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We theoretically study the dynamics of an adiabatic sweep through a Feshbach resonance, thereby convert-
ing a degenerate quantum gas of fermionic atoms into a degenerate quantum gas of bosonic dimers. Our
analysis relies on a zero temperature mean-field theory which accurately accounts for initial molecular quan-
tum fluctuations, triggering the association process. The structure of the resulting semiclassical phase space is
investigated, highlighting the dynamical instability of the system towards association, for sufficiently small
detuning from resonance. It is shown that this instability significantly modifies the finite-rate efficiency of the
sweep, transforming the single-pair exponential Landau-Zener behavior of the remnant fraction of atoms � on
sweep rate �, into a power-law dependence as the number of atoms increases. The obtained nonadiabaticity is
determined from the interplay of characteristic time scales for the motion of adiabatic eigenstates and for fast
periodic motion around them. Critical slowing-down of these precessions near the instability leads to the
power-law dependence. A linear power law ��� is obtained when the initial molecular fraction is smaller than
the 1/N quantum fluctuations, and a cubic-root power law ���1/3 is attained when it is larger. Our mean-field
analysis is confirmed by exact calculations, using Fock-space expansions. Finally, we fit experimental low
temperature Feshbach sweep data with a power-law dependence. While the agreement with the experimental
data is well within experimental error bars, similar accuracy can be obtained with an exponential fit, making
additional data highly desirable.
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I. INTRODUCTION

Many of the most exciting experimental achievements in
ultracold atomic physics in recent years have used Feshbach
resonances �1–5�. Not only are they a tool for altering the
strength and sign of the interaction energy of atoms �2,3�,
they also provide a means for converting atom pairs into
molecules, and vice versa �5–15�. A magnetic Feshbach reso-
nance involves the collisional coupling of free atom pairs
�the asymptotic limit at large internuclear separation, of the
incident open channel molecular potential� in the presence of
a magnetic field, to a bound diatomic molecule state �the
closed channel� on another electronic molecular potential
surface. The difference in the magnetic moments of the at-
oms correlating asymptotically at large internuclear distance
to the two potential energy surfaces allows the Feshbach
resonance to be tuned by changing the magnetic field
strength �3�. Sweeping the magnetic field as a function of
time, so that the bound state on the closed channel passes
through threshold for the incident open channel from above,
can produce bound molecules. This technique has proved to
be extremely effective in converting degenerate atomic gases
of fermions �6–12� and bosons �13–15� into bosonic dimer
molecules. Fermions are better candidates for Feshbach
sweep experiments due to the relatively long lifetimes of the
resulting bosonic molecules, originating from Pauli blocking
of atom-molecule and molecule-molecule collisions when
the constituent atoms are fermions �16�.

Here we consider the molecular production efficiency of
adiabatic Feshbach sweep experiments in Fermi degenerate
gases. We determinine the functional dependence of the rem-
nant atomic fraction � on the Feshbach sweep rate �, follow-
ing the treatment in a previous Letter �17�, extending the

calculations, and presenting a more detailed account of the
theoretical methodology.

The Fermi energy is the smallest energy scale in the sys-
tem in the fermionic Feshbach sweep experiments of Refs.
�6–12�. Hence we treat the fermions theoretically as occupy-
ing the lowest possible many-body state consistent with sym-
metry considerations arising from the method of preparation.
Consequently we assume that the quantum states are filled up
to the Fermi energy in a fashion consistent with the symme-
try properties of the gas. In this sense, the gas can be thought
of as a zero temperature gas.

The Landau-Zener �LZ� model �18� is the paradigm for
explaining how transitions occur in the collision of a single
pair of atoms in a Feshbach sweep experiment. Theoretical
analysis of molecular production efficiency in Feshbach
sweep experiments in a gas phase have been based on
Landau-Zener theory �4�. Exponential fits have also been
carried out for experimental molecular efficiency data. Fig-
ure 1 shows data from experiments on a quantum degenerate
gas of 6Li atoms �7�, plotting the remaining fraction of atoms
�red squares� as a function of the inverse magnetic sweep
rate. The inset of Fig. 1 includes an exponential fit �blue
dashed curve�, �=0.479 exp�−� /1.3�+0.521, taken from
Ref. �7�. While the exponential curve lies well within all
experimental error bars, the data fit a linear power-law de-
pendence �green curve� to the same level of accuracy. In
what follows we provide the theoretical detail required to
obtain the linear power-law fit in Fig. 1. We show that due to
the nonlinearity of the reduced single-particle �i.e., mean-
field� description of the many-atom system, instabilities are
made possible. These instabilities result in the failure of the
standard LZ theory when the number of atoms is large. We
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also predict two different power-law behaviors, ��� and
���1/3, depending on the initial state of the system prior to
the Feshbach sweep.

The paper is organized as follows. In Sec. II we introduce
the Feshbach model-Hamiltonian and the main approxima-
tions used. In Sec. III we describe the classical phase space
obtained for the above model. Section IV describes how the
molecular production efficiency depends on the stability of
the fixed points for the equations of motion. In Sec. V we
describe the role of quantum fluctuations which lead to the
linear dependence of the molecular production efficiency on
the sweep rate. The analysis of Secs. IV and V is verified by
the exact numerical calculations presented in Sec. VI. Sec-
tion VII contains summary and conclusions.

II. THE ZERO TEMPERATURE MODEL SYSTEM

Experiments on molecule production in slowly swept,
broad Feshbach resonance systems �8,9� are well explained

by employing a thermodynamic equilibrium model �16�. The
narrow 6Li resonance, traversed much more rapidly �7�, is
not expected to fit such a description. We consider the zero
temperature limit to model such experiments. At low tem-
peratures one can use a single bosonic mode Hamiltonian
�20–26� because of the Cooper instability which singles out
the zero momentum mode of the molecules produced. Thus
we take the Hamiltonian to be

H = �
k,�

�kck,�
† ck,� + E�t�b0

†b0 + g��
k

ck,↑c−k,↓b0
† + H.c.� ,

�1�

where �k=�2k2 /2m is the kinetic energy of an atom with
mass m, and g is the atom-molecule coupling strength. The
molecular energy E�t�=EF−�t is linearly swept at a rate
��0 where EF denotes the Fermi energy of the atoms,
through resonance to induce adiabatic conversion of Fermi
atoms to Bose molecules. The annihilation operators for the
atoms, ck,�, obey fermionic anticommutation relations,
whereas the molecule annihilation operator b0 obeys a
bosonic commutation relation.

The Hamiltonian can be further simplified by neglecting
fermionic dispersion. This approximation has been com-
monly used �4,21� and accounts for the use of a simple two-
level LZ model, as opposed to a multilevel one, for such
systems. To justify this assumption we have conducted
many-body numerical simulations to determine the effect of
fermionic dispersion on the adiabatic conversion efficiency.
Figure 2 shows exact numerical results for the adiabatic con-
version of five atom pairs into molecules, for different values
of the atomic level spacing �and hence of the Fermi energy
EF�. It demonstrates that the final adiabatic conversion effi-
ciency is completely insensitive to the details of the atomic
dispersion. It is evident that, while the exact dynamics de-
pends on EF, and the levels are sequentially crossed as a
function of time as the bound state crosses the level energies,
the same final efficiency is reached regardless of the atomic
motional time scale �i.e., regardless of level spacing�. In par-
ticular, the figure shows that in the limit as �→0, it is pos-
sible to convert all atom pairs into molecules. This is a
unique feature of the nonlinear parametric coupling between
atoms and molecules which should be contrasted with a mar-
ginal conversion efficiency expected for linear coupling in
the multilevel LZ model.

FIG. 1. �Color online� Fraction of remnant atoms, �, vs inverse
ramp speed 1/ Ḃ across the 543 G resonance of 6Li. The experimen-
tal data �red squares� of �7�, which saturate at a remnant fraction of
1/2 �19�, and the mean-field calculations �solid green curve� obey a
linear dependence on sweep rate beyond 0.5 ms/G. g2 /�N is mul-
tiplied by 0.5 ms/G to scale the abscissa for the calculated results.
Also shown as a dashed blue line in the inset is the best exponential
fit to the data, �=0.479 exp�−� /1.3�+0.521.

FIG. 2. �Color online� Many-body collective
dynamics of adiabatic passage from a fermionic
atomic gas into a molecular Bose-Einstein con-
densate �BEC� for five pairs of fermionic atoms.
�a� Sweep rate �=2g2N, and �b� sweep rate
�=g2N /4. Overall efficiency is independent of
atomic dispersion in both �a� and �b�.
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Employing the degenerate model with �k=� for all k
�24–26�, it is convenient to rewrite the Hamiltonian in terms
of the following lowering, raising, and z-component opera-
tors �25,27�:

J− =
b0

†�k
ck,↑c−k,↓

�N/2�3/2 , J+ =
�k

c−k,↓
† ck,↑

† b0

�N/2�3/2 ,

Jz =
�k,�

ck,�
† ck,� − 2b0

†b0

N
, �2�

where N=2b0
†b0+�k,�ck,�

† ck,� is the conserved total number
of particles. It is important to note that J− ,J+ ,Jz do not span
SU�2�, since the commutator �J+ ,J−� yields a quadratic
polynomial in Jz �despite the fact that the commutators
�J+ ,Jz� and �J− ,Jz� have the right commutation relations�.
The operators Jx=J++J− and Jy =−i�J+−J−� can also be
defined. Up to a c-number term, Hamiltonian �1� takes the
form

H =
N

2
���t�Jz + g

�N

2
Jx� , �3�

where ��t�=2�−E�t�=�t. Defining a rescaled time 	=�Ngt,
and assuming a filled Fermi sea �i.e., that the number of
available fermionic states is equal to the number of par-
ticles�, we obtain the Heisenberg equations of motion,

d

d	
Jx = 
�	�Jy ,

d

d	
Jy = − 
�	�Jx +

3�2

4
�Jz − 1��Jz +

1

3
� −

�2

N
�1 + Jz� ,

d

d	
Jz = �2Jy , �4�

which depend only on the scaled detuning 
�	�=��t� /�Ng
= �� /g2N�	. It is interesting to note that exactly these equa-
tions of motion are obtained for the two-mode atom-
molecule Bose-Einstein condensate �BEC� �27� where, for

the bosonic case, lowering, raising, and z-component opera-
tors are defined as

J− =
b0

†a1a2

�N/2�3/2 , J+ =
a2

†a1
†b0

�N/2�3/2 ,

Jz =
2b0

†b0 − �k,�
ak,�

† ak,�

N
, �5�

where a1 and a2 are bosonic annihilation operators obeying
bosonic commutation relations. In these definitions, the sign
of the operator Jz has been reversed relative to Eq. �2�, map-
ping fermionic association to bosonic dissociation �24–26�.

III. CLASSICAL PHASE SPACE

The mean-field limit of Eqs. �4� is given by replacing Jx,
Jy, and Jz by their expectation values u, v, and w which
correspond to the real and imaginary parts of the atom-
molecule coherence and the atom-molecule population im-
balance, respectively. Since quantum fluctuations in Jz are of
order 1 /N, it is also consistent to omit the quantum noise
term �2�1+Jz� /N in the equation for dJy /d	 in Eq. �4�, as
long as Jz is of order unity. For small w, however, when the
molecular population is of the order of its quantum fluctua-
tions, this quantum term becomes dominant and will have a
significant effect on sweep efficiency, as will be shown in
Sec. V.

In the classical field limit, the equations of motion

d

d	
u = 
�	�v ,

d

d	
v = − 
�	�u +

3�2

4
�w − 1��w +

1

3
� ,

d

d	
w = �2v , �6�

depict the motion of a generalized Bloch vector on a two-
dimensional “tear-drop” shaped surface �Fig. 3�b�� deter-

FIG. 3. �Color online� Two-
dimensional surfaces depicting
classical phase space: �a� Bloch
sphere of a two-mode Bose-
Josephson system, as in Refs.
�27,29� and �b� zero single-
particle entropy surface of the
atom-molecule system, as in
Eqs. �6�.
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mined by the constraint,

u2 + v2 =
1

2
�w − 1�2�w + 1� , �7�

corresponding to the conservation of single-pair atom-
molecule coherence. The peculiar shape of this equal-single-
pair-entropy surface is a result of the commutation relations
for the operators J− ,J+ ,Jz. For comparison, the two-level
spin Hamiltonian may be written only in terms of SU�2�
generators �27,29� and the mean-field motion is restricted to
the surface of a Bloch sphere �see Fig. 3�a�� as the mean-field
approximation allows for the factorization of the SU�2� Ca-
simir operator J2=Jz�Jz−1�+J+J−= j�j+1� into the constraint

u2 + v2 + w2 = j2. �8�

The surface defined by the constraint �7� should be viewed as
the atom-molecule equivalent of this Bloch sphere. Accord-
ingly, we proceed by following the methods of Ref. �29�
which correspond to a Bloch spherelike phase space, gener-
alizing them to the atom-molecule parametric coupling case.

Since the constraint of Eq. �7� restricts the dynamics to
the two-dimensional surface depicted in Fig. 3�b�, it is
readily seen that in the mean-field limit, Hamiltonian �3� is
replaced by the classical form

H�w,�;
� =
gN3/2

2
�
w + ��1 + w��1 − w2� cos �� . �9�

Here the Hamiltonian is expressed only in terms of the rela-
tive phase between atoms and molecules �	arctan�v /u�,
corresponding to the azimuthal angle in Fig. 3�b�, and the
atom-molecule population difference w, corresponding to its
cylindrical axial coordinate.

The eigenvalues of the atom-molecule system at any
given value of 
 correspond to the extrema �w0 ,�0� of the
classical Hamiltonian �9�, or equivalently, to the fixed points
�u0 ,v0 ,w0� of the mean-field equations �6�:

v0 = 0,
�2

4
�w0 − 1��3w0 + 1� = 
u0. �10�

The number of fixed points depends on the parameter 
. The
point u0=v0=0, w0=1 is stationary for any value of 
. Using

Eqs. �7� and �10�, other fixed points are found from the so-
lutions of

�3w0 + 1�2

4�w0 + 1�
= 
2, �11�

in the domain w0� �−1,1�. Consequently, it is evident that
for 


��2 there are only two stationary solutions, one of
which is w0=1. However, this stationary point bifurcates at
the critical detuning of 
c=�2, so that for 




c, there are
three eigenstates, as depicted in Fig. 4�b�. In contrast, in the
linear LZ problem �Fig. 4�a��, eigenvalue crossings are
avoided, and there are only two eigenstates throughout.

The relation between the reduced single-particle picture
of Fig. 4�b� and the full many-body system it approximately
represents is illustrated in Fig. 5, depicting numerically cal-
culated eigenvalues for ten atom pairs as a function of 
,
when EF=0. One can envisage how, when adding more and
more energy levels, finally collapsing the levels to a single
curve, the curve structure of Fig. 4 emerges. The bifurcation
of the all-atoms mode is shown to emerge from its quaside-
generacy with slightly higher many-body states with a few
more molecules.

FIG. 4. �Color online� The
adiabatic eigenvalues of a linear
LZ problem �a� are contrasted
with the adiabatic level scheme of
the atom-molecule nonlinear sys-
tem �b�. For a critical detuning,
one of the adiabatic eigenvalues in
�b� splits into two, resulting in the
emergence of an additional hyper-
bolic fixed point.

FIG. 5. �Color online� The ten lowest energy eigenvalues for
Hamiltonian �1�, drawn for the degenerate case, �k=0.
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Stability analysis of the various fixed points, preformed
by linearization of the dynamical equations �4� about
�u0 ,v0 ,w0�, yields the frequency �0 of small periodic orbits
around them:

�0

g�N
= �
2 + �1 − 3w0� . �12�

From Eq. �12� it is clear that the characteristic oscillation
frequency about the stationary point �0,0,1� will be �
2−2.
Thus for 
�
c the point u0=v0=0,w0=1 is an elliptical
fixed point, whereas for 
�
c it becomes a hyperbolic �un-
stable� stationary point, with an imaginary perturbation fre-
quency. For the remaining eigenvalues, we can use Eq. �11�
to obtain

�0

g�N
=��1 − w0��3w0 + 5�

4�w0 + 1�
, �13�

giving real �0 for all w0� �−1,1�, approaching zero as
w0→1. Consequently, for 


�
c there are a total of two
elliptical fixed points, whereas for 




c there are two el-
liptical and one hyperbolic fixed points.

The fixed point analysis carried out so far is summarized
in Fig. 6 where we plot the phase-space trajectories, corre-
sponding to equal-energy contours of Hamiltonian �9�, for
different values of 
. As expected from Eq. �9�, the plots
have the symmetry �w ,� ;
�↔ �w ,�+� ;−
�. For sufficiently
large detuning, 


��2, Eq. �11� has only one solution in the

range −1�w0�1. Therefore there are two �elliptic� fixed
points, denoted by a red circle corresponding to the solution
of Eq. �11�, and a blue square at �0,0,1�. As the detuning is
changed, one of these fixed points �red circle� smoothly
moves from all-molecules towards the atomic mode. At the
critical detuning 
=−�2 a homoclinic orbit appears through
the point �0,0,1� which bifurcates into an unstable �hyper-
bolic� fixed point �black star� remaining on the atomic mode,
and an elliptic fixed point �blue square� which starts moving
towards the molecular mode. Consequently, in the regime




�2 there are two elliptic fixed points and one hyperbolic
fixed point, corresponding to the unstable all-atoms mode.
Another crossing occurs at 
=�2 when the fixed point which
started near the molecular mode �red circle� coalesces with
the all-atoms mode �black star�. Plotting the energies of the
fixed points as a function of detuning, one obtains the adia-
batic level scheme of Fig. 4�b�.

As previously noted, for 



�2 the period of the ho-
moclinic trajectory beginning at �0,0,1� diverges. This diver-
gence significantly affects the efficiency of an adiabatic
sweep through resonance because the linear response time to
a perturbation in the Hamiltonian becomes infinitely long.
Consequently, the sweep is never truly adiabatic, and its ex-
pected efficiency is lower than the corresponding LZ effi-
ciency. This effect is discussed in the following section.

IV. EFFECT OF FIXED-POINT INSTABILITY
ON ADIABATIC SWEEP EFFICIENCY

Having characterized the classical phase-space structure
for the parametrically coupled atom-molecule system, we
turn to the process of adiabatically sweeping the detuning 

through resonance, converting fermion atoms into Bose mol-
ecules. As usual, adiabatic following involves two typical
time scales: the sweep time scale given by the inverse sweep
rate 1 /� and the time scale associated with the period 1/�0
of small periodic orbits around the fixed point, given in Eqs.
�12� and �13�. Slow changes to the Hamiltonian �e.g., by
variation of the detuning 
� shift the adiabatic eigenvalues,
as depicted in Fig. 6. Starting with such an eigenvalue �e.g.,
the all-atoms mode for an initial large negative 
�, the state
of the system will only be able to adiabatically follow the
fixed point if its precession frequency about it, �0, is large
compared to the rate at which it moves. The adiabatic con-
version efficiency is related to the magnitude of this preces-
sion, which in turn is proportional to the classical action
accumulated during the sweep.

The relation between the sweep conversion efficiency and
the accumulated classical action is illustrated in Fig. 3. Con-
sider first the SU�2� case of Fig. 3�a�, where mean-field mo-
tion is restricted to the surface of the Bloch sphere u2+v2

+w2=1. This illustration applies to the standard LZ case �18�
as well as to the nonlinear Bose-Josephson system
�27,29,30�. Having started from the “south pole” �0,0 ,−1�
and carried out the sweep through resonance, the classical
state Bloch vector �u ,v ,w� carries out small precessions
about the final adiabatic eigenvector which �for sufficiently
large final detuning� is parallel to the w axis. The surface
area enclosed within this periodic trajectory is just the action,

FIG. 6. �Color online� Equal-energy contours of Hamiltonian �9�
plotted as a function of w and � for different detunings 
. w=1 is all
atoms and w=−1 is all molecules. The various fixed points corre-
sponding to adiabatic eigenvectors are marked by �blue� squares,
�red� circles, and �black� stars.
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�I�u2+v2, accumulated during the sweep. In the extreme
limit of perfect adiabatic following, the precession ap-
proaches a point trajectory, having zero action. Larger nona-
diabaticity leads to larger precession amplitude, and hence to
larger accumulated action. The remanent fraction in the ini-
tial state, �= �1−w�, is directly related to �I by the conser-
vation rule u2+v2= �1+w��1−w�, which near w=1 can be
linearized to give �I�2�. This is the expression usually
used in calculating LZ transition probabilities �18,29�.

For the atom-molecule parametric system of Fig. 3�b�, the
situation is slightly different, since u2+v2= �1+w��1−w�2,
leading to a square root dependence of the remnant atomic
fraction � on �I near w=1. In order to estimate �I, we
transform w ,� into action-angle variables I ,�. In terms of
these variables the nonadiabatic probability � at any finite
sweep rate � is given by

�2 =
�I

2
=

1

2
�

−�

�

R�I,���̇
d�

�̇
, �14�

where R�I ,�� is related to the generating function of the
canonical transformation �w ,��→ �I ,�� �28,29�.

Equation �14� reflects our discussion on characteristic
time scales. In order to attain adiabaticity, the rate of change
of the adiabatic fixed points through the variation of the adia-

batic parameter �, R�I ,���̇, should be slow with respect to

the characteristic precession frequency �̇=�0 about these
stationary vectors. The action increment is proportional to
the ratio of these two time scales.

As long as �̇ does not vanish, the accumulated action can

be minimized by decreasing �̇. For a perfectly adiabatic pro-

cess where �̇ / �̇→0, the action is an adiabatic invariant, so
that a zero-action elliptic fixed point evolves into a similar
point trajectory. For finite sweep rate, the LZ prescription
�18� evaluates the integral in Eq. �14� by integration in the
complex plane, over the contour of Fig. 7, noting that the
main contributions will come from singular points, where �̇
approaches zero and the integrand diverges. Since for a lin-
ear LZ system there are no instabilities, all such singularities
are guarenteed to lie off the real axis, leading to the expo-
nentially small LZ transition probabilities.

The situation changes for nonlinear systems, where insta-
bilities arise. In Sec. III we have shown that for the atom-
molecule system with fermion atoms, the all-atoms mode
becomes unstable to association when the detuning hits the
critical value of 
c=�2. From Eq. �12� it is clear that the
characteristic frequency �̇=�0 vanishes near w0=1. Conse-
quently, there are singular points of the integrand in Eq. �14�
lying on the real axis. In what follows, we show that these
poles on the real axis lead to power-law dependence of the
transfer efficiency on the sweep rate.

In order to evaluate the integral �14�, we need to investi-
gate how the characteristic frequency �̇=�0 depends on the
action-angle � near the instability point �u=0, v=0, w=1�,
where most action �and hence most nonadiabatic correction�
is accumulated. It is evident from Eq. �12� that the preces-
sion frequency near that point vanishes as

�0 � g�N�1 − w0� . �15�

Differentiating Eq. �11� with respect to t, we find that the rate
of change of adiabatic fixed points due to a linear sweep is

ẇ0 =
4�

g�N

�w0 + 1�3/2

3w0 + 5
. �16�

Having found ẇ0, we can now find the explicit form of the
transformation from w0 to the action-angle variable �, near
the instability. The action-angle may be written as

� =� �̇dt =� �0
dw0

ẇ0

. �17�

In the vicinity of the singularity �w0=1� we have �0

�g�N�1−w0� and ẇ0��2� /g�N, resulting in

� =
g2N

�

�2

3
�1 − w0�3/2. �18�

Thus as the adiabatic eigenstate approaches w0=1 the angle
� vanishes as �1−w0�3/2 whereas the characteristic frequency

�̇ approaches zero as �1−w0�1/2. Consequently, we finally

find from Eqs. �15� and �18� that near the singularity, �̇ is
given in terms of � as

�̇ = �3�N

2
g��1/3

�1/3. �19�

Substituting Eq. �19� and �̇=� into Eq. �14� we find that the
nonadiabatic correction depends on � as

� � �1/3. �20�

V. QUANTUM FLUCTUATIONS

So far, we have neglected the effect of quantum fluctua-
tions, which may be partially accounted for by the c-number
limit of the source term ��2/N��1+Jz� in Eqs. �4�. As a
result, we found in the previous section that ẇ0 does not
vanish as w0 approaches unity, and the remaining atomic
population scales as the cubic root of the sweep rate if the

FIG. 7. �Color online� Contour of integration in LZ theory, for
calculating the integral in Eq. �14�. All singularities lie off the real
axis.
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initial average molecular fraction is larger than the quantum
noise. However, starting purely with fermion atoms �or with
molecules made of bosonic atoms�, corresponding to an un-
stable fixed point of the classical phase space, fluctuations
will serve to trigger the association process and will thus
initially dominate the conversion dynamics.

In order to verify that such quantum fluctuations can be
accurately reproduced by a “classical” noise term near the
unstable fixed point w=1, we compare the onset of instabil-
ity from exact many-body calculations to the onset of mean-
field instability according to the revised mean-field equa-
tions,

d

d	
u = 
�	�v ,

d

d	
v = − 
�	�u +

3�2

4
�w − 1��w +

1

3
� +

�2

N
�1 + w� ,

d

d	
w = �2v , �21�

where we have retained the O�1/N� noise term ��2/N��1
+w�. The results, shown in Fig. 8, show excellent agreement
in the early time dynamics, indicating that the mean-field
noise term gives the correct behavior near the instability
point.

Having established the accuracy of the noise term in Eqs.
�21� we proceed to investigate its effect on sweep efficien-
cies. When this additional term is accounted for, Eq. �11�
must be replaced by


 =
2

�w0 + 1
�3w0 + 1

4
−

w0 + 1

N�w0 − 1�� . �22�

This expression reduces to our previous result in Eq. �11�
when the second term on the right-hand side of Eq. �22�,
resulting from the quantum fluctuations, can be neglected
compared to the first term. Since

3w0+1
4 is of order unity

around w0=1, our previous treatment is only valid provided
that 
w0�ti�−1
�1/N.

For smaller initial molecular population, Eq. �16� should
be replaced by

ẇ0 =
�

g�N

� 3w0 + 5

4�w0 + 1�3/2 +
w0 + 3

N�w0 + 1�1/2�w0 − 1�2� .

�23�

Hence in the vicinity of w0=1 the eigenvector velocity in the
w direction vanishes as

ẇ0 = ��N�/g�8��w0 − 1�2, �24�

in contrast to the nonvanishing eigenvalue velocity in Eq.
�16�. Substituting ẇ0 from Eq. �24� into Eq. �17�, we obtain
the action-angle,

� = −
�32g2

�
�1 − w0�−1/2. �25�

The characteristic frequency �̇ is now proportional to ����−1

instead of Eq. �19� so that �I��2, and �31–33�

� � � . �26�

Equations �26� and �20� constitute the main results of this
work. We predict that the remnant atomic fraction in adia-
batic Feshbach sweep experiments scales as a power law
with sweep rate due to the curve crossing in the nonlinear
case. When the system is allowed to go near the critical point
�i.e., when 1−w0�ti��1/N� quantum fluctuations are the ma-
jor source of nonadiabtic corrections, leading to a linear de-
pendence of the remnant atomic fraction on the sweep rate.
We note that a similar linear dependence was predicted for
adiabatic passage from bosonic atoms into a molecular BEC
�31�. When the initial state is such that it has already a large
molecular population �i.e., for 1−w0�ti��1/N� and fluctua-
tions can be neglected, we obtain a cubic-root dependence of
the final atomic fraction on sweep rate.

VI. NUMERICAL MANY-BODY RESULTS
AND COMPARISON TO EXPERIMENT

In order to confirm the predictions of Secs. IV and V, we
carried out exact many-body numerical calculation for par-
ticle numbers in the range 2�N�800, by Fock-space rep-
resentation of the operators Ji and direct propagation of the
many-body equations �4�, according to the methodology of
�24�. Figure 9 shows � versus dimensionless inverse sweep
rate g2N /�. The exact calculations are compared with a
mean-field curve �solid green line�, computed numerically
from the mean-field equations �21�. The log-log plot high-

FIG. 8. �Color online� Atomic population fraction vs time, start-
ing with a gas of fermion atoms using exact N=10, 100, and 1000
particle calculations �solid lines� and the mean-field theory of Eqs.
�21� �dashed lines�, with 
=0.
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lights the mean-field power-law dependence, obtained in the
slow ramp regime �
g2N, whereas the log-linear inset plot
demonstrates exponential behavior. For a single pair of par-
ticles, N=2, the quantum association problem is formally
identical to the linear LZ paradigm, leading to an exponential
dependence of � on sweep rate �see inset of Fig. 9�. How-
ever, as the number of particles increases, many-body effects
come into play, and there is a smooth transition to a power-
law behavior in the slow ramp regime �
g2N. We note that
this is precisely the regime where Eq. �14� can be used to
estimate �I and � �18�. The many-body calculations con-
verge to the mean-field limit, corresponding to a linear de-
pendence of � on �, as predicted in Eq. �26�.

The results shown in Fig. 9 prove the convergence of
many-body calculations to the mean-field theory used as a
basis for our analysis in previous sections. Having estab-
lished the validity of this classical field theory, and numeri-
cally confirmed the appearance of power-law behavior, we
return to the experimental results of Ref. �7� shown in Fig. 1.
Comparison of our mean-field numerical calculation with the
experimental data �red squares in Fig. 1� clearly shows good
agreement. However, since an equally good exponential fit
can be found �7�, as shown in the inset of Fig. 1 �dashed
line�, current experimental data do not serve to determine
which of the alternative theories is more appropriate. We
have obtained similar agreement with the experimental data
of Ref. �6�, but data scatter and error bars are again too large
to conclusively resolve power laws from exponentials. Addi-
tional precise experimental data over a wider range of slow
ramp sweep rates and different particle numbers will be re-
quired to verify or to refute our theory.

VII. SUMMARY AND DISCUSSION

We have shown that nonlinear effects can play a signifi-
cant role in the atom-molecule conversion process for degen-

erate fermionic atomic gases. In linear LZ theory, the preces-
sion of the two-state Bloch vector about the adiabatic
eigenstate never stops �all the poles of the the integrand in
Eq. �14� lie off the real axis�, leading to exponential depen-
dence on sweep rate. The nonlinear nature of the reduced
mean-field dynamics in the large N limit of the many-body
system introduces dynamical instabilities. For the fermionic
association case, it is the all-atoms mode that becomes un-
stable. The period of the precession about this mode di-
verges, leading to real singularities of the integrand in Eq.
�14�. Consequently, power-law nonadiabaticity is obtained.

While the experimental data were originally fit with LZ
exponential behavior �7�, they fit a power-law dependence
just as well. Future experimental work with a larger range of
sweep rates should serve to determine which fit is best at low
temperatures.

The modification of LZ behavior into a ���3/4 power-
law dependence has been predicted for linearly coupled, in-
teracting Bose-Josephson systems �29,30�. Here, and in Ref.
�17�, we applied the theoretical technique of �29�, adapting it
to the case of a nonspherical two-dimensional phase space
surface. The exact power law for the atom-molecule system
was shown to depend on the role quantum noise plays in the
conversion process. When it is negligible, we find that �
��1/3. However, starting from a purely atomic gas, quantum
fluctuations dominate the dynamics, resulting in a ���
power law. The same linear dependence was previously
found for the bosonic photoassociation problem �31�.

Our numerical results support our analytical predictions,
demonstrating how exponential LZ behavior, applicable to
two atoms, is transformed into a power-law dependence as
the number of atoms increases �see Fig. 9�. The analysis
based on Eq. �14� makes the differences between the two
cases transparent, relating them to different types of singu-
larities.

We note that the same power laws of ���1/3 and ���
appear in recent theoretical studies of dynamical projection
onto Feshbach molecules �32,33�. The power law in �32�
results from the nature of the projected pairs, correlated pairs
giving a ���1/3 power law whereas uncorrelated pairs give
linear dependence, due to their respective overlaps with the
molecular state. For comparison, the quantum noise term in
our analysis corresponds to initial uncorrelated spontaneous
emission, leading to ��� linear behavior, whereas for a
larger initial molecular population, correlations between
emitted pairs are established and emission becomes coherent,
yielding the ���1/3 power law. The approach taken in �33�
is rather different, based on a variant of the Wiener-Hopf
method, yet it results in precisely the same power laws.
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FIG. 9. �Color online� Many-body calculations for the fraction
of remnant atoms, �, vs dimensionless inverse sweep rate for vari-
ous particle numbers in the range N=2–800. The many-body re-
sults for a large number of particles converge to the mean-field
results �solid green line� computed numerically from the mean-field
limit of Eqs. �4�.
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