nonlinearity present, and self-consistently determines the nonlinear

derivative terms present in the propagation equation. It generalizes both the previous formulation of linear optical pulse

propagation to the nonlinear regime, and the cw nonlinear regime propagation to the pulsed regime by including

temporal characteristics of the pulse. We apply the new equation and propagate a tightly focused picosecond pulse in

silica and explicitly show the effects of spatial-derivative nonlinear coupling terms. � 2002 Elsevier Science B.V. All

rights reserved.

PACS: 42.65.Jx; 42.65.Sf; 03.50.De; 42.65.Re
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1. Introduction

A formulation for propagating optical pulses
and cw beams, valid to all orders in the dimen-
sionless variables g � ðx0spÞ�1 and � � ðk0rpÞ�1,
has been developed for the linear pulse propaga-
tion regime [1–3] and experimentally verified [4].
Here sp and x0 are the pulse duration and central
frequency of the pulse, k0 ¼ nðx0Þx0=c is central

wavevector magnitude in the medium, rp is the
transverse pulse width and nðx0Þ is the refractive
index at the central frequency. The method can be
applied to propagate extremely short pulses and
extremely focused pulses and cw beams without
approximation. Consequently, linear near-field
diffraction effects can be exactly calculated in dis-
persive media (even nonisotropic dispersive media
[3]). Here we extend the approach of [3], which is
based on a consistent and mathematically rigorous
expansion of the linear dispersion relation, to in-
clude a nonlinear optical response of the medium.
Previous studies have not treated nonlinearity to
arbitrary orders [5a–11], or not treated temporal
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[12a–d] or spatial [13–15b] aspects of the expan-
sion to arbitrary order. To go beyond these lowest
order approximations in the nonlinearity and yet
retain all orders in g and �, we generalize our
method by incorporating a systematic perturba-
tion analysis used before for cw beams [15a,15b]
into the formulation previously used for linear
pulse propagation [3]. As a first example, we
present here the results for propagation in an
isotropic Kerr-type nonlinear media. Our treat-
ment is limited only by our assumption that the
coupling of backscattering modes can be ne-
glected; we consider only a one-way propagation
of the field and do not do a two-way propagation
boundary matching [16a–d].

2. Propagation equation: linear susceptibility

We begin by considering the wave equation for
the electric field
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where ~PPL and ~PPNL are the linear and nonlinear
polarization vectors, respectively, or in Fourier
space
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We first consider the case of a linear isotropic
medium where

~PPL ¼ 1

ð2pÞ2
	
Z
d3k dxvð1Þð~kk;xÞ~EEð~kk;xÞ


 expði~kk 	~xx� ixtÞ

and

vð1Þð~kk;xÞ ¼ �ð~kk;xÞ � 1

4p
¼ n2ðxÞ � 1

4p
:

The last equality holds for ordinary isotropic me-
dia. For the time being (in this section) we set the
nonlinear polarization term to zero.

Let us rewrite the propagation equation in terms
of the slowly varying envelope (SVE)~AAof the electric
field for a light pulse, ~EEð~xx; tÞ ¼ ~AAð~xx; tÞ expði~kk0 	~xx�
ix0tÞ; or in Fourier space, Eðx;~kkÞ ¼ Aðx � x0;~kk�
k~0Þ. The SVE multiplies the quickly oscillating
temporal and spatial terms associated with central
frequency x0 and central wavevector ~kk0 ¼ k0ẑz ¼ n
ðx0Þðx0=cÞẑz in the expression for the electric field.
Note that we have chosen the z-axis to be along
the central wavevector. Upon substituting the SVE
into Eq. (2), changing variables x ! x þ x0;
~kk !~kkþ~kk0 so as to remove the central frequency and
central wavevector from the SVE, Eq. (2) yields

k2x

 
þ k2y þ ðkz þ k0Þ2
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c2

� �2!
~AAð~kk;xÞ ¼ 0:
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This is a linear homogeneous equation in the
SVE that can be solved for kz as a function of kx, ky
and x, independent of the field. By rearranging
Eq. (3) and expanding the term

kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
� x0n


ðx0Þ=c

appearing in the resultant equation in the quanti-
ties x, kx and ky , and then Fourier transforming
back to configuration space, the propagation
equation for the SVE for linearly polarized light in
an isotropic medium is obtained [3]:
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Here b1 is an inverse of group velocity, b2 is the
group velocity dispersion, b3 the third-order dis-
persion, cxx is the Fresnel diffraction coefficient and
ctxx is the coefficient of the mixed space–time third-
order term that accounts for the spherical nature
of the wavefront surface of a pulse originating
from a point source [3]. This equation takes on a
particularly enlightening form in dimensionless
units in which time is in units of the temporal pulse
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duration sp ¼ ðx0gÞ�1, length in the transverse
directions is in units of the characteristic transverse
pulse width rp ¼ ðk0�Þ�1, and length in the prop-
agation direction z (along the central wavevector
of the optical pulse) is in units of the diffraction
length LDF ¼ k0r2p [10,11]
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where cxx ¼ c=ðnðx0Þx0Þ, ctxx ¼ cb1=ðnðx0Þx0Þ2.
The result is expressed in terms of the two di-
mensionless parameters � and g which are crucial
in developing our expansion procedure described
below since the expansion will be in these vari-
ables. Note that the right-hand side (RHS) of
Eq. (4) is expressed as a power series in � and g.
The effect of each of the terms on the RHS of Eq.
(4) has been extensively discussed previously [3]
and the values of the coefficients on the RHS of the
equation have been specified.
It is difficult to use this method to develop a

self-consistent treatment including nonlinearity
[17]. Therefore, we develop a different method for
treating the linear propagation problem that will
allow generalization to inclusion of nonlinear
terms to all orders in perturbation theory.
Eq. (1) can be rewritten in terms of the SVE,

thereby eliminating quickly oscillating phases
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Eq. (5) can be rearranged to take the form

o
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where the RHS of Eq. (5) has been written as
�k20FA thereby defining the linear differential
operatorF. This operator is a polynomial of o=ot,
which can be obtained as a power series by ex-
panding integrand of the RHS of Eq. (5) in x
about x0. We now write the equation using di-
mensionless units of x, y, z and t
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where the operator L0 is defined as
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By differentiating both sides of Eq. (6) with respect
to z and using the resulting expression in the last
term of the right-hand side of Eq. (6), we see that
Eq. (6) can be written in terms of a hierarchy of
recurrence equations. This hierarchy of equations
can be rewritten using continuous fractions,
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This equation can be solved exactly to give

OA ¼ ik0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þL0

p�
� 1
�
A: ð8Þ

OperatorO ¼ ik0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þL0

p
� 1Þ in Eq. (8) can be

expanded in the Taylor series in the spatial and
temporal derivatives and consecutive terms can be
compared with our previous approach. Using a
symbolic algebra program, we expanded the ex-
pressionontheRHSofEq. (8) in thesmallparameter
�andfoundperfectagreementwith thecoefficients in
Eq. (4). It can be easily verified that Eq. (8) yields the
original wave equation by adding ik0A to both sides
of (8) and squaring the resulting equation.

3. Propagation equation: nonlinear susceptibility

For specificity and simplicity, let us consider a
nonlinear medium with a Kerr-type nonlinear
susceptibility of the form vð3Þ

ijklð�x;x1;�x2;x3Þ.
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The nonlinear source term in the wave equation
can be written in terms of the SVE as follows:
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Here we have assumed that the wavevector de-
pendence of the nonlinear susceptibility is unim-
portant. If one neglects the frequency dependence
of vð3Þ

ijkl, then in coordinate space one finds
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Note the presence of the two time derivative
terms on the RHS of the equation. The second
term on the RHS gives rise to self-steepening and
the third is a higher-order term.
In order to develop an expansion to all orders

of the equations of motion for a light pulse that is
valid for nonlinear pulse propagation, we now
introduce (in dimensionless units) a new operator
L to replace L0

LA � L0Aþ 4pvð3Þ
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L is z dependent through Aðx; y; z; tÞ, and does not
commute with o=oz.
With the new LA we cannot obtain as simple a

result as Eq. (8), valid for the linear propagation of
optical pulses, but we still obtain a perturbation
expansion in the parameters � and g. Eq. (6) is now
modified and becomes
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If we operate on Eq. (12) with O and decide the
resulting equation by k20 we find
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The RHS of Eq. (13) contains both oA=oz and
oA
=oz terms. To carry out the expansion we
simply replace oA=oz with the RHS of Eq. (12) and
oA
=oz with the RHS of the complex conjugate of
Eq. (12). Next, we isolate terms of different order
in �. This procedure is tedious due to the large
number of terms that must be included, but it is
mathematically rigorous. Applied to the linear
case it gives results equivalent to our final result of
the previous section, Eq. (8). This expansion pro-
cedure can be carried out using a symbolic math-
ematics program, even for anisotropic media,
where the algebra can become extremely tedious.
After carrying out the algebra for our case of an
isotropic medium we finally obtain
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The first term on the RHS of this equation is
the Kerr nonlinearity, the second is a higher-
order Kerr nonlinear term, the third gives rise to
self-steepening and is first-order in g (note that its
coefficient has been modified due to the disper-
sion affecting the Kerr nonlinearity), the fourth is
a nonlinear spatial-derivative term that is first-
order in �2 and modifies the self-focusing even of
beams and long duration pulses, the fifth term is
a nonlinear term that is first-order in both g and
�2 and affects both dispersion and diffraction.
Thus, our expansion method introduces correc-
tions leading both to temporal and spatial mod-
ifications of the pulse shape and phase. In the
coordinate system moving with the group velocity
of the pulse, obtained by making the transfor-
mation t ! t � z=b1, one need only eliminate the
b1 term on the right-hand side of Eqs. (4) and
(14). We have checked that the resulting equation
is equivalent to the one derived by Fibich and
Papanicolaou in [18].
It is trivial to rewrite Eq. (14) from dimen-

sionless units to Gaussian units for time and space,
and to rewrite the equation in SI units one simply
writes time and space variables is SI units and
makes the substitution

vð3ÞðGaussianÞ ¼ ð3
 104Þ2

4p
vð3Þ ðSIÞ

or

vð3ÞðGaussianÞ ¼ ð3
 104Þ2

4p�0
vð3Þ ðSIÞ;

depending upon which SI convention is preferred.
We have only included the first-order time-deriv-
ative nonlinear terms and we have not included
higher-order terms in � in Eq. (14). We can, how-
ever, easily obtain higher-order time-derivative
and spatial-derivative nonlinear terms and higher-
order terms to any desired order in �. When all
time-derivative terms are set to zero, we recover
the results of Fibich and Ilan [15a,15b] for linearly
polarized cw beams, when vectorial effects are
neglected. When the nonlinear coupling terms are
set to zero, we trivially recover the linear pulse
propagation results [3]. Extensive studies of these
results will be presented elsewhere.

4. Numerical example

The numerical case study presented here shows
a particular example of the influence of the new
terms in the wave equation (14), and is designed to
demonstrate the effects resulting due to tight fo-
cusing (rather than short pulse duration). We
consider a tightly focused short-duration pulse
propagating in silica (SiO2). The central wave-
length is taken to be k0 ¼ 800 nm, the temporal
pulse duration sp ¼ 1000 fs, the initial spot size
rp ¼ k0 in x but very large stop size in y, and the

Fig. 1. jAðx; tÞj2 versus x=rp and t=sp after propagating a dis-
tance z ¼ 0:3LDF ¼ 2:2 lm in the frame travelling with the z

component of the group velocity. (a) Full nonlinearity, and

(b) only the Kerr term included.
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ratio of the nonlinear length to the diffraction
length in x is 0.037 (so the effects of the nonlin-
earity are stronger than those of diffraction). Fig. 1
shows jAðx; tÞj2 versus x=rp and t=sp after propa-
gating a distance z ¼ 0:3
 LDF ¼ 2:2 lm and Fig.
2 shows jAðkx;xÞj2 versus kxrp and xsp. We com-
pare the results obtained via numerical propaga-
tion with only the self-phase modulation nonlinear
term ðð2pvð3Þx0Þ=ncÞijAj2A; with those obtained
using the full nonlinearity presented in Eq. (14).
We used a split-step method, with adaptive grid
and step size to increase the numerical stability.
The most prominent effect of the new terms shown
in Fig. 1 is a spatial flattening in the region of the
maximum of the pulse and the self-focusing pro-

cess is slowed down. This is an effect of phase
generated by the terms containing spatial deriva-
tives of the nonlinearity in Eq. (14). Their effect in
the Fourier domain is shown in Fig. 2, where the
asymmetry of the ring surrounding central maxi-
mum is smooth out by the new terms. In Fig. 3 we
show the instantaneous local frequency shift [11]
dx ¼ �o/ðx; tÞ=ot. With new terms included a
more vigorous phase buildup occurs at the edge of
the region where the variation of the amplitude is
large. These effects will be even more evident as the

Fig. 3. Instantaneous local frequency shift o/ðx; tÞ=ot (with
/ðx; tÞ defined by the relation Aðx; tÞ ¼ jAðx; tÞj expði/ðx; tÞ)
versus x=rp and t=sp after propagating a distance

z ¼ 0:3LDF ¼ 2:2 lm in the frame travelling with the z com-

ponent of the group velocity. (a) Full nonlinearity, and (b) only

the Kerr term included.

Fig. 2. Spectral intensity jAðkx;xÞj2versus kxrp and xsp for a
propagation distance of z ¼ 0:3LDF ¼ 2:2 lm. (a) Full nonlin-
earity, and (b) only the Kerr term included.
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pulse duration increases, since the self-focusing
process becomes stronger.
Notice that since we consider a relatively long

temporal duration pulse of 1000 fs, the effects of
the terms including derivatives with respect time of
the nonlinearity do not significantly influence the
dynamics. They become important for shorter
pulses. The most important modification of the
temporal derivative nonlinear terms introduced by
our expansion is the modification of the coefficient
in front of the self-steepening term oðjAj2AÞ=ot.
The coefficient obtained from the Kerr nonlinear-
ity (equal 2 in our dimensionless units) is replaced
by ððcb1=nÞ � 2Þ [12a–d].

5. Conclusions

We have presented a mathematically rigorous
derivation of the nonlinear pulse propagation
equation, free from slowly varying and paraxial
approximations. This generalizes both the previ-
ous formulation of linear optical pulse propaga-
tion to the nonlinear propagation regime, and the
cw nonlinear regime to the pulsed regime. A nu-
merical example that shows the effects of the of
spatial-derivative nonlinear coupling terms for
propagation of a tightly focused picosecond pulse
propagating in silica was presented. The symbolic
mathematics program to calculate the coefficients
in the nonlinear propagation equation is available
upon request.
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