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Abstract

There are numerous logical formalisms capable of drawing conclusions
using default rules. Such systems, however, do not normally determine
where the default rules come from; i.e. what it is which makes Birds fly a
good rule, but Birds drive trucks—a bad one.

Generic sentences such as Birds fly are often used informally to de-
scribe default rules. I propose to take this characterization seriously, and
claim that a default rule is adequate iff the corresponding generic sentence
is true. Thus, if we know that Tweety is a bird, we may conclude, by
default, that Tweety flies, just in case Birds fly is a true sentence.

In this paper, a quantificational account of the semantics of generic
sentences will be presented. It will be argued that a generic sentence
is evaluated not in isolation, but with respect to a set of relevant alter-
natives. For example, Mammals bear live young is true because among
mammals which bear live young, lay eggs, undergo mitosis or engage in
some alternative form of procreation, the majority bear live young. Since
male mammals do not procreate in any form, they do not count. Some
properties of alternatives will be presented, and their interactions with
the phenomena of focus and presupposition will be investigated.

It will be shown how this account of generics can be used to character-
ize adequate default reasoning systems, and several desirable properties of
such systems will be proved. The problems of the automatic acquisition
of rules from natural language will be discussed. Since rules are often
explicitly expressed as generics, it will be argued that the interpretation
of generic sentences plays a crucial role in this endeavor, and it will be
shown how the theory presented here can facilitate such interpretation.

Key words: generics, default reasoning, semantics, automatic knowl-
edge acquisition.

1 Introduction

A reasoner does not normally have complete knowledge about a problem it
attempts to solve; it must, therefore, be able to draw conclusions that are plau-
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sible, though not certain. The reasoner must also be able to retract these con-
clusions if new knowledge becomes available which contradicts them. In other
words, such reasoning is nonmonotonic; unlike deductive reasoning, adding more
knowledge to a nonmonotonic system may result in the retraction of previously
derived conclusions. Considerable amount of work has been conducted on de-
fault reasoning, and many formalisms have been proposed to facilitate it. The
problem which those studies attempt to solve may be described as follows: given
a set of default rules (possibly in addition to deductive rules, and/or ordered by
priority), and a set of propositions known to be true, which conclusions should
be drawn, and how are they to be derived?

Systems of default reasoning have been proposed to model common-sense
reasoning. However, for this goal to be achieved, drawing appropriate conclu-
sions from rules is not sufficient; one has to make sure the “right” rules are
used. For example, the canonical example of a default rule is the one stating
that, by default, birds fly. Any default reasoning system worth its salt should
be able to infer that, if Tweety is a bird, and nothing further is known about
Tweety, it flies. This conclusion may be retracted if it later becomes known
that Tweety does not fly, say because it is, in fact, a penguin. But note that
we might, instead, use a rule which states that birds do not fly, and only infer
that they do if we have evidence for it. We might even have a rule stating
that birds drive trucks, write dissertations or are married bachelors. Such rules
would be harmless, in the sense that the conclusions drawn from them will never
be inconsistent. For example, if we know that all truck drivers are human, and
that no birds are human, we will be prevented from concluding that Tweety
drives a truck, even though Tweety is a bird. Still, having such a rule seems
intuitively wrong, whereas having a rule stating that birds fly seems intuitively
right. The question is, then, how to capture formally this intuition; how to
determine which rules are desirable and which are not.1

In the literature concerning default reasoning, default rules are usually
described informally using generic sentences, of which (1) is a typical exam-
ple:

(1) Birds fly.

I propose to take this representation seriously. That is to say, I propose that a
default rule be adequate just in case the corresponding generic sentence is true.

The question of what makes a generic sentence true is by no means an easy
one; some would even claim it has no general answer. Yet we are in need of
such an answer. Generic sentences are prevalent in language; take the previous
sentence, for example. Indeed, one needs only to look at a newspaper article, not
to mention an encyclopedia, to find numerous instances of generics. Neither a
theory of language meaning nor a natural language processing system can easily

1For more detailed comments in a similar vein, see Israel (1980); Brachman (1985); Loui
(1986); Neufeld (1989).
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afford to ignore them. In the following section I am going to propose a novel
truth-conditional theory (i.e. a theory of generics as functions from states of
affairs to truth values) of the meaning of generic expressions; then, I will present
and prove some desirable properties of default reasoning systems whose rules
correspond to true generic sentences; finally, I will discuss some implications
of the research presented here to the problem of automatic acquisition of rules
from natural language.

The goal of this paper, then, is three-fold: one is a formal representation of
generic sentences which captures their truth conditions correctly; another aim
is to provide means by which rules used in default reasoning can be evaluated;
yet a third goal is to facilitate automatic acquisition of desirable rules given a
natural language text.

2 The meaning of generic sentences

A significant portion of our knowledge about the world is expressed by sentences
such as the following:

(2) a. Dogs are mammals.

b. Birds fly.

c. Mammals give birth to live young.

d. The Frenchman eats horsemeat.

e. Bulgarians are good weightlifters.

Such statements are usually referred to as generics. This name implies that
they are used to describe generalizations. But what is the meaning of such gen-
eralizations? How do we know whether a generalization is true or false? The
answer is not immediately clear. Sentence (2.a) seems to hold for all dogs, (2.b)
for most birds, (2.c) for most female mammals (presumably less than half the
total number of mammals), (2.d) for few Frenchmen and (2.e) for very few Bul-
garians. While most researchers believe that generics do, indeed, have truth
conditions, observations such as the ones above have led many of them (most
notably Carlson 1977) to the conclusion that no quantificational account of
generics is possible. In other words, it is impossible to consider instances of
dogs, birds etc., determine how many of them satisfy a certain property, and on
that basis conclude whether a given generic sentence is true or false. Restricting
the domain of quantification (by context or other factors), it is claimed, will not
help; there would still be no principled way to relate the truth or falsity of a
generic to the truth or falsity of statements about individual instances. Thus the
truth conditions of a generic are held by these workers to be somewhat mysteri-
ous; they are related not to properties of individuals, but to some ontologically
irreducible “rules and regulations” (Carlson 95), e.g. primitive properties of
kinds (Carlson 77) or rules determining what is “normal” (Delgrande 1987). In
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this paper I intend to demonstrate that a quantificational theory is not only
possible, but is, in fact, advantageous.

2.1 Alternative-based generics

Before describing my proposed solution, let me aggravate the problem. Sen-
tences such as (3) (from Thomason 1988) pose a difficult problem for any theory
of generics:

(3) People have a hard time finding Carnegie Mellon University.

The vast majority of people do not have a hard time finding CMU, for the simple
reason that they never try to find it. Only a handful of people, namely some
significant proportion of first-time visitors to CMU, do have a hard time finding
CMU.

To find out what makes (3) true, it is instructive to try to see what sort
of people count as exceptions to it. As Thomason points out, people who do
not try to find CMU, either because they are not interested in finding it, or
because they already know where it is (e.g. a professor who goes to CMU every
morning), do not count as exceptions. Only people who do try to find CMU, but
do not have a hard time finding it (presumably having an easy time), count as
exceptions. I suggest that when we evaluate the truth of (3), we are comparing
people who find CMU with difficulty to people who find CMU with ease: if more
people experience difficulties than those who do not, (3) is true, otherwise it is
false. All other people, such as those who have never heard of CMU or those
who work there, neither have a hard time finding CMU, nor an easy time finding
it, nor, indeed, any kind of time finding CMU. These people are irrelevant to
the truth of (3)—they are simply not counted. In other words, we consider two
alternative levels of difficulty for the task of finding CMU, and if a high level of
difficulty is the most common one, we conclude that (3) is true.

Let us try to generalize from this. Suppose we are given a generic sentence
S, i.e. a sentence which predicates some property φ of a kind κ. Let us assume
that the property φ is a member of a set A of alternative properties. Then if
there are more instances of κ which satisfy φ than those which satisfy some
alternative φ′ ∈ A but do not satisfy φ, we conclude that S is true. Put another
way, S is true just in case the majority of instances of κ which satisfy one of
the alternatives in A—satisfy φ.

It will be instructive to see how this proposal deals with sentence (2.c),
which belongs to a type of sentences which are notoriously problematic for
quantificational accounts of generics. Why is it that (2.c) is true although
most mammals do not, in fact, give birth to live young? Suppose the property
give birth to live young is a member of the set of alternative means to produce
offspring, say {give birth to live young, lay eggs, undergo mitosis}. Although less
than half of all mammals give birth to live young, it is true that more mammals
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give birth to live young than those which lay eggs or undergo mitosis, and this
is why (2.c) is true.

2.2 Some observations

Since we speak of alternatives, we may wish to enquire whether they are mu-
tually exclusive. It seems that the answer is negative. Consider the true sen-
tence (4):

(4) Israelis speak Hebrew.

The set of alternatives with respect to which (4) is evaluated will, presumably,
be of the form {speak L|L is a language}. Since a given individual may be
multilingual, the alternatives cannot be mutually exclusive.

Another question is whether majority is not too strong a requirement, and
whether plurality may not be more appropriate. That is to say, is it sufficient for
φ to be more common than any single φ′ ∈ A, or does it have to be more common
than the disjunction of all alternatives? In other words, does the winner take
all, or does the winner have to be satisfied by a majority of the instances? It
would seem that the latter is the case. Given that the most common language in
India is Hindi, but that only 30% of the population speak it,2 (5) is false:

(5) Citizens of India speak Hindi.

Indeed, for every single language L, there are more Indians who speak Hindi than
those who speak L; however, it is not the case that there are more speakers of
Hindi than speakers of some language or other. Plurality, then, is not sufficient,
and the majority requirement is, indeed, necessary.3

There is still a lingering problem for our definition, and this is the observation
that generics seem to refer to an unbounded number of instances. Even though
the number of birds is finite, Birds fly seems to say something not just about
current actual birds, but about future and possible birds as well. Indeed, even if
a generalization does happen to hold for a finite domain, but is not expected to
hold in the future, the generic sentence is not judged true. Suppose it happened
to be the case that all current Supreme Court judges had an odd Social Security
number; sentence (6), nevertheless, would not be true:

(6) Supreme Court judges have an odd Social Security number.

It may be noted that there are strong similarities between generics and
statements of probability judgments. Thus, sentence (7) seems false for the
same reasons that (6) is:

2This information was taken from the Academic American Encyclopedia.
3But cf. Shastri (1989) who, in a somewhat different context, takes the view that the

winner does take all.
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(7) The probability for a Supreme Court judge to have an odd Social Secu-
rity number is high.4

The situations in which (6) and (7) would become true are similar too: if the
property of having an odd Social Security were not accidental for a Supreme
Court judge—say if judges were chosen by a lottery, and the computer program
performing the lottery contained a bug which caused it to choose odd numbers
only—both would then be true. We will, therefore, use probabilities in our
definition, rather than simple counting.5

We will, then, formally define the truth conditions of a generic sentence as
follows:

Definition 1 (Generic truth conditions) Let genA(C(κ))(φ) be a proposi-
tion, where φ is a property, κ is a kind and C(k) is a function which maps a kind
onto its instances. Let A be a set of alternatives to φ. Then genA(C(κ))(φ) is
true iff

P (φ ∧ (
∨
A)|C(κ)) > P ((¬φ) ∧ (

∨
A)|C(κ)),

or, equivalently (assuming P (C(κ) ∧ (
∨
A)) > 0),

P (φ|C(κ) ∧ (
∨
A)) > 0.5

(where P (A|B) indicates the conditional probability of A given B, and
∨
A is

the disjunction of the members of A).6

2.3 Determining the alternatives

The theory of generics which I am proposing here relies rather crucially on the
notion of a relevant set of alternatives. Alternatives and related notions play an
important role in linguistics: P-sets (Rooth 1985) and C-sets (Rooth 1992) in the
theory of focus, scales in theories of scalar implicature (Horn 1972; Hirschberg
1985), comparison classes in theories of adjectives (Klein 1980; Ludlow 1989)
are just a few examples. However, very little work has been done on the formal

4There is a reading of (7) under which it is true, namely that if we picked at random one
of the current Supreme Court judges, he or she would be likely to have an odd Social Security
number. This is what Pollock (1990) refers to as material probability, which only describes
what is actually the case. We are not concerned with this reading here.

5In their treatment of frequency adverbs, Åquist et al (1980) also use probabilities; however,
they define conditional probabilities to be simple ratios, and consequently they cannot account
for the puzzle of sentences such as (6). See Cohen (1995) for an interpretation of probability
which is more appropriate for the analysis of the meaning of generics.

6This definition is not quite complete; it can be easily extended to handle the case of sets
of alternative kinds, rather than properties, which are needed to account for sentences such
as (2.e) and (2.d) (see Cohen 1996 for the details). However, since these cases do not give rise
to default inferences (e.g. even if we know that (2.e) is true, and that Boris is a Bulgarian, we
are still not justified in concluding, from these facts alone, that Boris is a good weightlifter),
we will not deal with this issue further here.
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properties of such alternatives, or how the alternatives can be determined in
any given case.7

An important question is whether the set of alternatives is dependent on
the particular language used; Blok and Eberle (1994) suggest that it is. As an
example, they discuss the set of alternative kinds of beer, and claim that

the alternatives of which the native speaker is aware in [a German sen-
tence] are those kinds of beer that have a name in German, and cor-
respondingly for [an English sentence]. Normally, neither Kölsch is an
alternative of lager, nor is ale an alternative of Pils (Blok and Eberle
1994:240, my emphasis).8

It may very well be true that a hearer would normally be aware only of alter-
natives which have a name in his or her language, but it does not follow that
these are, indeed, the alternatives with respect to which the sentence needs to
be evaluated. Suppose that 80% of German beer drinkers drink Kölsch, 20%
drink lager, and Germans drink no other beer. If, as Blok and Eberle (1994)
claim, Kölsch were not an alternative of lager, (8) would be true, but I think it
would clearly be false in the situation described:

(8) Germans drink lager.

I would, therefore, propose that alternatives are language independent;9 they
depend on the meaning of a sentence, on the context and world knowledge, but
not on the language used. The question, then, is how the alternatives are
determined in a given case.

Sometimes the solution is easy—the alternatives are explicitly stated. For
example, if (9.b) is uttered in response to (9.a), the alternatives are overtly
given:

(9) a. Do birds lay eggs, give birth to live young or undergo mitosis?
b. Birds lay eggs.

In most cases, however, the alternatives have to be inferred somehow. There
are, in fact, two different problems to be addressed: what the alternatives in-
duced by a given sentence are, and which part of the sentence induces these
alternatives. In other words, when evaluating a sentence like Birds fly, we may
consider either alternative means of movement (fly, walk, swim etc.) or alter-
native classes of animals (birds, mammals, fish etc.). One question is whether
birds or fly induces the alternatives; a second question is which alternatives
are induced by a given property. We will address the second question first, a
consideration of which will suggest an answer to the first question.

7But see Gabbay and Moravcsik (1978); Blok (1994); Blok and Eberle (1994).
8Kölsch and Pils are kinds of German beer. Interestingly, although the etymology of the

English lager is German, the German word lager does not, in fact, name a kind of beer, and
its meaning is camp.

9Or, more precisely, that they depend on a particular language only to the extent that the
language affects the ontology of the language user, if at all.
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2.3.1 Determinables and determinates

The problem of alternatives is similar to an issue which has been discussed by
philosophers under the heading of the determinable-determinate relation. In its
modern form this notion was introduced by Johnson (1921). He writes:

I propose to call such terms as colour and shape determinables in relation
to such terms as red and circular which will be called determinates. . . [A]ny
one determinable such as colour is distinctly other than such a deter-
minable as shape or tone; i.e. colour. . . is, metaphorically speaking, that
from which the specific determinates, red, yellow, green, etc., emanate;
while from shape emanate another completely different series of determi-
nates such as triangular, square, octagonal, etc. . . Further, what have been
assumed to be determinables—e.g. colour, pitch, etc.—are ultimately dif-
ferent, in the important sense that they cannot be subsumed under some
one higher determinable, with the result that they are incomparable with
one another; while it is the essential nature of determinates under any
one determinable to be comparable with one another. . . [T]he ground for
grouping determinates under one and the same determinable is not any
partial agreement between them that could be revealed by analysis, but
the unique and peculiar kind of difference that subsists between the several
determinates under the same determinable, and which does not subsist be-
tween any one of them and an adjective under some other determinable
(Johnson 1921:174–176, original emphases; page numbers are from the
1964 edition).

The idea that alternatives are determinates under a common determinable
has some intuitive appeal. To use Johnson’s terms, the alternatives seem to
“emanate” from some common property; for example, laying eggs, giving birth
to live young and undergoing mitosis all emanate from the property of procre-
ating. These properties are different from each other,10 but they are intuitively
comparable; whereas they are not comparable to other properties such as flying.
Unfortunately, Johnson’s definition was not formal, and more recent definitions
fare no better.11 Most work subsequent to Johnson’s (e.g. Searle 1959; Rosen-
berg 1966) concentrated on attempts to analyze the relation into more basic
terms, and, in particular, to distinguish between the determinable-determinate
relation on the one hand, and the genus-species relation on the other hand. Un-
fortunately, those attempts met with less than clear success, which may cause
one to suspect (with Thomason 1969) that such an analysis would be fruitless
and that an abstract, algebraic characterization is all that one can hope for. Let

10In fact, Johnson and others have claimed that determinates under the same determinable
are mutually exclusive, but this claim has been questioned by e.g. Armstrong (1978).

11The determinable-determinate relation has also been mentioned in the linguistic literature
(Lyons 1977), under the name of quasi-hyponymy, but although Lyons claims that the relation
“can easily be made precise within the framework of a reasonably comprehensive transforma-
tional grammar of English” (Lyons 1977:299), neither he nor anyone else, to my knowledge,
has ever attempted to do this.
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us assume, then, that the relation is somehow given, as part of the language
user’s pragmatic knowledge. If p and q are properties, let p ≺ q indicate the fact
that p is a determinate of q. Several properties of this relation seem desirable:12

• If p ≺ q, then p→ q.

• Antireflexivity: for no p, p ≺ p.

• Antisymmetry: for no p, q, p ≺ q & q ≺ p.

• Transitivity: for all p, q, r, p ≺ q & q ≺ r =⇒ p ≺ r. For example, red≺
color, and, in turn, color ≺ physical-property. Then it seems correct
to say that red≺ physical-property.13

Since the relation is transitive, it makes sense to talk about a minimal deter-
minable of a property:

Definition 2 q is a minimal determinable of p, written p ≺m q, iff p ≺ q and
there is no r such that p ≺ r ≺ q.

Note that a minimal determinable need not be unique, since not every two prop-
erties are in the ≺ relation. It is not clear that a minimal determinable exists for
every property. If a property does have some determinable, it seems plausible
that it has a minimal one, since an infinite descending chain of determinables
does not seem to make any immediate sense for properties referred to in nat-
ural language—though judgment should be reserved, as there might be some
pathological cases.

We wish to say that the alternatives induced by a property p are the prop-
erties which share a determinable with p. However, this will not do; red is a
determinable of scarlet, yet, plausibly, we want scarlet to induce the set of al-
ternatives consisting of all colors, not just shades of red. We will assume, then,
that every determinate has a determinable which is somehow distinguished. A
useful idea here is Searle’s (1959) notion of absolute determinables. Searle notes
that both red and colored are determinables of scarlet, yet colored seems to be
more fundamental:

The more fundamental position which “colour” occupies vis à vis both
“red” and “scarlet” is shown by the fact that the predication of “red”, “not

12It should be reiterated that these properties do not constitute a definition of the relation;
indeed, one can conceive of other relations which share similar properties.

13It is not clear whether Johnson himself would have agreed with the characterization of the
relation as transitive, but subsequent authors certainly have taken it to be so. Searle (1967),
for example, considers

color terminology as providing us with a hierarchy of terms many of which will stand in
the determinable relation to each other as the specification of shades progresses from
the less precise to the more precise (p. 358).

Be that as it may, the transitivity of the determinable-determinate relation turns out to be
highly useful in determining the set of alternatives, as we will see shortly.
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red”, “scarlet” or “not scarlet” of any object presupposes that “coloured”
is true of the object. A term A presupposes a term B if and only if it
is a necessary condition of A’s being true or false of an object x, that
B must be true of x. For example, as we commonly use these words, in
order for it to be either true or false of something that it is red, it must be
coloured. Both “red” and “scarlet” then presuppose their common deter-
minable “coloured”. But “scarlet” does not presuppose its determinable
“red”, and we may generalise this point as a criterion: B is an absolute
determinable of A if and only if A is a determinate of B, and A presup-
poses B. Thus “coloured” is an absolute determinable of “red”, but “red”
is not an absolute determinable of scarlet [sic].

. . .

The notion of an absolute determinable is relevant to the traditional

problem of categories: every predicate carries with it the notion of a kind

or category of entities of which it can be sensibly affirmed or denied. For

example, “red” is sensibly affirmed or denied only of objects which are

coloured—this is part of what is meant by saying that “red” presupposes

“coloured”. Absolute determinables then provide us with a set of category

terms (Searle 1959:149–150, original emphases).

We can combine the notions of absolute and minimal determinables, and
talk about a minimal absolute determinable of a property:

Definition 3 q is a minimal absolute determinable of p, written p ≺A q, iff q
is an absolute determinable of p, and there is no r ≺ q such that r is also an
absolute determinable of p.

We can now use the notion of a minimal absolute determinable to define
the alternatives induced by a property p as the determinates under a minimal
absolute determinable of p. In other words, all the alternatives to p presuppose
the same minimal absolute determinable of p:

Definition 4 Let p and q be properties such that p ≺A q. Then a set of alter-
natives to p (given q) is ALT(p) =def {p′|p′ ≺A q}

Note that the definition refers to a set of alternatives, rather than the set,
because a property may have more than one minimal absolute determinable,
and, consequently, may induce more than one set of alternatives.

In his definition of absolute determinables, Searle uses semantic presupposi-
tion, i.e. a definition which is not dependent on context. This, however, seems
too strong. Alternatives are heavily influenced by context, as can be seen by
example (9) above. As an additional example, consider the context of a discus-
sion of different forms of movement of animals. In this context, the alternatives
under consideration would presuppose movement, i.e. {walk, fly, swim, ride uni-
cycles,. . . }. Sentence (10), then, would be false, since the majority of bears do
not ride unicycles:
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(10) Bears ride unicycles.

However, in the context of a discussion of the acts performed in the Great
Russian Circus, the alternatives would presuppose some circus act, i.e. {juggle,
walk the tightrope, ride unicycles,. . . }. Given this context, (10) would be true,
since, presumably, the majority of bears which perform in the Great Russian
Circus ride unicycles.

We will, then, use a pragmatic definition of presupposition, according to
which the property p presupposes the property q iff a felicitous application
of p to an individual i requires that the proposition q(i) be in the common
ground.14 Thus the common ground determines the absolute determinables in
a given context.15

Suppose p and q are properties, and ALT(p) and ALT(q) are given. What
about ALT(p ∧ q), ALT(p ∨ q), and ALT(¬p)?

Let us look at negated properties first. Consider (11):

(11) Mammals don’t bear live young.

The majority of mammals (including males, mammals which are too young
or too old to procreate, etc.) do not bear live young, and yet (11) is false.
This suggests that (11) is evaluated with respect to the same set of alternatives
as (2.c), i.e. different forms of procreation. Since it is false that the majority
of procreating mammals don’t bear live young, (11) is, indeed, false. I propose
that, in general, for a property p, ALT(¬p) =ALT(p).

What, then, about conjunctions and disjunctions?
There are three intuitively plausible candidates for the alternatives induced

by p ∧ q:
ALT(p ∧ q) =def

1. {p ∧ q′|q′ ∈ ALT(q)}

2. {p′ ∧ q|p′ ∈ ALT(p)}

3. {p′ ∧ q′|p′ ∈ ALT(p) & q′ ∈ ALT(q)}

It would seem that all three are legitimate; they simply represent an ambiguity,
to be resolved by, perhaps, the focus of the sentence.16 Consider the sentences
in (12):17

(12) a. Piranhas live in freshwater tanks.

b. Piranhas live in freshwater tanks.
14Of course, as with other definitions of pragmatic presupposition, the notions of felicity

and common ground will be left vague here.
15cf. Blok and Eberle’s (1994) discussion of how context can “frame” nodes in an ontology—

in our terms, how context helps to determine absolute determinables.
16For more on the role of focus see section 2.3.3 below.
17Here, and henceforth, small capitals indicate a focused expression.
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c. Piranhas live in freshwater tanks.

Sentence (12.a) induces alternative types of tanks; presumably, freshwater tanks
and saltwater tanks. Since the majority of piranhas which live in tanks, live in
freshwater tanks, (12.a) is true. The alternatives under consideration in (12.b),
on the other hand, seem to be various kinds of bodies of freshwater: tanks,
rivers, lakes, ponds. Since the majority of piranhas live in rivers, and not in
tanks, (12.b) is false. Finally, (12.c) induces a Cartesian product of various
types of water and various bodies of water. Since, again, it is not true that the
majority of piranhas live in freshwater tanks, (12.c) is false.

It should be noted that there is an additional level of ambiguity, as a con-
junction (or disjunction) may be interpreted as conjoining sentences rather
than properties, the former being strongly preferred. Consider (13), for ex-
ample:

(13) Peacocks have a magnificent blue tail and lay whitish eggs.

Taken as a conjunctive property, (13) is false, since no peacock both has a
magnificent tail and lays whitish eggs. This ambiguity is absent, or almost
absent, in the admittedly awkward (14), which is not readily interpretable as
sentential conjunction:

(14) Peacocks are blue-tailed egg-layers.

Sentence (14), therefore, is unambiguously false.
An application of de Morgan’s laws will yield the following three options for

the alternatives of a disjunction:
ALT(p ∨ q) =def

1. {(¬p) ∧ q′|q′ ∈ ALT(q)}

2. {p′ ∧ (¬q)|p′ ∈ ALT(p)}

3. {p′ ∧ q′|p′ ∈ ALT(p) & q′ ∈ ALT(q)}

Note that the alternatives of a disjunction are in the form of conjunctions,
not disjunctions. This may seem counterintuitive at first, but is, in fact, quite
desirable. Consider (15):

(15) a. Sinners repent or go to hell.

b. Sinners repent or go to hell.

c. Sinners repent or go to hell.

Sentence (15.a) is evaluated with respect to sinners who do not repent; it claims
that among all their alternative destinations, hell is the likeliest. Sentence (15.a),
on the other hand, is evaluated with respect to sinners who are not sent to hell;
it states that among all the alternatives reasons for that, the likeliest is that
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they repented. Sentence (15.c) is evaluated with respect to all sinners who are
sent somewhere after their death and who have done something to cause their
destination; the majority of those, according to (15.c), either repent or go to
hell. Clearly, some of these sentences might be judged true and others false,
depending, of course, on one’s religious beliefs.

An important special case is where ALT(p) = ALT(q). We have said above
that there are three legitimate options for the set of alternatives to p ∧ q, and
three options for the set of alternatives to p ∨ q. The Cartesian product option
is identical for both:

{p′ ∧ q′|p′ ∈ ALT(p) & q′ ∈ ALT(q)}.

Now, if ALT(p) = ALT(q),∨
{p′ ∧ q′|p′ ∈ ALT(p) & q′ ∈ ALT(q)} =

∨
ALT(p) =

∨
ALT(q).

In words, the disjunction of the alternatives to the conjunction (or disjunction)
will be the same as the disjunction of the alternatives to either conjunct (or
disjunct), though the actual set of alternatives may differ. Thus, for exam-
ple, (16.a) will plausibly be evaluated with respect to alternative numbers of
wheels, and (16.b)—with respect to alternative languages:

(16) a. Motor vehicles have two or four wheels.

b. American ambassadors to France speak English and French.

Let us now turn to complex properties, exemplified by (17):

(17) Healthy people eat apples.

What is the set of alternatives which (17) is evaluated with respect to? It should
be the set induced by the complex property eat apples, but how can this set be
deduced?

Blok (1994) suggests that the alternatives to eat are {drink, chew,. . . } and
the alternatives to apple are {banana, lime,. . . }. He then claims that the set of
alternatives to eat apples does not include drink a banana, and concludes that
the problem of determining the set of alternatives of a property “seems unsolv-
able. . . from a logical or linguistic point of view” (Blok 1994:8). It is not at all
clear to me what makes him reach this pessimistic conclusion. Indeed, drinking
a banana may be just too bizarre a property to be normally considered; but
chew a lime is certainly an acceptable alternative. Blok notes that the relevant
alternatives to eat apples “may be work or kiss a woman, who knows” (Blok
1994:8). In that I believe he is right—eat apples may, on its own, be a determi-
nate of some determinable such as actions performed in the morning or things
which John likes to do, etc. This will be determined by the context. Surely,
however, there are contexts where decomposing eat apples into the alternatives
of eat and apples is preferred; it certainly seems to be the best we can do in the
null context.
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In such cases, again, there are three plausible sets of alternatives. One is the
set of alternative foods, the second is the set of alternative actions performed
with apples, and the third is the Cartesian product of both, i.e. the set composed
of various foods and various actions performed with them. Assuming that the
meaning of eat apples is

λx.∃y.apples(y) ∧ eat(x, y),

the three possible values for its set of alternatives would be:

1. {λx.∃y : (P (y) ∧ eat(x, y))|P ∈ ALT(apples)}

2. {λx.∃y : (apples(y) ∧R(x, y))|R ∈ ALT(eat)}

3. {λx.∃y : (P (y) ∧R(x, y))|P ∈ ALT(apples) & R ∈ ALT(eat)}

2.3.2 Presupposition

Since sets of alternatives share an absolute determinable, and, hence, a pre-
supposition, it is reasonable to expect that a presupposition of the property
inducing the alternatives would be shared by the alternatives.18 For example,
the verb manage is an implicative verb (Karttunen 1971); roughly put, saying
that x managed p, presupposes that x attempted to accomplish p. The alter-
natives induced by the property manage p, then, would plausibly be possible
outcomes of the attempt to accomplish p—success or failure.

Now consider (18):

(18) People manage to survive a week without food.

Sentence (18) is true if people are more likely to survive a week without food
than to die in such circumstances. Note that many people do not survive a week
without food, for the simple reason that they are never put in this predicament.
In other words, these people do not satisfy the presupposition, hence they do
not satisfy any of the alternatives (since those entail the presupposition) and,
therefore, do not affect the truth or falsity of the sentence.

2.3.3 Focus

An idea common to many theories of focus is that the focused element is “new”,
whereas the unfocused part of the sentence is “old” or “presupposed.”19 Since
the alternatives share a presupposition, it is reasonable to expect that what
they would differ on would be the focused element. In other words, the focus
would be predicted to induce the set of alternatives.

18cf. Schubert and Pelletier’s (1987) claim that presuppositions affect the “ensembles of
cases” which a generic sentence quantifies over.

19This is a rather crude and inaccurate way of putting the issue, but it will do for our
purposes here. For more refined views on this aspect of focus, as well as for an overview of
work on this topic, see Partee (1991); Vallduv́i (1992).
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This prediction is, in fact, borne out. Rooth (1985) has suggested that the
focus structure of a sentence indicates a set of alternatives under consideration.
Consider (19), for example:

(19) a. Who did John introduce Bill to?

b. John introduced Bill to Sue.

c. John introduced Bill to Sue.

With respect to (19), Rooth suggests that

a question introduces a set of alternatives into a discourse; the alterna-
tives introduced by [(19.a)] are propositions of the form introduce’(j,b,y),
where y is some individual.20 The function of the focus in the answer
[(19.b)], I suggest, is to signal that alternatives of this form are indeed
under consideration. . . [(19.c)] as a reply to [(19.a)] would incorrectly sug-
gest that alternatives of the form introduce’(j,y,s) are under consideration
(Rooth 1985:13).

The truth conditions of (19.b) and (19.c) are the same, although their focus
structures are different. Rooth observes, however, that there are cases where
different focus structures result in different truth conditions. For example, “sup-
pose I introduced Bill and Tom to Sue, and performed no other introductions.
Then [(20.a)] is false and [(20.b)] is true” (Rooth 1985:2–3):

(20) a. I only introduced Bill to Sue.

b. I only introduced Bill to Sue.

I suggest that generics are another case where focus contributes to truth
conditions. The set of alternatives with respect to which a sentence is evaluated
would be induced by the focused element in the sentence. For example:

(21) a. Criminals are executed in accordance with the law.

b. Criminals are executed in accordance with the law.

Sentence (21.a) is true, whereas (21.b) is false. The reason is that (21.a)
and (21.b) induce different sets of alternatives. Sentence (21.a) would be eval-
uated with respect to alternative factors potentially determining a person’s ex-
ecution: the law, the whims of the judge, the weather etc. Since criminals

20More recently, Rooth (1992) suggests that deriving the set of alternatives may be more
complicated than simply replacing the focused element with a variable. He proposes

an interpretation principle which introduces a variable, thought of as a contrasting
element or set of contrasting elements. This variable can be anaphoric to a variety
of pragmatic and semantic objects, resulting in a variety of focus-sensitive effects,
including both discourse effects and sentence-internal association with focus effects
(Rooth 1992:113).

This corresponds rather well to the theory of generics presented here, where alternatives
are assumed to be derived using both semantic and pragmatic processes.
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are more likely to be executed according to the law than as a consequence of
some other factor (in democratic countries, at any rate), (21.a) is true. Sen-
tence (21.b), on the other hand, would be evaluated with respect to alternative
punishments criminals may be subjected to: execution, jail, fine, 30 lashes etc.
Since an arbitrary criminal is rather unlikely to be punished by death, (21.b) is
false.

2.3.4 Syntactic constructions

Certain syntactic constructions seem to influence the sets of alternatives in-
duced. Consider Chomsky’s (1975) well known example:

(22) a. Beavers build dams.

b. Dams are built by beavers.

It seems that (22.a) is true, whereas (22.b) is false. When the sentences in (22)
are uttered with normal intonation, the subject is the topic, or, to put it roughly,
the old, presupposed information, and the other noun phrase is the focus. Hence
different constituents are focused in (22.a) and (22.b), and, consequently, dif-
ferent alternatives are induced. Note that the above is not dependent on any
particular fact about the peculiarity of the passive construction, but rather on
the topic-focus structure it induces. Other constructions which also influence
the topic-focus structure have similar effects:

(23) a. As for beavers, they build dams.

b. As for dams, beavers build them.

(24) a. It is dams which beavers build.

b. It is beavers which build dams.

Plausibly, (22.a), (23.a), and (24.a) would be evaluated with respect to al-
ternative constructions beavers might build. Since beavers are more likely to
build dams than other artificial constructions, (22.a), (23.a) and (24.a), are all
true. Sentences (22.b), (23.b), and (24.b), on the other hand, introduce alter-
native dam builders. Since dams are more likely to be built by humans than by
beavers,21 (22.b), (23.b), and (24.b) are all false.

21I am not sure this is entirely accurate. Perhaps if we count all dams, including man-made
and beaver-made ones, we will find that most of them are built by beavers. If that is correct,
then (22.b) is judged false by mistake. Still, the mistake is understandable, since it is certainly
true that the vast majority of dams I have personally encountered or heard about were built
by humans, and not by beavers.
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2.4 Refutation statements

Consider the following mini-dialogues:22

(25) A: Nobody in India eats beef.

B: That’s not true! Indians do eat beef.

(26) A: Many husbands beat their wives.

B: Well, women beat their husbands too!

B’s statements in sentences (25) and (26) are made as refutations; they are
meant to refute the overt claim that nobody in India eats beef and the implied
claim that no woman beats her husband, respectively.23 Refutation statements
seem to constitute counterexamples to the theory proposed here, since they are
interpreted existentially, rather than generically: for B’s response in (25) to be
true, it is sufficient that some Indians eat beef, not that Indians, in general, do
so; similarly, for B’s response in (26) to be true, only some women have to beat
their husbands, and not necessarily women in general.

It is possible, nonetheless, to account for these sentences using the theory
of generics proposed in this paper. Suppose the set of alternatives for both
are singletons: {eat beef} and {beat one’s husband}, respectively. Then, when
evaluating (25), we would be comparing the probability of an Indian to eat beef
to his or her probability to eat beef and not eat beef—which is zero. Similarly,
when evaluating (26), we would compare the probability of a woman to beat
her husband to her probability to beat her husband and not beat him—which
is, again, zero. Formally:

1. P (eat-beef|C(Indian)) >
P ((¬eat-beef) ∧ eat-beef|C(Indian)) = 0

2. P (beat-husband|C(woman)) >
P ((¬beat-husband) ∧ beat-husband|C(woman)) = 0

Thus (25) and (26) would be true just in case there is a nonzero probability
for women to beat their husbands and for Indians to eat beef, respectively—
which is what brings about the existential readings.

What sort of evidence do we have that these are, indeed, the appropriate
sets of alternatives? If, as claimed in section 2.3.3, the focused constituent is
the one inducing the alternatives, focusing an element should change the truth
conditions of a sentence. This does, indeed, seem to be the case:

(27) a. It is beef which Indians eat.
22Examples (25) and (26) were suggested to me by Clark Glymour and Lori Levin,

respectively.
23Of course, B’s statement in (26) does not refute A’s overt claim about husbands beating

their wives.
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b. It is eating beef which Indians engage in.

c. It is their husbands whom women beat.

d. It is beating their husbands which women engage in.

In a situation where only few Indians eat beef, and few women beat their hus-
bands, the sentences in (27) would be false.24

3 Reasoning with generics

A default reasoning system contains rules which determine the conclusions to
be drawn in case of insufficient knowledge. Various methods have been pro-
posed to formalize and draw conclusions using such rules; I will refer to all such
mechanisms, rather loosely, as default rules. A default rule will be written as
α ⇀ β, where α and β are properties.

The same rule will be represented differently in different nonmonotonic for-
malisms. Consider, for example, bird ⇀ fly:

Default Logic (Reiter 1980). If x is a bird, and it is consistent to assume
that x flies, assume so:

bird(x) : fly(x)
fly(x)

Circumscription (McCarthy 1980). For all x, if x is a normal bird, as-
sume x flies:

∀x.bird(x) ∧ ¬abnormal(x)→ fly(x)

Autoepistemic Logic (Moore 1985). If x is a bird, and the agent does not
believe it does not fly, assume it flies:

bird(x) ∧ ¬L¬fly(x)→ fly(x)

In the literature concerning nonmonotonic logics, default rules are usually
described informally using generic sentences, such as Birds fly and the like.
Presumably, a rule like bird ⇀ fly seems intuitively a desirable rule to have,
because birds do, indeed, fly. I propose to take this informal characterization
seriously. That is to say, I propose that a default rule be adequate just in case the
corresponding generic sentence is true. The rule I propose, then, is as follows:

24Sentence (27.c) may still be true if, whenever women beat somebody, it is mostly their
husbands. But if it turns out that women are more likely to beat, say, their dogs, (27.c) would
be false, yet (26) would still be true.

18



Definition 5 (Adequacy) Let α and β be properties, and A a set of proper-
ties. Then a default rule α ⇀ β will be adequate with respect to A iff genA(α)(β)
is true, i.e. iff

P (β|α ∧ (
∨
A)) > 0.5

It will be instructive to see how our definition of adequacy relates to an actual
nonmonotonic system. The system I have chosen is Reiter’s (1980) Default
Logic, but this is done simply for the sake of convenience, and it should be
possible to suggest a similar treatment using a different formalism. Default
Logic employs rules of the following form:

κ(x) : β1(x), . . . , βm(x)
α(x)

The intuitive meaning of this rule is the following: if, for some instantiation of
x, κ(x) is derivable, and none of ¬β1(x), . . . ,¬βm(x) are derivable, then derive
α(x).25 An adequate Default Logic rule will then be defined as follows:

Definition 6 (Adequate Default Logic rule)

κ(x) ∧ (α1(x) ∨ α2(x) ∨ · · · ∨ αn(x)) : β1(x), . . . , βm(x)
α(x)

is an adequate default rule iff

P (α|κ ∧ (α1 ∨ α2 ∨ · · · ∨ αn)) > 0.5

3.1 Specificity and relevance

When default rules, even adequate ones, are applied to a given instance, a
problem often arises: two or more rules are applicable, but the statements
derived using them are incompatible. It is widely agreed that, in general, a
more specific rule should have precedence over a less specific one. For example,
let A = {bear-live-young(x), lay-eggs(x),mitosis(x)}, and suppose we have
the following two rules:

1.
mammal(x) ∧

∨
A : bear-live-young(x)

bear-live-young(x)

2.
platypus(x) ∧

∨
A : lay-eggs(x)

lay-eggs(x)
25Usually, on the right side of the colon there is only one formula, which is equivalent to

α(x). In this case, the rule is said to be normal. The definition I will propose for adequate
Default Logic rules would work just as well for both normal and non-normal rules, though in
the examples to follow I will use normal rules.
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Now if Pat is a platypus, she is also a mammal. Depending on the order in
which the rules apply, we may conclude either that Pat gives birth to live young
or that she lays eggs. But since every platypus is a mammal, rule 2 is more
specific, and therefore should have precedence, i.e. we should conclude that Pat
lays eggs.

The specificity constraint is particularly important in our system for the
following reason. Suppose we have two adequate default rules:

κ(x) ∧ (α1(x) ∨ α2(x) ∨ · · · ∨ αn(x)) : β(x)
α(x)

κ(x) ∧ (α1(x) ∨ α2(x) ∨ · · ·αn(x) ∨ αn+1(x)) : β′(x)
α′(x)

If α1(x) ∨ α2(x) ∨ · · · ∨ αn(x) is derivable, then surely α1(x) ∨ α2(x) ∨ · · · ∨
αn(x) ∨ αn+1(x) is derivable too, since the latter is entailed by the former. Yet
the specificity constraint will ensure that the more specific rule will defeat the
less specific one, so that α(x), and not α′(x), will be concluded.

The specificity constraint is not part of Default Logic (or most other non-
monotonic formalisms). If one wishes to enforce it, one needs to encode its
consequences for each rule separately (Etherington and Reiter 1983). One sim-
ple way to ensure globally that more specific rules supersede less specific ones
would be to require that inferences be made based on all available information.
Returning to Pat, we know that Pat is a platypus, and also that she is a mam-
mal, and we are wondering what her form of offspring is. We want a rule, then,
whose antecedent is

platypus(x) ∧mammal(x) ∧
∨
A.

Since all platypuses are mammals,

platypus(x) ∧mammal(x)↔ platypus(x).

Rule 2, then, but not rule 1, has the desired antecedent, and only it will be
applied; hence we will conclude that Pat lays eggs, as desired.

Requiring inference to be made from all available information will also pro-
vide a simple way to handle cases of conflicting defaults, exemplified by the
Nixon diamond. Assume that we have two rules, one stating that Quakers are
pacifists, and the other—that Republicans are not pacifists. Suppose we learn
that Nixon is both a Quaker and a Republican. What can be said about whether
or not Nixon is a pacifist? Since our information about Nixon contains the facts
about his being both a Quaker and a Republican, we need a rule concerning
Republican Quakers. If we have such an adequate rule, we can use it to draw a
conclusion about Nixon; but if we do not, we can draw no conclusion. In other
words, the theory proposed here adopts a skeptical approach to such cases.
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There is a problem with the demand that inference be made from all available
information, though. Suppose we also know that a certain mammal has a cold,
and we are wondering about this mammal’s form of offspring. We would, then,
need a rule whose antecedent is

mammal(x) ∧ has-a-cold(x) ∧
∨
A.

We do not, however, have such a rule; nor is

mammal(x) ∧ have-a-cold(x)

equivalent to

mammal(x).

It seems that some information need not be considered; it is irrelevant. Intu-
itively, whether or not a mammal has a cold should have little effect on its form
of offspring, and the rule stating that mammals give birth to live young should
apply all the same. In other words, the rule

mammal(x) ∧ has-a-cold(x) ∧
∨
A : bear-live-young(x)

bear-live-young(x)
should be adequate iff

mammal(x) ∧
∨
A : bear-live-young(x)

bear-live-young(x)
is adequate. This would be true just in case

P (bear-live-young|mammal ∧ have-a-cold ∧
∨
A) =

P (bear-live-young|mammal ∧
∨
A).

This, in turn, would be true if bear-live-young and have-a-cold are condi-
tionally independent given mammal∧

∨
A, according to the usual definition of

conditional independence:

Definition 7 (Conditional independence) Properties α and β are condi-
tionally independent given γ iff

P (α ∧ β|γ) = P (α|γ)P (β|γ)

This will give us the desired results.
It should be emphasized that such assumptions of independence are not

specified in our knowledge base; they are assumptions made in order to be able
to make inferences. Several ways to arrive at independence statements have
been proposed in the literature. Shastri (1989) proposes a way to infer when
two properties are irrelevant; Bacchus (1990) suggests a system where such as-
sumptions are made explicitly and nonmonotonically, as a special case of default
inference; and in more recent work (Bacchus et al 1993;1994), assumptions of
independence follow from general properties of the system.
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3.2 Acceptance rules

The system of adequate default reasoning proposed above can be used to define
what philosophers of science refer to as an acceptance rule. An acceptance rule
is a rule which determines when beliefs are to be accepted. Thus, for example,
a good acceptance rule should let us accept the belief that an arbitrary bird
flies, but not that it drives a truck.26 The problem of evaluating acceptance
rules is a difficult one, and numerous acceptance rules have been proposed in
the literature.27

Definition 5 above cannot be immediately applied, since it deals with proper-
ties, whereas an acceptance rule determines when a proposition is to be accepted.
Therefore,we should be careful about what we mean when we talk about the
probability P (A|B). If A and B are properties, such as being a bird or flying,
as has been heretofore assumed, then we are discussing indefinite probabili-
ties. However, when we want to discuss the probabilities of statements, such as
Tweety’s being a bird or flying, A and B are propositions, and we are discussing
what has been called definite probabilities.28

The problem of inferring definite probabilities from indefinite ones has been
called the problem of direct inference, and it is not an easy one. There is a
considerable body of work on the matter,29 primarily focusing on the problem
of identifying the relevant information, mentioned in the previous section. A
discussion of the issue is, however, beyond the scope of this paper.

Taking the probability measure P to represent definite probabilities, we can
define our acceptance rule as follows:

Definition 8 Let κ be a set of propositions representing the background knowl-
edge, i.e. the propositions considered to be true, and let

A = {α1, α2, . . . , αn}

be a set of propositions, and α a proposition. Then α is accepted from κ with

respect to A, written κ
A
� α, iff P (α|κ ∧

∨
A) > 0.5

Note that if the alternatives are exhaustive, the acceptance rule reduces to
simple majority:

Proposition 1 If κ |=
∨
A, then α is accepted iff P (α|κ) > 0.5.

Proof. If κ |=
∨
A then P (α|κ ∧

∨
A) = P (α|κ).

26Of course, accepting a belief does not necessarily mean that it is true, or that the reasoner
is certain that it is true; rather it means that the reasoner thinks it is plausible, and accepts
the belief as true, pending additional information to the contrary.

27See Kyburg (1970) for a good overview.
28I am using Pollock’s (1990) terminology in distinguishing between definite and indefinite

probabilities.
29See Bacchus et al (1994) for a brief overview.
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The acceptance rule proposed here may be seen as combining two previous
suggestions: Levi (1967) and Kyburg (1961). Levi suggests that a statement
is believed with respect to a set of potential answers. Given a different set
of potential answers, different statements will be accepted. The device of po-
tential answers is similar to our alternatives, but not identical. According to
Levi, the potential answers form a partition, i.e. κ entails that exactly one of
the potential answers is true. This contrasts with our approach, where more
than one alternative, or none at all, may be true. His acceptance rule is more
complicated than ours, and the accepted statement is a disjunction of one or
more likely statements among the potential answers.30 Kyburg (1961) suggests
a high probability rule, i.e. a statement is accepted, according to him, iff it has
a probability greater than some parameter r. This is similar to our approach,
if we take r = 0.5. However, Kyburg considers a statement to be accepted in
either all circumstances or none; there is no room in his theory for a set of
alternatives under consideration.

A well known test for a proposed acceptance rule is how well it deals with the
lottery paradox (Kyburg 1961). Imagine a fair lottery with one million tickets,
and suppose the rules of the lottery are such that exactly one ticket will win.
Will ticket #1 win? Not very likely—the odds are a million to 1 against its
winning. It is therefore reasonable to accept the proposition that ticket #1 will
lose. Similarly, it is reasonable to believe that ticket #2 will lose, and so on,
for each one of the one million tickets. We are assured that one ticket will, in
fact, win, so we accept this statement too. But the set of a million and one
statements which we have just accepted is inconsistent!

Levi’s system proposes a solution; if the question we are interested in is
whether ticket #i will win or lose, we will conclude that ticket #i loses; if we
are interested to know whether any ticket will win, we will believe that some
ticket will, in fact, win. If we ask which ticket will win, Levi’s rule will lead us
to accept only the following disjunction: ticket #1 will win or ticket #2 will win
or . . . or ticket #1,000,000 will win. In Levi’s system, we cannot even consider
the question which gives rise to the paradox, because the potential answers are
not mutually exclusive, i.e. it is possible (indeed, necessary) for one ticket to win
and for that ticket to be ticket #i, for some i. This solution may seem to make
sense in the case of the lottery paradox; however, there are many cases where the
potential answers are not mutually exclusive. We cannot, for example, ask (28),
since John may be multilingual:

(28) Which language does John speak?

Hence we cannot accept the plausible belief that John speaks English on the
basis that John is an American, and that the vast majority of Americans speak

30I will not go into the details of the criteria for likelihood here. It should be noted, though,
that in general Levi’s approach will accept fewer statements than ours. The reason is that one
of Levi’s goals is to ensure that the set of accepted statements is closed under conjunction, an
issue to which I will return below.
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English.
Kyburg has a different solution. His rule will accept all million and one

statements about the lottery. However, he does not require that the set of
accepted statements be deductively closed; in particular, if p and q are accepted,
p ∧ q is not necessarily accepted. Hence the set of accepted statements will,
indeed, be inconsistent, but harmlessly so. That is to say, it will not be possible
to conclude all sentences of the language from it. Instead of closure under
conjunction, Kyburg (1970) suggests the following two constraints:31

The Weak Deduction Principle: If κ
A
� α and |= α→ β then κ

A
� β.

The Weak Consistency Principle: There is no statement α such that κ
A
�

α and for every statement β, α→ β.

What about our acceptance rule? It seems to enjoy the best of both worlds.
If the set of alternatives is {ticket #i wins, ticket #i loses}, we will conclude
that ticket #i loses; if the set of alternatives is {some ticket wins, no ticket
wins}, we will conclude that some ticket wins. But suppose that the set of
alternatives is the one which gives rise to the paradox, namely

A = {some ticket will win, no ticket will win}∪
{ticket #i will win—1 ≤ i ≤ 1, 000, 000}∪
{ticket #i will lose—1 ≤ i ≤ 1, 000, 000}.

In that case, all statements will be accepted, but no harm will be done; our
system, like Kyburg’s, is not closed under conjunction. It does, however, satisfy
the following constraints:

Proposition 2

1. If κ
A
� α and κ ∧

∨
A |= α→ β, then κ

A
� β.

2. There is no α s.t. κ
A
� α and κ

A
� ¬α.

Proof. 1. If κ ∧
∨
A |= α→ β, then P (β|κ ∧

∨
A) ≥ P (α|κ ∧

∨
A) > 0.5

2. Suppose K
A
� α and K

A
� ¬α. Then P (α|κ ∧

∨
A) > 0.5 and P (¬α|κ ∧∨

A) > 0.5, which is impossible.

Note that the constraints above are stronger than Kyburg’s. The Weak Deduc-
tion principle only applies when α→ β is a tautology, whereas our constraint (1)
applies whenever α→ β is entailed by κ∧

∨
A. The Weak Consistency principle

merely requires that it be impossible to accept all statements in the language,
whereas our constraint (2) forbids the acceptance of any statement and its nega-
tion.

31I am using my own notation rather than Kyburg’s.
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3.3 Properties of adequate nonmonotonic reasoning

In his work concerning the semantics of nonmonotonic reasoning, Pearl (1988)
suggests several properties that any desirable nonmonotonic system needs to
satisfy. Two of those, our system satisfies as it stands:32

Proposition 3

1. Propositions which are entailed by the background knowledge are accepted:

if κ |= α and P (κ ∧
∨
A) > 0 then κ

A
� α.

2. If κ ∧ β
A
� α and κ ∧ ¬β

A
� α then κ

A
� α.

Proof. 1. If κ |= α and P (κ ∧
∨
A) > 0 then P (α|κ ∧

∨
A) = 1 > 0.5

2. P (α|κ ∧
∨
A) = P (α|κ ∧ β ∧

∨
A)× P (β|κ ∧ i

¯
gveeA) +

P (α|κ ∧ (¬β) ∧
∨
A)× P ((¬β)|κ ∧

∨
A) >

0.5× (P (β|κ ∧
∨
A) + P (¬β|κ ∧

∨
A)) = 0.5

The first property is clearly highly desirable, and the second aims at cap-
turing the intuition that if big mammals generally bear live young and small
mammals generally bear live young, then mammals generally bear live young.

Pearl proposes two additional properties:

1. If κ
A
� β and κ

A
� α then κ ∧ β

A
� α.

2. If κ
A
� β and κ ∧ β

A
� α then κ

A
� α

Pearl claims that common-sense reasoning seems to agree with these rules,
whereas theories such as the one proposed here (which he refers to as “ma-
jority” logics) do not. However, in a later paper he writes:

I have speculated that this agreement is more in line with the rules of
[Pearl’s theory] than with those of “support” or “majority” logics. I am
now in the opinion that this agreement is more reflective of tacit assump-
tions of independence (Pearl 1991:180n).

Let us, then, make this tacit assumption of independence explicit. What is
needed here is a straightforward extension of conditional independence:

Definition 9 (κ-independence) 1. Let α, β and κ be formulas, and let A
and B be sets of formulas. Then α and β are κ-independent given 〈A,B〉
iff

P (α ∧ β|κ ∧
∨

(A ∧B)) = P (α|κ ∧ (
∨
A))P (β|κ ∧ (

∨
B))

32Again, I am using my own notation rather than Pearl’s.
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2. Let A and B be sets of formulas. Then A and B are κ-independent iff for
every α ∈ A, β ∈ B, α and β are κ-independent with respect to 〈A,B〉.

The definition of the conjunction A ∧B referred to above is as follows:

Definition 10 Let A and B be two sets of formulas. The conjunction of A and
B is

A ∧B =def {α ∧ β|α ∈ A & β ∈ B}

Using κ-independence, we can now prove a property even stronger than the
one Pearl proposes:

Proposition 4 If α and β are κ-independent with respect to 〈A,A〉, and P (κ∧
β ∧

∨
A) > 0, then

κ
A
� α⇔ κ ∧ β

A
� α.

Proof. By the definition of κ-independence,

P (α ∧ β|κ ∧
∨
A) = P (α|κ ∧

∨
A)× P (β|κ ∧

∨
B).

Hence,

P (α ∧ β ∧ κ ∧
∨
A) =

P (α ∧ κ ∧
∨
A)× P (β ∧ κ ∧

∨
A)

P (κ ∧
∨
A)

.

Therefore,

P (α|β ∧ κ ∧
∨
A) =

P (α ∧ β ∧ κ ∧
∨
A)

P (κ ∧ β ∧ (
∨
A))

=

P (α ∧ κ ∧
∨
A)

P (κ ∧
∨
A)

= P (α|κ ∧
∨
A).

This property captures the intuition that mammals generally bear live young iff
mammals which have a cold generally bear live young, given that having a cold
is irrelevant to the form of one’s offspring.

3.4 Conjunctive properties

Suppose α and β are properties evaluated with respect the sets of alternatives
A andB, respectively. It is natural to evaluate α ∧ β with respect to the set
composed of conjunctions of formulas from A and B. We can now prove the
following properties:
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Proposition 5

1. If A and {β} are κ-independent, and P (κ∧ β) > 0, then for every α ∈ A,

κ
A
� α⇔ κ

A∧{β}
� α ∧ β

2. If A and B are κ-independent, then for every α ∈ A, β ∈ B,

κ
A∧B
� α ∧ β ⇒ κ

A
� α & κ

B
� β

Proof. 1. Since A and {β} are κ-independent,

P (α ∧ β|κ ∧
∨

(A ∧ {β})) =

P (α|κ ∧
∨
A)× P (β|κ ∧ β) =

P (α|κ ∧
∨
A).

2. Observe that

P (α ∧ β|κ ∧
∨

(A ∧B)) = P (α ∧ β|κ ∧
∨
A ∧

∨
B).

By the definition of κ-independence, this is equal to

P (α|κ ∧
∨
A)× P (β|κ ∧

∨
B).

Since probabilities are numbers between 0 and 1, if

P (α|κ ∧
∨
A)× P (β|κ ∧

∨
B) > 0.5

then

P (α|κ ∧ (
∨
A)) > 0.5

and

P (β|κ ∧ (
∨
B)) > 0.5.

The first property corresponds to the intuition that procreating mammals
generally bear live young iff procreating mammals which have a cold generally
bear live young—and have a cold. The second is aimed at capturing the idea that
if unhealthy procreating mammals, in general, bear live young and have a cold,
then procreating mammals generally bear live young and unhealthy mammals
generally have a cold.
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3.5 The conjunction fallacy

In light of the above, it is interesting to consider a well known psychological
phenomenon, the conjunction fallacy (Tverksy and Kahneman 1983). An ob-
vious fact about probabilities is that the probability of a conjunction cannot
be greater than the probability of each one of the conjuncts separately, i.e. for
every A and B, necessarily P (A ∧ B) ≤ P (A). Tversky and Kahneman have
discovered that, in certain cases, humans consistently violate this rule. In one of
their experiments, subjects were given a description of an individual, and then
were given a list of occupations, and asked to rank them according to how likely
it was, for each occupation, that the individual engaged in it. The following is
a typical description:

Linda is thirty-one years old, single, outspoken, and very bright. She
majored in philosophy. As a student, she was deeply concerned with issues
of discrimination and social justice, and also participated in antinuclear
demonstrations (Tversky and Kahneman 1983:297).

The test subjects were asked to rank a list of occupations with regard to how
likely they were to apply to Linda. Among others, the list included the follow-
ing:

(29) a. Linda is active in the feminist movement.

b. Linda is a bank teller.

c. Linda is a bank teller and is active in the feminist movement.

Tversky and Kahneman found that the vast majority of subjects ranked the
conjunction (29.c) as more likely than (29.b), even though the latter is one of
the conjuncts of the former. Remarkably, many subjects committed this error
even when they had prior knowledge of statistics or when the conjunction rule
was explicitly stated.

Tversky and Kahneman explain their findings by proposing that subjects
do not use probability (or logic) when they make their probability judgments;
instead, they report measures of resemblance. Thus (29.c) is judged more likely
than (29.b) because Linda’s character resembles a feminist bank teller more
than it resembles a bank teller. This interpretation takes rather a dim view of
human rationality. If Tversky and Kahneman are correct, human reasoning, at
least in these cases, is not guided by reason, but rather by the ill-defined notion
of resemblance; implausibly, this is claimed to be true even of people who are
well versed in probability theory.

I am going to suggest an alternative account of this phenomenon. Con-
sider (30), a slightly changed version of (29.c):

(30) Linda is a feminist bank teller.

Presumably, sentence (30) would elicit similar results to (29.c). Now consider
what happens if we change the focus of the sentence:
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(31) a. Linda is a feminist bank teller.

b. Linda is a feminist bank teller.

I have not, admittedly, conducted experiments based on these sentences, but
let us consider our intuitive judgments regarding them. It seems that, whereas
there is still a strong urge to consider (31.a) as probable, there is no such urge
in the case of (31.b). Tversky and Kahneman’s (1983) theory does not seem
capable of accounting for this difference, since both sentences are presumed to
compare Linda with a feminist bank teller. Assuming, following section 2.3.3,
that different focus structures induce different sets of alternatives, the differences
between (31.a) and (31.b) are easily accounted for. Sentence (31.a) induces al-
ternatives of the form {Linda is a feminist bank teller, Linda is a non-feminist
bank teller}. Since presumably Linda’s description is more consistent with be-
ing a feminist than with the alternative, (31.a) is accepted. Sentence (31.b),
on the other hand, induces a different set of alternatives, of the form {Linda
is a feminist bank teller, Linda is a feminist journalist, Linda is a feminist
philosopher, Linda is a feminist social worker,. . . }. Since presumably Linda’s
description is not as well correlated with a bank teller as it is with some other
occupations, (31.b) is not perceived to be likely. The conjunction fallacy, then,
is not a fallacy of probabilistic or logical reasoning; the error, in fact, is much
more subtle. If I am correct, humans do employ sound reasoning in these ex-
periments, but they fail to identify the relevant set of alternatives. In general,
this is indeed, as we have seen, not an easy task; it is certainly more difficult
than realizing that a conjunction entails its conjuncts.33

4 Automatic acquisition of adequate rules

In the previous section it was argued that adequate default rules are desirable.
Once we have a set of rules, we can determine whether or not they are adequate.
Rules which are found to be inadequate will then have to be dropped and
replaced with adequate ones. This process, however, would be time consuming,
expensive, and prone to errors. Figuring out which set of adequate rules is
equivalent to a set of inadequate ones is by no means an easy task. It would
be desirable, then, to apply the adequacy criterion already at the acquisition
stage. That is to say, we would like to make sure that only adequate rules are
acquired in the first place.

As the research on knowledge intensive rule-based systems progresses, it has
become increasingly clear that the major stumbling block in the development
of such systems is the acquisition of rules. Getting human experts to provide

33I am not unaware of the fact that in order to decide between Tversky and Kahneman’s
theory regarding the conjunction fallacy and mine, additional psychological experiments need
to be carried out. Yet I believe the theory proposed here can account for the available data
at least as well Tversky and Kahneman’s approach can.
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a detailed, explicit and useful list of the rules they use in their work is ex-
tremely difficult, time consuming, expensive, and—what is, perhaps, worst of
all—inaccurate. No wonder, then, that there is growing interest in efforts to
automate the acquisition process, wholly or in part.

The fact of the matter is that much of the necessary knowledge is out there,
available for anyone to use: in manuals, guidebooks, almanacs, encyclopedias.
This information, however, is provided in natural language, and cannot be read-
ily used by a computer. A number of researchers (see, among others, Sager et al.
1987; Rinaldo 89; Moulin and Rousseau 1990; Gomez and Segami 1990; Castell
and Verdejo 1991; Zarry 1992; Graziadio et al. 1992; Hodges and Cordova 1993;
Jensen 1993; Sykes et al. 1994) have applied Natural Language Processing tech-
niques to elicit rules automatically from natural language texts, with varying
degrees of success.

When extracting rules from natural language texts, the most useful expres-
sions in these texts are, of course, those which explicitly express rules. As it
turns out, a great many of these expressions are generic sentences. To exem-
plify, let us consider a typical system, the one described in Hodges and Cordova
(1993).

The system’s purpose is to extract knowledge from texts in the domain of
veterinary medicine.34 In Hodges and Cordova’s system, rules are represented
as relations between objects. Each relation is represented as a frame, whose
slots indicate the various arguments of the relation, their role and whether they
are optional or obligatory. For example, the cause relation has two mandatory
roles: the cause, which is either a disease agent (e.g. a bacterium or a virus) or
a disease, and an effect, which is a disease. It has two optional arguments as
well: a species, which may be any potential patient in the domain of veterinary
medicine, and a location, which is some body part.

Hodges and Cordova describe how their system handles a number of example
sentences occurring in their corpus (the Merck Veterinary Manual). Their first
example (p. 925), for instance, contains no fewer than six generic terms, which
I have italicized:

(32) Herpesviruses produce conjunctivitis in the cat, cow, horse, and pig, and
transiently in the dog.

It seems, then, that an understanding of the semantics of generics would greatly
facilitate the interpretation of such sentences, and, therefore, the automated
acquisition of rules. However, none of the work on automatic acquisition I am
aware of employs such a theory, or even acknowledges the need for it.

It may be argued that for the task we are discussing here, namely automatic
acquisition of rules from natural language texts, a detailed theory of generics is

34The authors emphasize, though, that the algorithm is largely domain independent, and
while the veterinary domain is just used as the primary example of its application, the system
has been applied to other domains as well.
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not required, and some rough approximation (e.g. that generics express universal
quantification) would do just as well. However, I believe that this view is incor-
rect; ignoring the special nature of generics—in particular, their dependence on
alternatives—may lead to unfortunate results. Hodges and Cordova’s system,
for example, will extract from (32) a causal relation between herpesviruses and
conjunctivitis in the animals indicated. Yet it would be wrong to infer, on that
basis, that any herpesvirus would produce conjunctivitis in any cat, cow, horse,
pig and dog. The virus may not infect the animal in the first place; and even if
the animal does get infected, it may not suffer any symptoms, because its body
managed to fight off the disease, or the number of infecting viruses was not
sufficient to make it sick. What (32) is saying is that if a herpesvirus produces
a disease in one of the aforementioned animals, this disease is likely to be con-
junctivitis. That is to say, (32) is evaluated with respect to a set of alternative
diseases; only herpesviruses which cause some disease or other are relevant to
the truth of the generic, and the rule extracted from it must represent this fact.

Consider another of Hodges and Cordova’s examples:

(33) Healthy adult females in this species typically produce several offspring
each year.

Sentence (33) does not actually appear in their corpus; the authors have made it
up in order to demonstrate a specific point (the ambiguity of the word produce).
As a matter of fact, (33) is not very likely to occur in a natural language text;
something like (34) is much more likely.

(34) Cats typically produce several offspring each year.

That is to say, the writer of the text will not normally bother to specify that
only healthy, adult female cats are relevant; this is something the readers are
expected to figure out on their own. Again, the notion of a set of alternatives
plays a prominent role in the interpretation of (34); this sentence seems to be
evaluated with respect to alternative frequencies of producing offspring: only
those cats which produce offspring with some frequency are considered, and (34)
would be true just in case the majority of those produce more than one kitten
a year. Any rule extracted from (34) would have to take this into account,
otherwise we would draw incorrect conclusions about male cats or neutered
females.

In fact, the implicit set of alternatives plays a role even in the interpretation
of the very explicit (33), since some assumptions are left implicit nonetheless.
For example, given a healthy adult female of this species which happens to be
infertile, we should not expect it to produce any number of offspring, and this
without invalidating (33). The rule extracted from (33), then, just like the
rule extracted from (34), needs to take into account alternative frequencies of
producing offspring, or it would lead to undesirable conclusions.

Any system, then, which takes seriously the task of extracting knowledge
from natural language, must, sooner or later, come to terms with the meaning
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of generics. If the theory presented in section 2 is correct, such a system would
need to be able to determine the set of alternatives with respect to which a given
generic sentence is to be evaluated. This, in turn, requires a representation of
determinables and determinates. A knowledge representation system based on
these concepts has, in fact, been developed for independent reasons (Way 1991).

Way’s main concern is the interpretation of metaphor. Her Dynamic Type
Hierarchy theory states that the interpretation of metaphor involves the dy-
namic creation of new concepts. For example, in order to interpret (35), one
needs to find a concept which subsumes both the concept car (the argument
of thirsty) and the concept animal (the normal, nonmetaphorical selectional
restriction on the argument of thirsty).

(35) The car is thirsty.

This concept, Way claims, would be mobile entity. The interpretation of the
metaphor requires the dynamic construction of a specialization of the common
concept, which, in this case, would be mobile entity which requires liquid.
From here it is a short road (though by no means a trivial one; see Way 1991
for the details) to the correct interpretation of the metaphor, namely that the
car requires some liquid, probably gasoline.

Way claims that, for the purpose of interpreting metaphor, a hierarchy based
on the determinable-determinate relation is preferable to one based on the usual
IS-A relation, and she goes on to develop such a hierarchy. It remains to be
seen to what extent her knowledge representation system can be applied to the
interpretation of generics, but it is encouraging to note that two unrelated prob-
lems in the interpretation of natural language seem to call for a representation
based on the determinable-determinate relation.

5 Conclusion

In this paper I suggested a criterion by which to judge the adequacy of default
inference rules. I believe that the criterion proposed here captures fairly well our
intuitions about which rules are adequate and which are not. Moreover, systems
of adequate default rules satisfy a number of properties deemed desirable by both
philosophers and researchers in artificial intelligence.

The adequacy intuitions, and hence the criterion, turn out to hinge on a
linguistic phenomenon—the meaning of generic sentences. While not necessarily
subscribing to Barwise and Cooper’s (1981) conclusion that “the traditional
logical notions of validity and inference are a part of linguistics” (Barwise and
Cooper 1981:203), I believe I have shown that when formalizing our common-
sense intuitions, it is beneficial to look closely at the language we use to express
them.
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