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Abstract

We derive a propagation equation for the pulse envelope of an electromagnetic field in an isotropic nonlinear

dispersive media. The equation is first order in the propagation coordinate. We develop expressions valid without any

additional assumptions on the form of the nonlinear polarization. Specific results are given for a Kerr-type nonlinear

polarization in the form of a truncated nonlinear differential polynomial. We discuss the applicability of the expansion

and determine the conditions for its validity; if and only if the counter-propagating wave is negligible is the expansion

valid. We take into account a vectorial character of the electromagnetic field and show that it generates corrections of

the same order as the nonparaxial terms.

� 2003 Elsevier Science B.V. All rights reserved.
1. Introduction

The propagation equation governing the evolution of the slowly varying envelope of the electric field of a
light pulse of light is key to understanding nonlinear optical phenomena. The wave equation for an optical

pulse is derived from Maxwell equations, but to save computational effort, one usually considers the slowly

varying envelope of the electric field and develops a propagation equation which involves only the first

derivative in the propagation direction. In the regime of very short pulses, strongly focused pulses and/or

pulses with large intensities, great care must be taken in order to retain mathematical self-consistency in

going beyond simple slowly varying envelope and paraxial approximations. There are many examples

where simulation of pulse propagation beyond these approximations is necessary. One example is in near-

field scanning optical microscopy [1], where an optical pulse (or beam) with transverse dimension a small
fraction of a wavelength can be generated at the end of an optical fiber pulled to a narrow tip and coated

with metal. The slowly varying envelope approximation (SVEA) cannot be used to propagate a pulse
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(beam) wherein forward and backward propagating components are both present and interact with one

another. Another example is a very short duration pulse that is only a few optical cycles long. Starting from

the pioneering work of Lax et al. [2], the conceptual and practical importance of describing such pulses was

well recognized; it is described even in textbooks [3]. Many attempts has been made [4–13] to generalize a

parabolic wave equation in a rigorous manner to include to all order corrections in the small parameters

g � ðx0s0Þ�1 and � � ðk0r0Þ�1. Here s0 is the pulse duration, x0 is the central frequency of the pulse,
k0 ¼ nðx0Þx0=c is central wavevector magnitude in the medium, r0 is the transverse pulse width and

n0 � nðx0Þ is the refractive index at the central frequency. Few publications addressed the issue of pre-

serving a vectorial nature of the problem [10–13]. Here we present a first attempt to combine a short,

strongly focused pulses regime with full vectorial aspect of the propagation.

The outline of the paper is as follows. In Section 2 we begin by considering the general electromagnetic

wave equation derived from Maxwell�s equations. In Section 2.1 we treat the case of a linear polarization,

and we then introduce the slowly varying envelope concept in Section 2.2. We complete the derivation, first

in the model scalar field case in Section 3, where we introduce dimensionless units in Section 3.1. We outline
the expansion in the scalar wave equation case in Section 3.2, describe the normal-incidence boundary

matching for the scalar wave case in Section 5, and derive the full equation in the general vectorial case in

Section 4. A summary and conclusion is presented in Section 8.

It was shown by Brabec et al. [6] that it is meaningful to consider a slowly varying envelope of the electric

field, Aðr; tÞ, even down to the single optical cycle regime. Similarly, one can consider a slowly varying

envelope for extremely focused optical beams or pulses. Since in these cases Aðr; tÞmay not be slowly varying
as a function of its arguments, we prefer to call Aðr; tÞ the wave packet envelope (WPE) for the electric field.
2. Wave equation

We begin with Maxwell equations. Upon using the Faraday and Amp�eere equations we obtain the wave

equation (1) for the electric field vector in the usual fashion [14], and Gauss�s Law (2) serves as a constraint

equation:
�r�r� Eðr; tÞ ¼ 1

c2
o2t Eðr; tÞ½ þ 4pPðr; tÞ
; ð1Þ
r � Eðr; tÞ½ þ 4pPðr; tÞ
 ¼ 0: ð2Þ
Here the polarization has linear and nonlinear contributions, P ¼ PL þ PNL. The linear and nonlinear parts

of the polarization depend on details of the medium in which the light propagates. A particular contri-

bution to the nonlinear polarization corresponding to a given frequency and wavevector may be singled

out, depending on the nonlinear process that we wish to describe (e.g., second harmonic generation or self-

focusing). Our discussion is initially quite general, without using a specific form of the nonlinear polari-
zation. Later, as an illustration, we use the case of a Kerr nonlinearity.

2.1. Linear polarization

Let us consider only the linear polarization in Eq. (1). In a linear dispersive medium, the electric in-

duction vector, DL ¼ Eþ 4pPL, can be described by the convolution of the electric field vector with a

tensor response function êeðtÞ [14]
DLðr; tÞ ¼ Eðr; tÞ þ 4pPLðr; tÞ ¼
Z þ1

ds êeðt � sÞEðr; sÞ: ð3Þ

�1
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Although our method can in principle treat the anisotropic case, we restrict our discussion here to an

isotropicmedium to avoid tedious tensorial algebraic expressions. In the isotropic case, the dielectric tensor êe is

proportional to the unit matrix, andwe can drop the tensorial indices in Eq. (3) leaving a scalar quantity êe � e.
In the linear regime, the right-hand side (RHS) of Eq. (1) may be transformed to Fourier space as follows:
1

c2
o2t EðtÞ
�

þ 4pPLðtÞ
�
¼ �

Z þ1

�1
dxe�ixt x2

c2
~EEðxÞ
�

þ 4p~PPLðxÞ
�

¼ �
Z þ1

�1
dxe�ixt x

c

� �2
eðxÞ ~EEðxÞ � �

Z þ1

�1
dxe�ixt k2ðxÞ ~EEðxÞ; ð4Þ
where ~EE and ~PP are the Fourier transforms of E and P. We also used the relation k2ðxÞ ¼ eðxÞ x=cð Þ2
ð¼ n2ðxÞ xcð Þ2Þ and Eq. (3) together with convolution theorem.

2.2. Slowly varying envelope

Using the results of the previous subsection, we can rewrite Eq. (1) as
�r�r� Eðr; tÞ ¼ 4p
c2

o2tP
NLðr; tÞ �

Z þ1

�1
dxe�ixt k2ðxÞ~EEðxÞ: ð5Þ
Now we use the concept of the WPE of the electric field Eðr; tÞ and the nonlinear polarization PNLðr; tÞ,

Eðr; tÞ ¼ eik0z�ix0tAðr; tÞ þ c:c:; ð6aÞ
PNLðr; tÞ ¼ eik0z�ix0tRðr; tÞ þ c:c:; ð6bÞ

where x0 is central angular frequency of the pulse and k0 ¼ kðx0Þ ¼ nðx0Þx0=c is its central wavevector.

It is essential that the positive (i.e., eik0z�ix0tAðr; tÞ) and negative (the c.c. of eik0z�ix0tAðr; tÞ) spectral
components be distinguishable if the concept of a WPE is to make sense. This is assured if ~AAðk;xÞ 
 0 for

all k and for all frequencies x near zero frequency. This condition is in turn satisfied if the pulse is at least as

long as an optical cycle and its central propagation direction is well defined.

If the electric field vector E and nonlinear polarization PNL satisfy Eq. (5), an analogous equation for

their WPEs, A and R, have the same structure provided we (a) make the following substitutions for the

differential operators r and ot:
r ! ~rr �
o~xx
o~yy

oz þ ik0

0@ 1A; ð7aÞ
ot ! eotot � ot � ix0; ð7bÞ

and (b) we substitute k2ðxÞ with k2ðx þ x0Þ under the Fourier integral in Eq. (5). Next we expand

kðx þ x0Þ in a Taylor series,
kðx þ x0Þ~AAðxÞ ¼
X
j¼0

bj

j!
xj

 !
~AAðxÞ; ð8Þ
where bj ¼ ojxkðxÞjx¼x0
and b0 ¼ kðx0Þ ¼ ðnðx0Þx0Þ=c � k0. Upon taking the inverse Fourier transform of

Eq. (8), we can define a dispersion operator D̂D
D̂DðotÞAðtÞ � D̂DAðtÞ �
X
j¼0

bj

j!
iotð Þj

 !
AðtÞ: ð9Þ
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Finally, Eq. (5) takes the form
� ~rr� ~rr� Aðr; tÞ ¼ 4p
c2

~oo2tRðr; tÞ � D̂D2AðtÞ: ð10Þ
3. Scalar approximation

In this section we assume that A and R are linearly polarized along the x direction
A ¼ êexA and R ¼ êexR; ð11Þ

i.e., we explicitly neglect longitudinal (along propagation direction) component of the electric field. Within
this approximation Eq. (10) reduces to
~rr2A ¼ 4pðo~tt � ix0Þ2

c2
R� D̂D2A; ð12Þ
where A ¼ Aðr; tÞ is a scalar function. We can rewrite Eq. (12) as follows:
ozA ¼ 1

2ik0
ðk20
�

� D̂D2ÞA� D?Aþ 4p
c2

ðot � ix0Þ2R� o2zA
�
: ð13Þ
Eq. (13) also applies to the case of a planar waveguide in the y–z plane if all derivatives with respect to x are
ignored. In this case, due to the boundary conditions, both the electric field vector and the polarization
vector have nonzero components only along the x direction for TE modes.

Eq. (13) is the starting point for our perturbative analysis of the scalar wave equation case. In the next

section we introduce the dimensionless variables used for deriving the expansion.

3.1. Dimensionless parameters

Throughout the rest of the paper we take time in units of the initial temporal pulse duration s0, and x and
y in units of the initial transverse pulse width r0, and z in units of 1=k0, where k0 ¼ kðx0Þ. Dimensionless
variables are very useful for the estimates of the contribution of different terms in the expansion that we

present below. Furthermore, we introduce the small dimensionless parameters � and g, that are our ex-
pansion parameters. They determine the contribution of higher order terms in our expansion. Our change

of variables is defined by:
r? ¼ r0~rr?; ð14aÞ
t ¼ s0~tt; ð14bÞ
z ¼ 1

k0
~zz: ð14cÞ
As long as we measure time and space in the units defined by (14a), the magnitude of the temporal

derivatives of amplitude A and its derivatives with respect to ~xx and ~yy (perpendicular spatial variables) for a
Gaussian-shaped pulse are of the same order as the amplitude of the pulse itself, Oðo~ttAÞ ¼ Oðo~xxAÞ
¼ Oðo~yyAÞ ¼ OðAÞ ¼ Oð1Þ. We also define two dimensionless parameters:
� ¼ ðk0r0Þ�1; ð15aÞ
g ¼ ðx0s0Þ�1: ð15bÞ

These parameters give the perpendicular pulse dimension in natural units of 1=k0 and the pulse duration

in natural units of 1=x0. The dispersion parameter g characterizes the temporal extent of the pulse; the
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shorter the pulse, the larger the parameter g. The diffraction parameter e characterizes the transverse spatial
extent of the pulse.

In terms of the dimensionless variables in Eq. (15a), Eq. (13) is written as
o~zzA ¼ i

2

D̂D2ðx0go~ttÞ
k20

� 1

 !
Aþ i

e2

2
D ~??A|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

L̂LA

þ�4piðgo~tt � iÞ2

2n20
R|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

N̂NR

þ i

2
o2~zzA: ð16Þ
We defined the operators L̂L and N̂N in order to introduce a compact notation. Both operators are linear,

and both commute with o~zz, since they do not depend on z.
From Eq. (16) we obtain a series expansion of o~zzA in the small parameters g and �2. The two pa-

rameters g and �2 are already identified, but as we show later, there is one additional parameter (that we
call d) that is needed in the nonlinear case. Its particular form depends on the form of the nonlinear

polarization.
3.2. Expansion in terms of g, � and d

3.2.1. Linear polarization case

If the magnitude of the electric field is small and we can neglect the nonlinearity in Eq. (16), this equation

simplifies to
o~zzA ¼ L̂LAþ i

2
o2~zzA: ð17Þ
It then has an formal analytic solution of the form
o~zzA ¼
�
� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2i L̂L

p
� i
�
A; ð18Þ
where þ and � correspond to forward and backward propagating waves. The forward linear propagation

operator is described by
L̂L ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2i L̂L

p
� i; ð19Þ
where both small parameters g and � are hidden in the definition of L̂L. When the pulse is very wide com-

pared with 1=k0, diffraction becomes small. In the plane wave limit � ! 0, we can simply neglect all the

terms beyond the zeroth order in � to obtain a one-dimensional equation (also valid for one-dimensional

pulse propagation in optical fibers). Using Eqs. (16) and (19) we find
L̂L ! i
D̂Dðx0go~ttÞ

k0
� i; ð20Þ
where
D̂Dðx0go~ttÞ ¼
X
j¼0

bj

j!
ix0gotð Þj

 !
: ð21Þ
Eq. (20) justifies the name linear dispersion operator for D̂D introduced in Section 2.2. The operator D̂D
can be truncated at any power of g to yield a partial differential equation for the propagation dynamics.

Second and third order expansions are standard textbook examples. An almost equally simple exercise

consists of expanding L̂L in a series in g and �. In this case we obtain a linear partial differential propagation
equation in the independent variables z, t, x and y. Upon expanding Eq. (20) to fourth order in g and � we
find
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L̂L ¼ �x0b1

k0
go~tt �

i

2

b2x
2
0

k0
g2o2~tt þ

1

6

b3x
3
0

k0
g3o3~tt þ

i

24

b4x
4
0

k0
g4o4~tt

þ i

2

�
þ 1

2

b1x0

k0
go~tt þ

ix2
0

2

1

4

b2

k0

�
� b2

1

k20

�
g2o2~tt

�
�2r2

~?? � i
8
�4r4

~?? þOðmaxðg; �Þ5Þ: ð22Þ
We have shown above how to obtain a differential propagation equation upon expanding the linear

propagation operator defined in Eq. (19). However, this method is not easily generalized to the nonlinear

case. Therefore we introduce an alternative expansion method, that can be generalized to the nonlinear

case, consisting of the recursive substitution of the z-derivatives on the RHS of Eq. (17). The details of the

generalization to the nonlinear scalar case will be presented in the next section, and the nonlinear vectorial

case will be discussed towards the end of this paper. The main idea of the method is to construct a series of
approximations for o~zzA using Eq. (16), which in the linear case reduces to
o~zzA� L̂LA ¼ i

2
o~zz o~zzAð Þ: ð23Þ
Let ½o~zzA
ðjÞ be the jth order approximation to o~zzA. We define the recurrence equations:
½o~zzA
ð1Þ � L̂LA ¼ 0; ð24aÞ
½o~zzA
ð2Þ � L̂LA ¼ i

2
o~zzð½o~zzA
ð1ÞÞ ¼

i

2
o~zzðL̂LAÞ ¼

i

2
L̂Lo~zzA ¼ i

2
L̂L½o~zzA
ð1Þ ¼ W1ðL̂LÞ½o~zzA
ð1Þ ¼

i

2
L̂L2A; ð24bÞ
where in (24b) we first used (24a), then we commuted the L̂L and o~zz operators, used the first order ap-

proximation of o~zzA, and noted that the left-hand side of (24b) is equivalent to a polynomial of L̂L
(W1ðL̂LÞ � ði=2ÞL̂L) acting on ½o~zzA
ð1Þ. For higher order j we define ½o~zzA
ðjþ1Þ by
½o~zzA
ðjþ1Þ � L̂LA ¼ i

2
o~zzð½o~zzA
ðjÞÞ ¼ WjðL̂LÞ½o~zzA
ðjÞ: ð25Þ
As a result of subsequent substitutions, the RHS of Eq. (25) eventually becomes equal to a polynomial of L̂L
(WjðL̂LÞ) operators acting on ½o~zzA
ðjÞ. The functions ½o~zzA
ðjÞ defined in this way form a sequence of approxi-

mations for o~zzA. In the previous paragraph we mentioned that derivatives with respect to x; y; t of the WPE
are the same order of magnitude as the pulse itself. We identified two quantities g and � that determine the

temporal and spatial extent of the pulse with respect to the central frequency and wavelength, respectively.

We use these quantities as small expansion parameters. The difference between o~zzA and ½o~zzA
ðjÞ is of order gj

and �2j. This can be understood from the following arguments. First, to simplify the notation we define a

universal parameter f ¼ maxðg; �2Þ, and use f for our estimates. It follows from equations (24a) that:
Oð½o~zzA
ð1ÞÞ ¼ Oðf Þ; ð26Þ

and we can estimate the difference ð½o~zzA
ðjþ1Þ � ½o~zzA
ðjÞÞ using Eq. (25)
O ð½o~zzA
ðjþ1Þ
�

� ½o~zzA
ðjÞÞ
�
¼ O o~zzð½o~zzA
ðjÞ

�
� ½o~zzA
ðj�1ÞÞ

�
¼ O f ð½o~zzA
ðjÞ

�
� ½o~zzA
ðj�1ÞÞ

�
¼ O f 2ð½o~zzA
ðj�1Þ

�
� ½o~zzA
ðj�2ÞÞ

�
¼ � � � ¼ Oðf jþ1Þ: ð27Þ
The sequence of approximations ½o~zzA
ðjÞ should be geometrically convergent due to (27), and in the limit

it satisfies Eq. (17), hence limj!1 ½o~zzA
ðjÞ ¼ o~zzA. We stress that in order to simplify the notation and make

the above discussion more transparent we have introduced a united parameter f . However, expansion in

the parameters g and � can be made more or less independently. Upon truncating the series expansion and
neglecting terms with powers of g and � higher than five, our new expansion procedure recovers exactly the

result of Eq. (22).
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3.2.2. Nonlinear generalization

We now generalize the expansion method introduced at the end of the previous subsection to the nonlinear

case. Specifically,wederive aperturbative expansionofEq. (16).Ourmethod is general and canbeapplied toany

type of nonlinearity, but we find it instructive to present the derivation for a specific example first. We assume a

form ofR corresponding to aKerr-type nonlinearity, a nonlinear polarization that in scalar case takes the form
Rðr; tÞ ¼ vjAðr; tÞj2Aðr; tÞ: ð28Þ
^ 2
The order of magnitude of the nonlinear term may be denoted as OðNNRÞ ¼ OðvjAj AÞ. Therefore in the
nonlinear case there is one extra parameter d ¼ vjAj2, that we need to add to the two expansion parameters
introduced previously. Again to simplify notation we redefine f to include this new parameter
f ¼ maxðg; �2; dÞ: ð29Þ

With this new f we can estimate the order of magnitude of the full nonlinear operator in Eq. (16), in

analogy to the linear case
OðL̂LAþ vN̂NðjAj2AÞÞ ¼ Oðf Þ: ð30Þ

Now we can proceed with our expansion procedure. We introduce recurrence equations, which are a

direct generalization of Eqs. (24a). The nonlinear term is an explicit function of the WPE; it depends on z
and does not commute with o~zz. Moreover, it is a function of A and A�. Hence, we need to define a recurrence

series of approximations ½o~zzA
ðjÞ as follows:
½o~zzA
ð1Þ � L̂LA
�

þ vN̂NðjAj2AÞ
�
¼ 0; ð31aÞ
½o~zzA
ð2Þ � L̂LA
�

þ vN̂NðjAj2AÞ
�
¼ i

2
o~zzð½o~zzA
ð1ÞÞ ¼

i

2
L̂L½o~zzA
ð1Þ
�

þ vN̂Nð2jAj2½o~zzA
ð1Þ þ A2½o~zzA
ð1Þ
�
Þ
�
; ð31bÞ
and in general
½o~zzA
ðjþ1Þ � L̂LA
�

þ vN̂NðjAj2AÞ
�
¼ o~zzð½o~zzA
ðjÞÞ: ð32Þ
Note that we have to substitute the complex conjugate of ½o~zzA
ðjÞ into the RHS of Eq. (32). The estimates
of the difference ð½o~zzA
ðjþ1Þ � ½o~zzA
ðjÞÞ can be calculated using essentially the same arguments as for the linear
case, taking into account the new definition of f . One can also prove that limj!1 ½o~zzA
ðjÞ ¼ o~zzA, since
½o~zzA
ð1Þ

satisfies the same equations as o~zzA. If we truncate the expansion after the second order in f we find
o~zzA ¼ L̂LAþ 2pv
n20

ijAj2A
�

� i
pv
n20

jAj4Aþ g
b1c
n0

��
� 2

�
o~ttðjAj2AÞ

�
� ig2

b1c
n0

�"
� 1

�2

o2~tt ðjAj
2AÞ � b2x0c

n0
Ajo~ttAj2
�

þ jAj2o2~tt Aþ 1

2
A�ðo~ttAÞ2

�#

� i�2 Ajo~xxAj2
�

þ jAj2o2~xxAþ 1

2
A�ðo~xxAÞ2 þ Ajo~yyAj2 þ jAj2o2~yyAþ 1

2
A�ðo~yyAÞ2

��
: ð33Þ
4. Vectorial case

In this section we generalize the techniques introduced in Section 3.2 to the full vectorial case. Previously

we used two scalar operators L̂L and N̂N to define recurrence relations (31a) and (32). If we take into account

vectorial character of the electric field and include all three components of the vectors, operators L̂L and N̂N
have to be replaced with tensorial operators. Fortunately, in (3.2) we did not use the fact that these op-
erators are scalars and most of the algebra from paragraph (3.2) was universal and can be directly extended

to the multi-component case.
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First we derive a vectorial analog of Eq. (16). We start the derivation by rewriting Eqs. (1) and (2),

repeating the steps in Section 2.2:
� ~rr� ~rr� Aðr; tÞ ¼ ~rr2Aðr; tÞ � ~rrð ~rr � Aðr; tÞÞ ¼ ~rr2A� ~rr ~rr � A
� �

¼ 4p
c2

o2~ttR� D̂D2A; ð34aÞ
� �

~rr � Rþ êeðotÞA ¼ 0: ð34bÞ
Here we used the fact that A and R satisfy similar equations as E and P provided we make the substitutions

given by (7a), as we pointed it out in Section 2.2. We introduced a new operator êeðotÞ,
êeðotÞAðr; tÞ �
Z þ1

�1
dxe�ixt eðx þ x0Þ~AA k;xð Þ; ð35aÞ

¼
X
j¼0

1

j!
ojeðxÞ
oxj

����
x¼x0

ðiotÞj
 !

Aðr; tÞ: ð35bÞ
êeðotÞ is related to the operator D̂D
D̂D2 ¼ ðiot þ x0Þ2êeðotÞ
c2

: ð36Þ
Relation (36) is simply a Fourier transform of the relation, k2ðxÞ ¼ eðxÞx2=c2ð¼ n2ðxÞx2=c2Þ, written in
operator form. Furthermore, using Eq. (34b) we can write
~rr � A ¼ � ~rr � êe�1ðotÞR; ð37Þ

where êe�1 is defined by the relation
êe�1ðotÞRðr; tÞ ¼
X
j¼0

1

j!
oj

oxj

1

eðxÞ

� �����
x¼x0

ðiotÞj
 !

Rðr; tÞ: ð38Þ
Upon substituting Eq. (37) into (34a), expanding and reorganizing terms we obtain
2ik0ozA ¼ k20A� o2zA�r2
~??A� ~rr ~rr � êe�1ðotÞR

� �
� D̂D2Aþ 4p

c2
o2~ttR: ð39Þ
We can express Eq. (39) in dimensionless units, just as we did in the scalar case of Section 3.1
o~zzA ¼ i

2
o2~zzAþ i

2

D̂D2ðx0go~ttÞ
k20

� 1� �2r2
~??

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

L̂L

A

þ � 2pi
n20

ðgo~tt � iÞ2 þ i

2
êe�1ðx0go~ttÞ

�2o2~xx �2o~xxo~yy �o~xx o~zz þ ið Þ
�2o~xxo~yy �2o2~yy �o~yy o~zz þ ið Þ

�o~xx o~zz þ ið Þ �o~yy o~zz þ ið Þ o~zz þ ið Þ2

0B@
1CA

264
375

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
N̂N

R: ð40Þ
Eq. (40) is an analog of Eq. (16). In principle we can again use procedures developed in Section 3.2 to

obtain an expression for o~zzA. After replacing L̂L with L̂L, N̂N with N̂N, A with A and R with R (operators L̂L and N̂N

are defined in Eq. (40)), we can construct recurrence relations Eqs. (31a)–(32). Thus we obtain a series of

successive approximations for o~zzA for the vectorial field case.

Again, we consider the specific example of a Kerr medium and define R appropriate for the vectorial case.
In general, the nonlinear polarization is related to the E-field by the tensor susceptibility v̂v. Here however, in
order to obtain a compact final result, we assume that the medium is isotropic and we take R in the form
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R ¼ v A � A�ð ÞA
n

þ c
2

A � Að ÞA�
o
; ð41Þ
where v is the third order nonlinear susceptibility, c ¼ 0 for electrostriction, c ¼ 1 for nonresonant elec-

tronic nonlinearities and c ¼ 6 for molecular orientation [16,17].

We can now write a three-dimensional version of Eq. (33), and directly solve the vectorial version of

recurrence relations (32). We notice, however, that we can introduce further simplification, namely it is

possible to eliminate Az from the set of final coupled equations. To achieve this we replace the equation for

o~zzAz in the set of equations (40) with an equation for Az obtained from (37)
Az ¼ i

�o~xx
�o~yy

o~zz

0@ 1A � Aþ i

�o~xx
�o~yy

o~zz þ i

0@ 1A � êe�1ðx0go~ttÞR: ð42Þ
Thus, instead of finding a recurrence relation for ðo~zzAx; o~zzAy ; o~zzAzÞ we switch to a recurrence relation for
ðo~zzAx; o~zzAy ;AzÞ which takes the following form:
½o~zzAx
ð1Þ ¼ ðL̂LAþ N̂NRÞx; ð43aÞ

½o~zzAy 
ð1Þ ¼ ðL̂LAþ N̂NRÞy ; ð43bÞ
0 1 0 1

Að1Þ
z ¼ i

�o~xx
�o~yy

0

@ A � Aþ i
�o~xx
�o~yy

i

@ A � e�1ðx0go~ttÞR: ð43cÞ
For the general case we have:
½o~zzAx
ðjþ1Þ ¼ ðL̂LAþ N̂NRÞx þ
i

2
o~zz½o~zzAx
ðjÞ; ð44aÞ
½o A 
ðjþ1Þ ¼ ðL̂LAþ N̂NRÞ þ i
o ½o A 
ðjÞ; ð44bÞ
~zz y y 2
~zz ~zz y0 1 0 1
ðjþ1Þ
�o~xx@ A ðjÞ

�o~xx@ A �1
Az ¼ i �o~yy

0

� Aþ io~zzAz þ i �o~yy

o~zz þ i

� e ðx0go~ttÞR: ð44cÞ

call that here, in a manner similar to what we did in the linear and nonlinear scalar cases, when we
evaluate right-hand side of Eq. (44a) we substitute o~zzAx, o~zzAy and Az with the jth approximation. We can

obtain expressions for o~zzAx and o~zzAy accurate to any given order. Upon assuming that Ayðz ¼ 0Þ ¼
Azðz ¼ 0Þ ¼ 0, the expression second order accurate in maxðg; �Þ does not contain Ay� �� � �
o~zzAx ¼ L̂LAx þ
2pð1þ c=2Þv

n20
ijAxj2Ax � i

pð1þ c=2Þv
n20

jAxj4Ax þ g
b1c
n0

� 2 o~ttðjAxj2AxÞ

� ig2
b1c
n0

�"
� 1

�2

o2~tt ðjAxj2AxÞ �
b2x0c
n0

Axjo~ttAxj2
�

þ jAxj2o2~tt Ax þ
1

2
A�
xðo~ttAxÞ2

�#

� i�2
2

1þ c=2

��
� 5

�
Axjo~xxAxj2 þ

1

1þ c=2

�
� 1

�
jAxj2o2~xxAx þ

1

1þ c=2

�
� 2

�
A2
xo

2
~xxA

�
x

� 1

2
A�
xðo~xxAxÞ2 þ Axjo~yyAxj2 þ jAxj2o2~yyAx þ

1

2
A�
xðo~yyAxÞ2

��
þ . . . : ð45Þ
Eq. (45) determines Ax to second order in g and �.
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5. Normal-incidence boundary matching

In this section we set up the boundary matching of the field across an interface for normal incidence from

vacuum onto a nonlinear medium. For simplicity we analyze the scalar case, but our considerations are

general and may be extended to the vectorial case. The normal incidence boundary matching can be simply
performed using our method because both the value of the WPE and its derivative with respect to the

coordinate normal to the surface are known at the interface within the nonlinear medium. This is an im-

portant advantage of our method over other possible propagation methods.

We consider a field incident from the left onto a nonlinear medium whose interface is located at

z ¼ 0. The field in vacuum to the left of the nonlinear medium is given by Eðr; tÞ ¼ ðBðr; tÞeikzþ
Cðr; tÞe�ikzÞe�ix0t, where k ¼ x0=c is the central wavevector in vacuum, the amplitude Bðr; tÞ is given as an

initial condition, and the reflected amplitude Cðx; y; tÞ is to be determined, together with the amplitude

Aðr; tÞ of the field inside the nonlinear medium, Eðr; tÞ ¼ Aðr; tÞeik0z�ix0t. The boundary matching condi-
tions are given by:
Aðr; tÞjz¼0 ¼ Bðr; tÞjz¼0 þ Cðr; tÞjz¼0; ð46Þ
ik0Aðr; tÞjz¼0 þ k0o~zzAðr; tÞjz¼0 ¼ ikðBðr; tÞjz¼0 � Cðr; tÞjz¼0Þ þ kðo~zzBðr; tÞjz¼0 þ o~zzCðr; tÞjz¼0Þ: ð47Þ

The terms involving ~zz derivatives in Eq. (47) can be evaluated using the RHS of Eq. (22) for the linear

(vacuum) side and (33) for nonlinear side of the interface. Hence, Eq. (47) only involves derivatives with

respect to x, y and t. Eqs. (46) and (47) can be Fourier transformed with respect to x, y and t and this

yields a set of algebraic equations that can then be solved for Aðkx; ky ;xÞ and Cðkx; ky ;xÞ in terms of

Bðkx; ky ;xÞ.
If the nonlinear terms are negligibly small, the standard linear boundary matching conditions apply [15].

If higher order diffraction and dispersion terms are kept, boundary matching can be accurately applied even

for tight focusing and short pulse conditions. For the nonlinear problem, the resulting algebraic equations
will be nonlinear.
6. Comparison with other methods

For very long pulses and beams our final result of the expansion may be simplified by setting all the

terms with time derivatives equal to zero. Several attempts has been already made to derive in the rigorous

way the parabolic propagation equation for optical beams and our result should be related to them. Our
propagation equation for beams is identical to that of Fibich and Ilan [12]. Approach presented here is a

direct generalization of their method for time dependent pulse case. Few other authors [11,13] developed

another calculational scheme for the same problem. The comparison in this case is a bit more subtle and

requires more careful discussion, since the final propagation equation obtained by Ciattoni et al. [11] and de

la Fuente et al. [13] differs from the one presented above. Since both groups get mutually consistent results

we will explain the difference between our and theirs results using paper of de la Fuente et al. [13] as an

example. Authors of [13] use the concept of decomposition of the electric field vector E into Eþ and E�,

which they identify as forward and backward moving waves. In one dimension it can be illustrated upon
taking Fourier transform of equation
d2

dz2
EðzÞ þ k20EðzÞ ¼ � 4p

c2
x2

0PðzÞ; ð48Þ
where k0 ¼ ðnðx0Þx0Þ=c, x0 is beam frequency and PðzÞ is nonlinear polarization. In Fourier domain the

analog of equation (48) takes the form
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ðk2 � k20Þ~EEðkÞ ¼
4p
c2

x2
0
~PPðkÞ: ð49Þ
This equation can be treated as a sum of two equations involving functions ~EE� defined as
~EE� ¼ � 4px2
0

2k0c2
~PPðkÞ
k � k0

: ð50Þ
Similar decomposition is possible in three-dimensional case; after some algebra, one obtains
~EE� ¼ �4p
2bn20

k20 ~PPtðkÞ � ktðk� � ~PPðkÞÞ
kz � b

" #
; ð51Þ
where ~PPtðkÞ is a transverse part of polarization, kt-transverse (perpendicular to ẑz direction) part of wave
vector, b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip
k20 � k2t and k� ¼ kt � bẑz. Further simplification is obtained upon assuming that ~EEðkÞ is

nonnegligible only for k in the neighborhood of ð0; 0; kzÞ and ignoring ~EE� in the nonlinear polarization.

This assumption allows for solving the equation for ~EEþ only. One can find that
kz~EEþðkÞ ¼ b~EEþðkÞ þ 4p
k20 ~PPtðkÞ � ktðk� � ~PPðkÞÞ

2bn20
; ð52Þ
and authors of [13] (upon taking backward Fourier transform and expanding b) derive a nonparaxial
propagation equation for the envelope of electric field vector. We derived an equation for the quantity
~EE ¼ ~EEþ þ ~EE� by taking a sum of Eq. (52) with an analogous equation for ~EE�. It turns out that the form of

our new equation for ~EE is almost the same as the mathematical form of the equation for ~EEþ (Eq. (52)), but

we have a few additional terms that are of the second order in the nonparaxiality parameter f , defined
above. When all of the additional terms are included, after some algebra, we obtain an equation that is

exactly identical with (45).
7. Numerical results

We consider a tightly focused beam propagating in silica (SiO2). The central wavelength is taken to be

k0 ¼ 800 nm, the initial spot size rp ¼ 1:5k0. Fig. 1 shows the on axis value of jAðx ¼ 0; y ¼ 0; zÞj2 versus z
normalized to the initial value (Að0; 0; 0Þ ¼ 1) for two different powers P ¼ 2:2PCR (solid curve) and

P ¼ 3:5PCR (dashed curve). PCR is the critical power for self-focusing and for fused silica it is equal to 2.6

MW. Numerical data was obtained using 2D+1 code, based on explicit two-step leapfrog method [18]. We

kept all the new nonparaxial terms. The solid curve corresponds to intensity oscillations in the strong self-
focusing regime and the dashed curve corresponds to the case when two oscillations are followed by the

breakup into two maxima which eventually are smeared out due to diffraction. These oscillations, due to

the competition between self-focusing and diffraction, are only present when we include higher order terms

in Eq. (45). Without these terms our numerical simulations lead to catastrophic self-focusing as indicated

by the two additional curves in Fig. 1. The dotted curve corresponds to the higher intensity case, and dash–

dotted curve corresponds to the lower intensity case. In both cases we included only self-phase-modulation

nonlinearity and first order diffraction (we used the usual nonlinear Schr€oodinger equation). Figs. 2–4

correspond again to the higher intensity case and present full three-dimensional picture of the beam am-
plitude jAðx; y; zÞj for three different values of z; 6.2, 8.5 and 18.8 lm. Fig. 2 shows the beam intensity at the

plane of tightest focusing, Fig. 3 correspond to the minimum between two peaks on the dashed curve in Fig.

1 and finally Fig. 4 shows the beam after it broke into two separate beams. At higher intensities and/or

stronger focusing one can observe multiple filamentation in the beam dynamics [12]. Evidently initial cy-

lindrical symmetry of the pulse is broken.



Fig. 1. One-dimensional plot of the on-axis beam intensities versus propagation distance z for two different powers P ¼ 2:2PCR (solid

curve) and P ¼ 3:5PCR (dashed curve) calculated with new terms of the propagation equation derived in this paper. Dotted and dot–

dashed lines correspond to NLS solutions.

Fig. 2. Three-dimensional plot of the beam intensity at the propagation distance of z ¼ 6:2 lm for power P ¼ 3:5PCR.
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The effects of the new terms including derivatives of the nonlinearity with respect to time become im-

portant for short pulses. The most important modification introduced by our expansion is the modification

of the coefficient in front of the self-steepening term otðjAj2AÞ. The coefficient obtained from the Kerr

nonlinearity (2 in our dimensionless units) is replaced by ðcb1=n� 2Þ in Eq. (33), hence corrections are of

the same order as original coefficient. In conclusion, our expansion method introduces noticeable correc-

tions leading both temporal and spatial modification of the pulse shape and phase.



Fig. 3. Three-dimensional plot of the beam amplitude at the propagation distance z ¼ 8:5 lm for power P ¼ 3:5PCR.

Fig. 4. Three-dimensional plot of the beam amplitude at the propagation distance z ¼ 18:8 lm for power P ¼ 3:5PCR.
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8. Summary and conclusion

The concept of the wave packet envelope (slowly varying envelope) has been extended to the regime of

extremely tightly focused and extremely short duration optical pulses. We derived a propagation equation
for the wave packet envelope in an isotropic nonlinear dispersive media that is valid to all orders in dif-

fraction and dispersion. The vectorial character of the electromagnetic field was fully taken into account;

the vector character generates corrections of the same order as the scalar nonparaxial ones. We self-con-

sistently introduce both types of corrections. Final results were given for a Kerr-type nonlinearity in the

form of a truncated nonlinear differential polynomial. Surprisingly, even in the vectorial case, the second

order expansion can be reduced to the equation for only one component of the field. This enormously

simplifies numerical simulations of optical pulse propagation.
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The boundary matching of the electromagnetic wave as it enters the nonlinear medium can be simply

performed for normal-incidence using our method because both the value of the wave packet envelope and

its derivative with respect to the coordinate normal to the surface are known. The normal-incidence scalar

case was explicitly considered; a generalization to the vectorial case is straightforward.

Finally we notice that our method is able to treat propagation in the anisotropic media. In this case

operators êe and D̂D will no longer be diagonal in the vector field components, which makes the algebra
more sophisticated. Furthermore, we can easily treat other types of nonlinear polarization, e.g., in-

cluding Raman scattering, a saturated nonlinearity and even a coupled set of equations as in the case of

third harmonic generation, as long as the pulse spectral width is narrow in comparison with the central

frequency.
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