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Interference of Bose-Einstein Condensates†

Y. B. Band
Department of Chemistry and the Ilse Katz Center for Nano-Science, Ben-Gurion UniVersity,
Beer-SheVa 84105, Israel

ReceiVed: July 2, 2008; ReVised Manuscript ReceiVed: August 26, 2008

A formalism for describing the coherence and interference properties of two atomic clouds of Bose-Einstein
condensates (BEC) is presented, which is applicable even in the opposite limits when the BEC clouds are
initially coherent and when they are initially independent. First, we develop a mean-field theory wherein one
mean-field mode is used, and then, for fragmented (i.e., independent) condensates, we use a mean-field theory
with two modes. We then develop a full two-mode field theory, with a field operator composed of a sum of
two terms containing matter wave mode functions φ1 and φ2, that multiply the destruction operators of the
modes, â1 and â2. When atom-atom interactions are present and when the mode functions overlap, the matter
wave mode functions φ1 and φ2 develop components moving to the right and left, and this results in interference
fringes in the density. At the many-body level, another source of interference arises from expectation values
of the form 〈 âi

†âj〉 with i * j, which become nonzero due to tunneling and interactions. We detail how these
two sources of interference affect the density profile and the density-density correlation functions of
Bose-Einstein condensates in the coherent and in the fragmented regimes.

I. Introduction

The nature of quantum gases has been of interest to
physicists and chemists since the beginning of quantum
mechanics.1 Interference of matter waves in such systems
can used to explore their nature.2-13 In the first interference
experiment on Bose-Einstein condensates2 a barrier potential
was adiabatically turned on in the middle of a trapped BEC
so that a double-well potential resulted. Thus, the left and
right wells were separated by a barrier whose height could
be experimentally controlled. Upon removing the trap
potentials and the barrier between them, the atoms expanded
freely and overlapped. The photographs obtained (e.g., see
Figures 2 and 3) show spectacular interference fringes.2,3,6

The ground-state of the BEC in such experiments can be
coherent, with each atom being described in the mean-field
approximation as being in a superposition of orbitals centered
at the left and right wells, or if the barriers are sufficiently
high that tunneling between them is negligible, it can be
fragmented. The nature of the interference in these two cases
can be quite different. Another form of interference experi-
ment involves exposing a BEC to light pulses, called Bragg
pulses, which create a periodic optical potential for the atoms
composing the BEC, and the coherent process of Bragg
diffraction off of the periodic potential produces a splitting
of the condensate with unidirectional momentum transfer.4-6

In this case, each atom of the condensate is in a superposition
of two wave packets, one having a net momentum relative
to the other, ψ(r, t) ) �0(r, t)eik0 · r + �1(r, t)eik1 · r, and the
density n(r, t) ) |ψ(r, t)|2 contains an interference term
proportional to cos[(k1 - k0) · r].

At zero temperature, the simplest description of an N particle
wave function of a BEC gas is given by a product of identical
single-particle wave functions

and the dynamics of entire BEC is described in terms of a single-
particle wave function, ψ(r, t), via the nonlinear Schrödinger
equation (also called the Gross-Pitaevskii equation)14

wherein the atomic interactions are modeled in the mean-field
approximation via the nonlinear term, gN|ψ(r, t)|2, with an
interaction strength g proportional to the s-wave scattering length
a0, g ) (4πp2a0)/m, where m is the mass of the atoms. The
density of the condensate is given by n(r, t) ) N|ψ(r, t)|2. In
ref 2, N ) 5 × 106 sodium 23Na atoms in the F ) 1, mF ) -1
ground hyperfine state were held in a 3D harmonic magnetic
trap and were exposed to a blue detuned laser-light sheet, which

† Part of the “Karl Freed Festschrift”.

Ψ(r1, r2, ..., rN) ) ∏
i)1

N

ψ(ri) z [ψ(r)]N (1)

Figure 1. Double-well potential, created by applying a repulsive (blue
detuned) light potential to a harmonic magnetic trapping potential, that
the atoms in the BEC experience before the potential is dropped and
the atoms in the BEC are allowed to freely expand.
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produced a repulsive potential so that the resulting total potential
had a double-well as a function of x, and in the two perpen-
dicular directions, the potential was a strongly confining
harmonic potential, that is, V(r) ) [(mωx

2/2)x2 + V0e-x2/2σ2] +
[(mωy

2/2)y2] + [(mωz
2/2)z2]. The potential V(x) is shown in Figure

1. The harmonic magnetic potential and the blue detuned laser-
light sheet were then simultaneously switched off at t ) 0, and
the atoms were allowed to freely expand. Figure 2 shows the
interference pattern in the measured atomic density after a 40
ms free expansion for two different strengths of the repulsive
potential. Another view of the matter wave interference in the
BEC density is shown in Figure 3.

The “Bragg pulse” method of producing an interference
pattern in a BEC is explained in Figure 4. Two counter-

propagating light pulses with photon momenta pk1 and pk2

create a periodic potential, and if the Bragg pulses satisfy a
“phase-matching” condition equivalent to conservation of the
energy and momentum, atoms in the BEC scatter off of the
potential to produce a momentum component pa ) pk1 - pk2.
The diffraction of the atoms off of the periodic potential can
also be described as follows: atoms from the BEC absorb a
photon from the pulse with momentum pk1 and emit a photon
into the pulse with momentum pk1 by stimulated emission. If
the photon frequencies of the Bragg pulses are ω1 and ω2 and
their wave vectors are k1 and k2, then the momentum that the
atoms obtain in the process of absorption and emission, pa )
pk1 - pk1, and their kinetic energy pa

2/2m satisfy the phase-
matching conditions

This is a Bragg scattering process. For a condensate wave
function given by ψ(r, 0) ) �0(r, 0) before the Bragg scattering,
immediately after the Bragg scattering, the condensate wave
function becomes ψ(r, 0) ) c0�0(r, t) + c1�0(r, 0)eipa · r/p, where
the amplitude c1 ) (1 - c2

2)1/2 depends on the Bragg pulse
intensities and the pulse durations. After a time t, the moving
wave packet will have moved a distance d(t) ) pat/m. Figure 5
shows the calculated density of N ) 500 000 sodium atoms in
a harmonic trap with 84, 59, and 42 Hz immediately after the
application of the Bragg pulses and 274 µs afterward. An
interference pattern in the density is clearly visible.

Upon application of two sets of Bragg pulses, one can make
an initial condensate with three wave packets having central
momentum p1 ) 0, p2 ) pkph(x̂ - ŷ), and p3 ) 2pkph ) pkphx̂,
as shown in Figure 6a. After some time, the three wave packets

Figure 2. Interference pattern of two expanding sodium condensates
observed after 40 ms free of expansion time-of-flight for two different
powers of the argon ion laser-light sheet that creates a repulse potential
between two parts of the condensate. The fringe periods were 20 and
15 µm, the powers were 3 and 5 mW, and the maximum absorptions
were 90 and 50%, respectively, for the left and right images. The vertical
axis in this figure corresponds to the horizontal axis in Figure 1.
Reproduced from ref 2.

Figure 3. 3D view of the matter wave interference of two sodium
BEC condensates. The projection of the sodium gas density is plotted
versus position along the interference axis and the other axis perpen-
dicular to it, and the “line-of-sight” (the same view as that in Figure 2)
after the trap is removed and the gas is allowed to expand for 40 ms
via free expansion. The scale of the figure is about 0.12 mm.

Figure 4. Phase-matching condition for Bragg pulse spectroscopy.
Conservation of energy and momentum determine the conditions for
two counter-propagating light pulses to create a new component of a
BEC which propagates with the atomic momentum pa ) pk1 - pk1.
The moving wave packet will have moved a distance of d(t) ) pat/m
from the initial wave packet.

δ ≡ pω1 - pω2 )
pa

2

2m
(3a)

pa ) pk1 - pk2 (3b)
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separate, but instead of having just three wave packets, a fourth
wave packet with momentum p4 ) p1 - p2 + p3 develops.15,16

This process comes about from four-wave mixing. The initial
state of the condensate is given by ψ(r, 0) ) c1�0(r, 0)eip1 · r/p

+ c2�0(r, 0)eip2 · r/p + c3�0(r, 0)eip3 · r/p, with amplitudes c1, c2,
and c3 that depend on the Bragg pulse intensities and the pulse
durations; in Figure 6, the initial population fractions are taken
to be 0.412, 0.176, and 0.412, respectively. Upon substituting
this initial condition into eq 2, the nonlinear term on the right-
hand side of the equation creates a wave packet with momentum
p4 ) p1 - p2 + p3, that is, the three waves in the initial
condensate wave function generate the fourth wave via the
nonlinear term gNψ*(r, t)ψ(r, t)ψ(r, t). This process can also
be viewed as an interference process; wave packets 1 and 2
form an interference pattern of which packet 3 scatters off, and
also, wave packets 2 and 3 form an interference pattern of which
packet 1 scatters off. Figure 6b shows the wave packets in
physical space some time after the Bragg pulses created the
three initial waves; the four wave packets have already separated
from one another.

In section II, we provide a description based upon mean-
field theory of the BEC in a double-well potential and describe
the interference patterns that are expected due to the interaction
of the atoms in the condensate. In section III, we augment the
mean-field picture by giving a field theory description of a BEC
in the double-well potential and describe a new interference
mechanism that contributes to the density profile of the atoms

upon releasing the trap potential. Section IV concludes and
summarizes the results.

II. Fragmented, Coherent, and General States of a
Condensate

Let us now consider the type of states that can be formed in a
double-well potential of the form shown in Figure 1. For simplicity,
let us allow only two modes, φL and φR; the general form of the
multiparticle wave function under this description is

Two limiting forms of eq 4 are the coherent state given by eq 1
with ψ ) 1/(2)1/2(φL + φR), which yields amplitudes given by the

binomial coefficients { cn ) (N
n )} , n ) 0, 1,..., N, and the

fragmented condensate, which has only one term in eq 4, Ψ )
cN/2φL

N/2φR
N/2. In the latter case, exactly N/2 atoms are present in

each well (N must be even), whereas in the former, each condensate
atom has an equal probability of being in the right and left wells.

Often in double-well interference-type experiments, atoms
are prepared in a double-well trap potential, and it is not clear
whether the atoms form a coherent BEC, fragmented BECs, or

Figure 5. Interference pattern of N ) 500 000 sodium atoms in a
harmonic trap with 84, 59, and 42 Hz immediately after the application
of Bragg pulses and 274 µs afterward. The vertical axis in this figure
corresponds to the horizontal axis for the condensate wave packets in
Figure 4.

Figure 6. Four-Wave Mixing. In the top frame, the initial condensate
is subjected to a set of Bragg pulses that make three coherent wave
packet components, ψ(r, 0) ) c1�0(r, 0)eip1 · r/p + c2�0(r, 0)eip2 · r/p +
c3�0(r, 0)eip3 · r/p. In the bottom frame, these components have produced
a fourth wave with momentum p4 ) p1 - p2 + p3, and the wave packets
have separated from one another.

Ψ(r1, r2, ..., rN) ) c0φL
N + c1φL

N-1
φR + c2φL

N-2
φR

2 + ...+

cN/2φL
N/2

φR
N/2 + ...+cN-1φLφR

N-1 + cNφR
N (4)

Interference of Bose-Einstein Condensates J. Phys. Chem. B, Vol. 112, No. 50, 2008 16099

http://pubs.acs.org/action/showImage?doi=10.1021/jp8058195&iName=master.img-004.jpg&w=190&h=329
http://pubs.acs.org/action/showImage?doi=10.1021/jp8058195&iName=master.img-005.jpg&w=165&h=341


a more general form of a many-body wave function of the form
in eq 4. However, it is feasible to produce two spatially
separated, initially independent BECs,17 and this allows for
experiments with definitely fragmented BECs. The interference
pattern that results from two initially independent condensates
is great interest, as is the transition from a coherent state to a
fragmented state as the strength of the repulsive potential
between the wells increases.

Markus Greiner and colleagues performed a series of experi-
ments to study the nature of the degenerate quantum gas in a
multiple-well optical potential.18 They measured the momentum
distribution of the condensate when it was held in a 3D periodic
optical potential by suddenly releasing the atoms from the optical
lattice potential (i.e., turning the optical potential off) at different
potential trap depths and then taking absorption images of the
atomic cloud after the cloud had expanded. The absorption
images of the cloud showing the interference patterns that
resulted is shown in Figure 7. As the height of the optical
potential was increased, an interference pattern developed, but
as the strength of the optical potential increased beyond a certain
value (16ER in Figure 7, where the recoil energy is defined as
ER ) p2kph

2 /2m), the interference pattern disappeared. This
disappearance is a zero temperature phase transition from a
superfluid phase of the condensate to a Mott insulator phase.
The dimensionless parameter used in describing the transition
is the ratio of the tunneling rate from well to well to the
nonlinear interaction strength which is proportional to g.19 The
phase coherence of the condensate can be restored from the
Mott insulator state when the optical potential is lowered again
to a value where the ground state of the many-body system is
completely superfluid. Upon reversing the potential depth from
20ER back down to 0ER, there is a revival of the interference
pattern.

Without atom-atom interaction, there cannot be interference
in the expectation value of the density operator for a state that
is well described as a product of number states of the two
initially isolated ultracold clouds in the double-well potential.
For any such initial state given by a product of number states

the interference term in the density vanishes, as we shall now
explicitly show. The density n(r, t) at position r at time t

is given by the expectation value of the density operator n̂(r, t)
) ψ̂†(r, t)ψ̂(r, t)

Here, the field operator ψ̂ for the condensate can expanded in
terms of the mode functions φi

Substituting the field operator (eq 7) and the number state (eq
5) into the formula in eq 6 for the expectation value, we get

The interference terms on the right-hand side of eq 8 vanish,
irrespective of the nature of the basis functions φi(r, t), since
〈Ψ0|âR

† âL|Ψ0〉 and 〈Ψ0|âL
† âR|Ψ0〉 vanishes for states |Ψ0〉 , which

are a product form such as that in eq 5. This completes the
proof. In contrast, for an initial state given by a product of
coherent states

interference terms proportional to 〈Ψ0|âR
† âL|Ψ0〉 would be

present. Therefore, without atom-atom interaction, we expect
the initially fragmented state not to have interference fringes
but the coherent state to have interference.20

However, for interacting atoms (i.e., for nonvanishing g), the
first term on the right-hand side of eq 8 can yield an interference
pattern, as we shall now see. We use a multiorbital mean-field
theory21,22 to determine the orbitals for fragmented states. For
two modes, this will be similar to a two-orbital approximation
for an excited state of helium, but here, many bosons can occupy
a given orbital; no Pauli exclusion principle applies to bosonic
particles. For a double-well potential, the two-orbital time-
dependent mean-field equations take the form of23

Figure 7. Phase transition from superfluid to Mott insulating regimes. Dynamical evolution of the multiple matter wave interference pattern
observed for various potential trap depths from 0ER to 20ER (frame a has a trap depth of 0, b has 3ER, c has 7ER, d has 10ER, e has 13ER, f has
14ER, g has 16ER, and h has 20ER). The vanishing of the interference pattern is caused by a phase transition from a coherent state into a state where
the number of atoms in each each lattice site is exactly specified (i.e., a transition from a state of the form of eq 9 to a state of the form in eq 5.
Reproduced from ref 18.

|Ψ0〉 ∼ (âL
†)NL(âR

† )NR|0〉 (5)

n(r, t) ) 〈Ψ0|ψ̂†(r, t)ψ̂(r, t)|Ψ0〉 (6)

ψ̂(r, t) ) âLφL(r, t) + âRφR(r, t) (7)

n(r, t) ) 〈Ψ0|( ∑
i)L,R

âi
†âi|φi(r, t)|2) +

(âR
† âLφR

† (r, t)φL(r, t) + h.c.)|Ψ0〉 (8)

|Ψ̃0〉 ∼ [ 1

√2
(âL

† + âR
† )]N

|0〉 (9)
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and initial conditions φL,R(x, t ) 0) are necessary to begin
propagation of these equations. The operator ĥ is the usual one-
particle Hamiltonian, and P ) 1 - |φL〉〈 φL| - |φR〉〈 φR| is a
projector that ensures orthonormalization of the orbitals φL and
φR. The last two terms on the right-hand side of eqs 10a and
10b are the self and cross mean-field interaction terms, and the
parameter λ is proportional to the interaction strength parameter
g. Note the factor of 2 in the cross mean-field interaction terms;
the cross mean-field is twice as strong as the self mean-field, in
a fashion similar to BEC wave packet collisions,24 two-
component (or more) BEC theories,25 and optical pulse interac-
tions.26 In two-mode time-dependent mean-field, the density is
expressed by n(x, t) ) NL|φL(x, t)|2 + NR|φR(x, t)|2 (see the first
term on the right-hand side of eq 8). Since we are interested
in propagating the orbitals after the external potential is
dropped, in our scenario, ĥ is just the kinetic energy operator
-(1/2m)(∂2/∂x2).

Figure 8 shows the calculated density as a function of time
after the external potential is dropped, given an initial frag-
mented condensate with 500 atoms in each well with densities
centered at the well minima, (x0 with x0 ) 6 for λ ) 0.1. At
about t ) 3, one begins to see impact of the interference term
in the density, which becomes strongly pronounced as time
proceeds. For comparison, we plot the solution to the (one-
mode) Gross-Pitaevskii equation (in red), which does not show
interference fringes. We conclude that the density of two initially
independent (fragmented) condensates which begin to overlap
can show interference effects due to interparticle interaction.

The interference fringes appearing in Figure 8 are simple to
interpret. Atoms in the φL wave packet encounter the mean-
field potential resulting from the repulsive interactions with the
atoms in wave packet φR, and wave packet φL thereby begins
to develop a right-moving component in the overlap region of
φR and φL. Since both right- and left-moving components are
present in φL in the overlap region, an interference pattern
appears in the density |φR|2 in the overlap region. This is just
like the scattering of a wave packet of left-moving particles
hitting a wall positioned to its right; the interaction with the
wall will reflect the particles, and the wave packet near the wall
develops both right- and left-moving components, so that an
interference pattern results in the particle density near the wall.
Similarly, the atoms in mode φR encounter the potential resulting
from the repulsive interactions with the atoms in mode φL, and
the density |φL|2 also develops an interference pattern. The
densities |φL|2 and |φR|2 can now be substituted into the first
term on the right-hand side of eq 8, which yield the total density
n(r, t) if the second term on the right-hand side vanishes.

In the next section, we shall see that a new mechanism for
interference arises for the fragmented condensate initial state,
via the second term on the right-hand side of eq 8. This
mechanism is not accounted for in the two-mode time-dependent
mean-field description. It results due to quantum tunneling and
interaction.

III. Two-Mode Field Theory

The many-body field theory description of the condensate
begins by writing out the Hamiltonian of the system of bosons.
Taking the interaction in the form of a point contact interaction,
since the size of the condensate is so much bigger than the scale
of the atom-atom interaction, gives

where H0(r, t) ) p2/2m + V(r, t). We expand the field operator
ψ̂(r, t) at any given time in terms of the orthogonal orbital
functions φj(r, t) and the annihilation operators âj for atoms in
internal state j, where j ) L, R

where at any time ∫drφj
/(r, t)φk(r, t) ) δjk and the operators âj

obey [âj, âk
†] ) δjk. The Hamiltonian therefore takes the form

where the parameters Ei, Ω, and Gij corresponding to the energy
on each well, the tunneling rate between wells, and the
atom-atom interaction parameters for atoms in the right and
left wells (Gii) and cross interaction of atoms in the right well
and left well (Gij) can be obtained in terms of integrals over
the mode functions.

The expectation value of the density operator, n ≡ 〈 n̂〉 )
〈ψ̂†ψ̂〉 , contains the term 〈 âL

† âR〉; see eq 8. For an initially
fragmented condensate, 〈âL

†âR〉 t)0 ) 0, but as the mode functions
begin to overlap, 〈 âL

† âR〉 will begin to deviate from zero. The
calculation of the expectation value 〈 âL

† âR〉 was carried out by

iφ̇L ) P [ĥ + λ(NL - 1)|φL|2 + 2λNR|φR|2]φL (10a)

iφ̇R ) P [ĥ + λ(NR - 1)|φR|2 + 2λNL|φL|2]φR (10b)

Figure 8. The density n(x, t) of two condensates of 500 atoms each
for λ ) 0.1 as a function of time computed with two-mode time-
dependent mean-field (black) compared to the density nLL + nRR of
two BECs which do not interact with each other, each computed with
the Gross-Pitaevskii equation (red). The quantities shown are
dimensionless.

H ) ∫ drψ̂†(r)[H0(r, t) + 1
2

gψ̂†(r)ψ̂(r)]ψ̂(r) (11)

ψ̂(r, t) ) ∑
j)L,R

φj(r, t)âj (12)

Ĥ ) ∑
i)L,R

Eiâi
†âi -

pΩ
2

(âL
†âL + âR

† âL) + ∑
i,j)L,R

Gijâi
†âj

†âjâi

(13)
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using an angular momentum representation,27 wherein one
defines the number operators as

and the angular momentum operators as

so that the Hamiltonian can be written as

where the parameters are E ≡ (EL + ER)/2 and p∆ ≡ (-ER +
EL). Since N̂ commutes with Ĥ, the Hamiltonian conserves the
total number of particles. Using the identities n̂L ) N̂/2 + L̂z

and n̂R ) N̂/2 - L̂z, we obtain the Hamiltonian

The initial fragmented state can be written as |Ψ0〉 ) |L ) N, Lz

) 0〉 ≡ |NL ) N/2, NR ) N/2〉 , and the expectation value 〈 âL
†âR〉 t

can be written as

in the Heisenberg representation or 〈Ψ0(t)|(Lx + iLy)|Ψ0(t)〉 in
the Schrödinger representation.

Figure 9 shows the calculated values of 〈 âL
† âR〉 t versus time

for an initially fragmented condensate. At t ) 0, the expectation
value 〈Ψ0|(Lx + iLy)|Ψ0〉 t)0 ) 〈Ψ0|âR

† âL|Ψ0〉 t)0 is zero for an

initial fragmented state, but due to quantum tunneling and
interaction, the expectation value 〈Ψ0|(Lx + iLy)|Ψ0〉 t )
〈Ψ0|âR

† âL|Ψ0〉 t becomes finite for times t > 0. Hence, another
mechanism for the density to develop interference fringes arises
from the 〈 âL

† âR〉 term in eq 8 due to the quantum tunneling term
in the Hamiltonian and due to interactions.

IV. Summary and Conclusion

Interference of condensates can be used to probe correlation
functions of degenerate gaseous systems, not just their order
parameter and their density distribution. In other words,
interference fringes observed in condensate experiments are
strongly affected by atom-atom interactions and can therefore
be used to tell us about the correlations in a degenerate quantum
gas.

Here, we discussed a number of different ways that interfer-
ence arises in BEC experiments, including release of a BEC
from a double-well potential, Bragg pulse experiments where
two or more BEC components with different central momenta
are created, and four-wave mixing wherein a fourth wave is
created from three waves via scattering off of interference
patterns made by BEC components with different momenta. We
have explored two opposite limits of the interference from a
BEC in a double-well potential, the initially coherent and the
initially independent (fragmented) cases. We developed a mean-
field theory using two modes and compared it with the one-
mode Gross-Pitaevskii treatment. We then developed a full
two-mode field theory and showed that an additional mechanism
for interference fringes exists and results due to quantum
tunneling and interaction.

A degenerate Bose gas can behave very differently in 1D,
2D, and 3D. For example, in 2D, a proliferation of thermal
vortices at finite temperature can cause a Berezinskii–Koster-
litz–Thouless phase transition, and at finite temperatures, thermal
fluctuations can destroy long-range order, and this directly
affects the interference fringes.28 We have not directly addressed
these issues here within the context of the simple model systems
presented.

We should also mention that in a given experiment, the
density pattern observed is not the expectation value of the
density operator.8 For example, for the fragmented initial state
and without interaction, fringes in a particular experiment would
still appear in a given experiment but would be seen with a
different random phase at each given realization of the experi-
ment. If one then averages the fringe pattern over many
experiments, we would get zero interference in the density if
no interactionsarepresent.Wecouldcalculate thedensity-density
correlation function, 〈 n̂(r, t)n̂(r′, t)〉 , in the expanded cloud, and
this would give a measure of the fluctuations in the density.
The correlation function does have an oscillating part, even
without interactions present, and the fringe amplitude does not
fluctuate in the correlation function. When interactions are
present, a deterministic interference in the density is also present;
therefore, both a random, fluctuating component and a deter-
ministic component of the interference would be present in a
given experiment (of course, upon averaging over many such
single experiments, only the deterministic component would
survive and would correspond to the expectation value of the
density operator). Explicit calculations of both the density and
the density correlation functions using the full two-mode field
theory will be presented in future publications.

References and Notes

(1) (a) Huang, K. Statistical Mechanics; John Wiley: New York, 1987.
(b) Rice, S. A.; Freed, K. F.; Light, J. C. Statistical Mechanics: New

Figure 9. 〈 âL
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âL
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