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The goals of this course

e Probability is a tool, just like logic or algebra.

e Recently, there has been considerable interest in the
applicability of probability to linguistics.

e Our goal: to discuss the applicability of this tool to
semantics, its strengths and weaknesses.

e We will consider a number of test cases where prob-
ability is applied to a semantic problem.

e For each case, we will ask ourselves:

— |s a probabilistic treatment appropriate?

— If so, what type of probabilistic account should
we use?

— What are its advantages and disadvantages?

e Hopefully: we will end up with another weapon in
our arsenal as we attack semantic problems.




The Mathematics of Probability

e The axioms of probability
e Conditional probability

e Bayes's theorem

e Random variables

e Expectation




The Sample Space

e Probability only makes sense in the context of a par-
ticular set of possible outcomes.

e The sample space ().

e Cast a die: 2 =1{1,2,3,4,5,6}

e Any proposition is a subset of ()

e “The die came up 3" is {3}

e “The die came up an even number” is {2,4,6}.




The axioms

Any function that satisfies the following (slightly simpli-
fied) axioms is a probability function:

efForal ACQ 0< P(A) <1
o P(Q))=1

e Countable additivity: for any disjoint sets
Ay, Ag. ... CQ,

(1)  PUA) =3 P(A))
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Some consequences




Conditional probability

e Usually we want not the probability that A happens,
but the probability that A happens given that B hap-
pens.

e For example: we want the probability that if some-
thing is a bird, then it flies, not the probability that
something flies.

e Conditional probability:

(2) P(AB) =240

e Two events are independent if

(3) P(ANB)=P(A) x P(B).
e Equivalently:

(4) P(A[B) = P(A)




Bayes's theorem

5) P(BlA) =

BN A)

P(A|B) x P(B)

P(A)

P(A)




Random variables

e A random variable is a function (not a variable!)
from the sample sapce () to real numbers.

e For any value x of the random variable X, we
can talk about the set of events that cause this
value:

(6) A, ={we: X(w)=uz}
e The probability mass function:

(7)  plz) =p(X =z) = P(A,)




Expectation

The expectation is the average of a random vari-
able:




Probability and semantics

e Mathematical probability theory tells us how to cal-
culate probabilities, but not what they mean.

e What are the truth conditions of P(A|B) = (.87

e [hus, probability judgments themselves need a se-
mantics.
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Generics and frequency adverbs

e The phenomenon.

e Ratio theories

e Logical relation theories

e Relative frequency theories

e Evaluating interpretations of probability
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The phenomenon

e Generics and frequency statements are very com-
mon, and very mysterious.

e Weak, since they ar econtingent, and allow excep-

tions:

(9) a. Every bird flies.
b. Birds (usually) fly.

e Strong, since they are lawlike:

(10) a. Every Supreme Court judge has a prime
Social Security number.

b. Supreme Court judges (always/usually)
have a prime Social Security number.
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A probabilistic account

(11) a. Birds always fly
b. P(fly|bird) =1
(12) a. Birds never fly
b. P(fly|bird) =0
(13) a. Birds sometimes fly
b. P(fly|bird) > 0
usually
(14) a. Birds { often  fly
0
b. P(fly|bird) >7
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Ratio Theories

ANB
.P(AlB):‘ |B| ‘

e The probability for a fair coin to come up “heads”:

the ratio of observed tosses where the coin came up
“heads.”
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Aquist et al. (1980)

Frequency adverbs are relations between sets.

(15) a. Birds always fly
b. always(Axbird(z), Axfly(z))
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Truth conditions

e always(A, B) is true iff P(A|B) =1

e very-often(A, B) is true iff P(A|B) > 0.9

e often(A, B) is true iff P(A|B) > 0.7

o fairly-often(A, B) is true iff P(A|B) > 0.5

o fairly-seldom(A, B) is true iff P(A|B) < 0.5
e seldom(A, B) is true iff P(A|B) < 0.3

e very-seldom(A, B) is true iff P(A|B) < 0.1
e never(A, B) is true iff P(A|B)=0

e sometimes(A, B) is true iff P(A|B) #0

e Generics?
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The meaning of probability

Ratio between sets

AN B

P(A|B) =4 B
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Logical Relation Theories

e P(A|B) is the ratio of possible worlds in which both
A and B hold to those where B holds.

e The probability that a coin comes up “heads,”: the
ratio of worlds in which it comes up “heads” to
worlds in which it is tossed.

e Of course, some measure function on worlds must

be defined.
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Probability Distribution over Worlds

Schubert and Pelletier (1989):

e DBirds fly is true just in case in “most” pairs of
possible worlds and birds, the bird flies in that world.

e “most’ is to be interpreted in terms of some prob-
ability distribution favoring worlds w’ similar to the
actual world with regard to the “inherent” or “es-
sential” nature of things.

e They leave open what this means.
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Normality

Kratzer (1981) deals with qualitative probability judg-
ments:

(16) a. There is a good possibility that Gauzner-
Michl was the murderer.

b. There is, however, still a slight possibility
that Kastenjakl was the murderer.

c. Gauzner-Michl is more likely to be the mur-
derer than Kastenjakl.

d. It is probable that Gauzner-Michl was the
murderer.
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Modality

e Qualitative probability judgments are modal.

e Modality has two components:

1. Modal base W: A set of accessible worlds, in-
dicating the type of modality—logical, physical,
epistemic, deontic, etc.

2. Ordering source: if w; < wsy, then wy is closer
to the ideal, or more “normal” than w;.
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Human necessity

e ¢ is humanly necessary iff it is true in all worlds
closest to the ideal.

e More formally: for all w € W there is w’ € W s.t.

1w <u

2. forall w” € W, if w < w” then ¢ is true in w”.

e [t 1s probable that Gauzner-Michl was the mur-
derer is true iff in all worlds in which events turned
out in the normal, expected way, Gauzner-Michl was
the murderer.
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Human possibility

® ¢ is a human possibility iff =¢ is not a human ne-
cessity.

e There 1s a good possibility that Gauzner-Michl
was the murderer is true just in case it is not prob-
able that Gauzner-Michl was not the murderer.
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Slight possibility

® ¢ is slightly possible iff

1. There is at least one w € W in which ¢ is true,
and

2. 2@ is a human necessity.

o There 1s a slight possibility that Kastenjakl was
the murderer means that it is probable that Kas-
tenjakl was not the murderer, but it is still possible
that he was.
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Comparative possibility

® ¢; is more possible than ¢, iff for every world in
which ¢5 holds, there is a world where ¢; holds which
is at least as normal, but there is a world where ¢,
holds for which there is no world at least as normal

in which ¢, holds.

e Formally:

1. for all w € W, if ¢3 holds in w then there is
w < w' s.t. ¢; holds in w’, and

2. there is w € W s.t. ¢ holds in w and for no
w < w', ¢y holds in w'.

e The truth of Gauzner-Michl 1s more likely to be
the murderer than Kastenjakl entails that for ev-
ery world in which Kastenjakl is the murderer, there
is a world at least as normal where Gauzner-Michl
is; but there is at least one world w where Gauzner-
Michl is the murderer, and in all the worlds that
are at least as normal as w, Kastenjakl is not the
murderer.
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Generics

Many researchers:

e Generics express human necessity.

e For example: Birds fly is true just in case in the
most normal worlds, all birds fly.

e Cannot account for frequency adverbs, because it
cannot handle quantitative judgments.
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Relative Frequency Theories

e P(A|B) is the mathematical limit of the proportion
of Bs that are As as the number of Bs approaches
infinity.

e Intuitively: the longer you toss a coin, the closer to
0.5 will the ratio of “heads” get. If you could toss
the coin an infinite number of times, you would get
exactly 0.5.
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Cohen (1999)

e Models with branching time.
e Each linear course of time is called a history.

e Birds (usually) fly is evaluated with respect to his-
tories that admit infinite sequences of birds.

e Birds (usually) fly is true iff in every admissible
such sequence, the limit of relative frequency of fly-
ing birds among birds is greater than 0.5.
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Admissibility

e It is impossible to observe infinitely long sequences
in the actual world.

e They must be extrapolated from the actual history.

e Hence, observed instances must provide a good sta-
tistical sample.

e But we don't know how the sample was selected, so
any sufficiently large sample must be a good sample.

e Thus: admissible histories must contain a sufficiently
long interval of the actual history, and the relative
frequency over that interval must be close to that of
the admissible history as a whole.
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Examples

(17) a.
b.

(18) a.

Birds (usually) fly

In an admissible history: the proportion of
flying birds remains roughly the same, for-
ever.

John (often) jogs in the park.

In an admissible history: John continues to
jog with roughly the same frequency, for-
ever.
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Homogeneity

e After Salmon (1977): a reference class B is homoge-
neous iff for every partition of B, and every B’ C B
induced by the partition, P(A|B) is roughly equal
to P(A|B’).

e If we consider only temporal partitions: The domain
of generics and frequency adverbs is homogeneous.

e What about other partitions?
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Generics vs. frequency adverbs

While frequency adverbs require their domain to be
homogeneous only with respect to the time partition,
generics require homogeneity with respect to a great
number of other partitions as well. Some examples:

(19) a. LOCATION: lIsraelis (usually) live on the
coastal plain.

b. AGE: People are (usually) over three years
old.

c. SEX: Primary school teachers are (usually)
female.
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Evaluating Interpretations of Probability

e Which, if any, of the interpretations of probability
should we choose?

e L. J. Cohen (1989): different interpretations of prob-
ability are appropriate for different applications.

e The applications are characterized by 4 parameters.
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Necessity vs. Contingency

Generics and frequency statements are true or false con-
tingently.

Ratio: Contingent.

Logical relation: Necessary; but if the actual world
is favored—contingent.

Relative frequency: Contingent.
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Propositions vs. Properties

e What are A and B in P(A|B)?

e Generics and frequency statements relate properties.
e And the theories?

Ratio: Properties.

Logical relation: Propositions. But can be
ameneded to be about ratios of pairs of worlds
and individuals, hence, in effect, properties.

Relative frequency: Properties.
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Substitutivity

e When can we substitute other terms for A or B with-
out changing the probability P(A|B)? When they
have the same extension? Or intension? Or...7

e Generics and frequency adverbs are not exten-
sional:

(20) A computer (always) computes the daily
weather forecast (Carlson 1989).

Suppose today's weather forecast predicts a severe
blizzard, and is consequently the main news item.
Yet the following is false:

(21) A computer (always) computes the main
news item.

36




Intensionality

e But they are not fully intensional either: Suppose
that the weather report is John's favorite newspaper
feature. Then the following would be true:

(22) A computer (always) computes John's fa-
vorite newspaper feature.

e Similarly, the following have the same truth condi-
tions:

(23) a. The whale suckles its young.
b. The largest animal on Earth suckles its
young.
e Hence: Generics and frequency adverbs are para-
metric on time, but not on possible worlds; if two
properties have the same extension throughout time,

they can be freely exchanged in a generic or a fre-
quency sentence salva veritate.
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Theories of probability and substitutivity

Ratio: Fully extensional.
Logical relation: Fully intensional.

Relative frequency: Parametric on time (histo-
ries) but not possible worlds.
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Extensibility

e Would P(A|B) would remain the same if the num-
ber of Bs were greater than it actually is?

e Generics and frequency adverbs are extensible;
“Birds (always) fly” would keep its truth value even
if there were more birds than there actually are.

e And the theories?

Ratio: Not extensible.
Logical relation: Extensible.

Relative frequency: Extensible.
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Summary

Ratio Log. relation Rel. frequency
Contingent yes yes” yes
Relating properties | yes yes* yes
Parametric on time| no no yes
Extensible no yes yes
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Conditionals

e WWe have seen that generics and frequency adverbs
are extensible: if there were more birds, the following
would still be true.

(24) Birds (usually) fly.

e So, if something that is not a bird were a bird, it
would probably fly.

e So the following is true:

(25) If Dumbo were a bird, he would probably
fly.

e But what does it mean?
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A probabilistic account?

e All sentences have a probability of being
true.

(26) P(It will rain tomorrow)

e We want the probability of the conditional to be
conditional probability:

P(if it rains tomorrow, the game will be canceled)=
P(the game will be canceled | it rains tomorrow)

)




But. . . surprise!

e Lewis (1976): such a definition of the semantics of
the conditional is impossible in principle.

e Intuitive explanation:

e Suppose there were some proposition ¢, representing
the meaning of If A then B s.t. P(¢) = P(BJ|A).

e Then, there are two options:
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1. A — B entails ¢

e Then ¢ is true whenever A is false.
e Hence, ¢ must be probable when A is improbable.
e But now consider:

(27) If it snows tomorrow, people will walk
around in bathing suits.

A is improbable, but still the conditional is also im-
probable.
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2. A — B does not entail ¢

e Then ¢ may be false when A — B is true.
e Hence, ¢ may be false when A A =B is false.
e But this is unintuitive.

e Example: suppose we have a bag containing black
and red balls, and we draw two.

e A= "The first ball is black.”
e B= "“The second ball is red.”
e Suppose we know that the following is false:

(28) a. Both balls are black.
b. AAN-B

e But then we must conclude:

(29) a. If the first ball is black, the second ball
is red.

b. If A then B.

45




All is not lost

e Hence, we cannot associate with a conditional a
proposition ¢ s.t. P(B|A) = P(¢).
e Does this mean we have to deny that conditionals

have truth conditions at all (e.g. Adams 1975)7

e Not necessarily: P(B|A) may still be equal, if not
to the probability of the conditional, to some other
value associated with it.
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Stalnaker and Jeffrey (1994)

e All propositions are random variables.

e For non-conditionals, the random variable has only
two values:
— 1 for true,
— 0 for false.
o For A > B:
— If A is true and B is true, the random variable is

1

— |If A is true and B is false, the value of the ran-
dom variable is 0.

— If A is false, the value of the random variable is

P(B|A).
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Expectation

e Since the value of a conditional is a random variable,
it has an expected value:

FE(A> B) =

Il x PLAANB)+0x P(AAN-B)+ P(B|A) x P(—A)

e For many important cases, this expectation is equal
to the conditional probability:

E(A> B) = P(B|A)
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Example

e P(AN—-B)=P(A)— P(ANB)=0.14.
e The random variable A > B is:

—1ifAAB
—0if AN—-B

— 0.8 otherwise.

e So:

E(A>B)=1x0.56+0x0.14+ 0.8 x 0.3
= 0.8
— P(B|A)
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Problematic example (Edgington 1991)

(30) a. If the match is wet, then if you strike it it
will light.

b. W > (5>1L)

e We want E(W > (S > L)) =P(S > LIW).

e P(S > L|W): given that the match is wet, the
probability that it will light if struck.

e Intuitively, this is 0 (or close to it).

e Is the expected value also 07
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The Calculation

e Suppose the match is wet: V.
e Thenif SAL, S > L is 1.

e Hence, the probability that S > L is 1 is P(S A
LIW).

e The probability that S > L is 0is P(S A —~L|W)
e The probability that S > Lis P(L|S) is P(—=S|W).

Therefore, the expected value is:

(31) I X P(SALW)+0x P(SA-LW)+
P(L|S) x P(=S|W)

e Some numbers:

P(W) = 0.55.
P(L\W) =0, therefore P(S AN LIW) = 0.
P(L|S) = 0.9
P(5) = P(=5) = 0.5
— P(W]ﬂS) = 1.
— By Bayes's rule, P(-8) 0
P(=S|W) = P(W|=S) x POV = 1><055 ~

0.91.

e So we get, instead of O:
P(S>LIW)=1x04+040.9 x 091 ~ 0.82.
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Vagueness

e It is hard to determine not only the truth conditions
of conditionals, but even their truth values.

e Another phenomenon where judgments of truth
value are hard is that of vague predication.

e For example, how tall is tall?
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Kamp (1975)

e The goal: an account of comparatives in terms of
positive adjectives.

e For example, taller in terms of the meaning of tall.

e Requires a semantics where a predicate can hold of
an entity to a certain degree.

e Then John is taller than Bill just in case the predicate
tall holds of John to a greater degree than it does
of Bill.
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Multi-valued logic?

e Proposal: represent degress as truth values between
0 and 1.

e But: how would the truth values be calculated com-
positionally?

e in some cases it's easy: [—¢] =1 — [¢].
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Hard cases

What about [¢ A ]7?

e Suppose that [¢] = [¢)] = 0.5.

e Look for options:

L. [oNY] =057
But then [¢ A —¢] = 0.5, instead of 0.
2. o ANY] =07

But then [¢p A ¢] =0

3. No other option will work either
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Partial models

e Classical models: the interpretation function F' as-
signs to each symbol of arity n an n-place relation
on the universe U.

e Three-valued logic: true, false, and undefined.

e Partial models: F' assigns to each symbol of arity n
an ordered pair of n place relations:

F(Q") = (F1(Q"), F(Q")).
o — FH(Q"): Q" definitely holds,
— F~(Q"): Q" definitely does not hold
— the rest: ()" is undefined.

e For example:

— U = {Aleksandra, Bart, Caroline}.
— Aleksandra is definitely tall,
— Caroline is definitely not tall,

— Bart is neither definitely tall nor definitely not
tall.

e ['(tall) = ({Aleksandra}, { Caroline}).
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Completions

e Suppose M is a partial model and M’ is a classical
model.

o If M’ agrees with M on F'* and F'~, then M’ is a
completion of M.

e For example:

1. F'(tall) = {Aleksandra}.
2. F(tall) = {Aleksandra, Bart}.

e But not:
F'(tall) = {Aleksandra, Bart, Caroline}.
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Supervaluation

e Let ¢ be a formula, and M a partial model.
e What is the truth value of ¢?

1. true, if ¢ is true in all completions of M
2. false, if ¢ is false in all completions of M

3. undefined, otherwise.
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Tautologies and contradictions

e Suppose p is undefined in model M.

e In some completions, p is true, hence —p is false.

e In other completions, p is false, hence —p is true.

e So: in all completions, p V —p is true.
e Hence, p V —p is true in M.
e Similarly, p A —p is false in M.
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Degrees of truth

e Associate with every sentence ¢ in model M the set
of all completions that make it true.

e The set of all completions, if ¢ is true in M (or is a
tautology)

e The empty set, if ¢ is false in M (or is a contradic-
tion)

e Otherwise, intuitively: the larger the set associated
with a sentence, the “truer”’ it is.

e To make this intuition precise, a probability function
needs to be defined over these sets.
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Vague models

A vague model M for a language L is a quadruple
(M, L, F, P) where:

1. M is a partial model for L;
2. L is a set of completions of M;

3. F is a field of subsets over L, s.t.
for each formula ¢ € L and assignment g,

{M'eL: [[qb]]M"g =1} e F

4. P is a probability function over F.
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Truth degree

The degree to which ¢ is true is the value of the
probability function over those completions where it is
true:

(32) [e]M=P{M eL:[s]"=1})
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Advantage #1 of using probability

e Suppose ¢ is definitely true in M, or is a tautology.
e Then it is true in all completions, L.

e Since P is a probability function, P(L) = 1.

e So, ¢ is definitely true in M.

e Suppose ¢ is definitely false in M, or is a contradic-
tion.

e Then it is true in no completion: 0.
e Since P is a probability function, P(()) = 0.
e So, ¢ is definitely false in M.

Recall that multi-valued logics cannot do this.
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Advantage #2 of using probability

e We can decide arbitrarily whether p; is tall or not.

e But the decision whether p, is tall may no longer be
arbitrary.

e Specifically, if p; is tall, and (33) is true, then p,
must be tall too.

(33) p, is taller than p;.

e In other words: there is no completion where p; is
tall and py is not tall.

(M e £ [tall(p)]¥ =1} C
(M e £ [tall(p)]¥ = 1}

e Because P is a probability function, if A C B then
P(A) < P(B).

o Hence: [tall(p,)]"? < [tall(p,)]™*".
e It is “truer’ that p, is tall than that p; is tall.
e These are the truth conditions of (33).
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Compositionality

e There is no general formula to calculate P(¢ A )
based on P(¢) and P(1)).

e Hence, there is no general way to calculate the truth
value of ¢ A 1 based on the truth values of ¢ and

.
e But if ¢ and 1 are independent, then

P(6 A ) = P(g) x P().
e So, if ¢ and 1) are independent, then

lo Ay] = o] > [¥]-

e But what does it mean for two propositions to be
independent?

e This depends on your interpretation of probability.
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Independence, proposal #1

e Vagueness is uncertainty: we are uncertain whether
(34) is true or not.

(34) John is tall.

e The probability of ¢: our degree of belief that ¢ is
true.

e ¢ is independent of v iff knowing ¢ gives us no
rational reason to change our belief about .

e For example, if we know that John is tall, this
does not affect our belief about how intelligent he
is; hence, (34) and (35) are independent of each
other.

(35) John is intelligent.
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Is vagueness a form of uncertainty?
Edgington (1996):

e There is a difference between being uncertain about
whether ¢ holds, to ¢'s holding to a certain degree.

e Suppose we would like to drink coffee, and have two
options:

1. Shirley will serve us either coffee or tea, with a
probability of 0.5.

2. Roger will definitely serve a drink which is a mix-
ture of coffee and tea: it is indeterminate whether
it should be called “coffee” or “tea”.

e Clearly, the two choices are not equivalent.

e Having a beverage that is coffee to the degree 0.5
is not the same as having a 0.5 chance of drinking
coffee.
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Independence, proposal #2
Edgington (1996):

e P(¢|1)) is the truth value of ¢ if v is definitely true.
e ¢ and v are independent iff P(¢) = P(¢[y)

e For example, suppose John is good at math to the
degree di, and intelligent to the degree ds.

e Then, if we decide that John is definitely good at
math, this may affect the truth value of his being
intelligent.

e Hence, the two statements are not independent.

e But if we decide that John is definitely tall, this
would not affect our judgment of how intelligent he
IS.

e Hence, being tall and being intelligent are indepen-
dent.
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Intuitions

e Does Kamp's account of vagueness fit our intuition?

e Suppose that John is tall to the degree 0.5, and
intelligent to the degree 0.5.

e If the properties of being tall and being intelligent
are independent of each other, John has the property
of being both tall and intelligent to the degree

0.5 x 0.5 =0.25

e |s this reasonable?

69




Many

e Many is vague: how many is many?
e But it is also ambiguous.

(36) Many Nobel laureates watched the Olympic
games.

1. Cardinal reading: the number of Nobel laureates
who watched the Olympic games was large, com-
pared with some norm n (false).

2. The proportion of Nobel laureates who watched
the Olympic games was large, compared with
some norm k (true?)

e Formally:
1. Cardinal: many(A, B) iff | AN B| >n
|AN B|
A

2. Proportional: many(A, B) iff > k

70



Symmetry

e The cardinal reading is symmetric: (36) entails (37).

e The proportional reading is not: (36) does not en-
tail (37).

(37) Many people who watched the Olympic games
were Nobel laureates.
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The vagueness of many

e Where do the parameters n and k& come from?

e Fernando and Kamp (1996): these values depend
on our expectations.

e If we don't expect Nobel laureates to be interested
in the Olympic games, small numbers or percentages
will count as many.

e If we expect sports fans to be very interested in the
Olympic games, much higher norms would be re-
quired to make (38) true.

(38) Many sports fans watched the Olympic
games.
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Expectation and probability

e “‘Many As are Bs" is true just in case it could well
have been the case that fewer As are Bs.

e Something is expected iff its probability is high.
e What interpretation of probability is appropriate?

e The crucial issue: intensionality.
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Is many extensional or intensional?

e According to the definitions above, many is exten-
sional.

e But is it? Keenan and Stavi (1986):

(39) a. Many lawyers attended the medical as-
sociation meeting last year.

b. Many doctors attended the medical as-
sociation meeting last year.

Even if all the lawyers were doctors and all the doc-
tors were lawyers the truth values of the two sen-
tences might differ.

e Kamp and Reyle (1993):

(40) a. Many houses in X burned down last
year.
b. Many houses in X were insured against
fire last year.
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Solution

e Once the values of n and k are fixed, many is ex-
tensional.

e But these same values depend on the intensions of
the arguments of many.
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Logical relation theory

e We need a fully intensional theory of probability.
e Ratio theory is fully extensional—out.

e Relative frequency theory is only partly intensional—
out.

e Logical relation theory is in.
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The cardinal reading

e [ here is some number n s.t. there are at least n
individuals that are both ¢ and %), and this n counts
as many:

e many (¢(z), y(z)) iff
[0(2) ANY(@)|ewy > N A n-is-many,(¢(z), ().

e Where |a(x)|;,, indicates the number of individuals
that satisfy a in world w:

{u s fa(@)]" = 13,

i’




Probability and is-many

e n-is-many  (¢(x), P (x)) iff
P{w :|o(z) ANp(z)|ew < n}) > c

e In words: take the probability of the set of worlds
where the number of individuals satisfying both ¢
and ¥ is less than n; this probability is greater than
some parameter c.

e Hence: many _(¢,1) means that there is some
number n, s.t. there are n individuals that are both
@ ans 1, and there could well have been fewer than
n.

e This reading is a function of (the intension of ) ¢ A1),
hence symmetric.
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The proportional reading

e The only difference is in the definition of
n-is-many.

e Conditional instead of unconditional probability:

e n-is-many  (¢(x), Y (x)) iff

P{w 1 |op(x) AN Y(x)]zw < n} |
{w : |0(2)|ew = [0(2)] 2,00 }) >

e In words: n is many iff there could well have been
fewer than n xs that satisfy ¢(z) A (x), given that
there are |(x)|, ., os that satisfy ¢(x).

e ¢ has a privileged position (the reference class), con-
ditional probability), hence this reading is asymmet-
ric.
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Back to the k£ parameter

many . (¢(x), 1 (x)) is true iff

where

n .
k = — A n-is-many.

]
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Focus and the proportional reading

(41) a. Many linguists arrived [by bus|r (de Hoop
and Sola 1995).
b. #A high proportion of the total population
of linguists arrived by bus.
c. = A high proportion of the linguistis who ar-
rived, arried by bus.
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Focus Semantic Value

Rooth (1985): Every expression ¢ has

e an ordinary semantic value [[(b]]O;

e a focus semantic value [[gb]]F representing alterna-
tives to the focus.

" = {John loves Mary,

John loves Kate,

[[John] s loves [Mary| g
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Solution

e Geiluf (1993) and de Hoop and Sola (1995): The

union of the focus semantic value restricts the quan-
tifier.

e many (¢(x),¥(x)) is true iff

[e]” N [4]°)
ol "

e Suppose

] = {arrived by bus,
arrived by car,

arived by train,. .. }.

[arrived [by bus]|g

e Then U [arrived [by bus]z]" = arrived.

e many (linguist(z), arrrived-by-bus(z))
is true iff

linguist N arrived-by-bus|

> k
linguist N arrived|
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Additional reading?

Cannot account for:

(42) Many Scandinavians have won the Nobel prize
in literature.

Proposed solutions:

1. The Reverse Interpretation view (Westerstahl

1985):

(43) =Many winners of the Nobel prize in litera-
ture were Scandinavians.

2. The cardinality interpretation (de Hoop and Sola
1995): context determines what is a large number.
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Problem #1: dependence on the size of the
domain

The number of Scandinavians is predicted not to matter,
but it does:

(44) Many Andorrans have won the Nobel prize in
literature.
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Problem #2: conservativity

e A generalized quantifier () is conservative iff

Q(A, B) & Q(A, AN B).

(45) a. Most/all/some/no alligators like to sun-
bathe.

b. =Most/all/some/no alligators are alliga-
tors that like to sunbathe.

e The cardinality view: many is conservative.
But:

(46) Many Scandinavians are Scandinavians who
have won the Nobel Prize in literature.

e The Reverse Interpretation view: many is con-
servative with respect to its second argument.
But:

(47) Many Scandinavians who have won the No-
bel Prize in literature, have won the Nobel
Prize in literature.
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Relative readings

e The number of Scandinavians matters, so this is a
proportional reading.

e The reading is non-conservative, so non-Scandinavians

matter too.
e Relative proportional reading:

(48) a. Many Scandinavians have won the No-
bel Prize in literature.

b. =The proportion of Scandinavians who
have won the Nobel Prize in literature
is greater than the probability that an
arbitrary person has won a Nobel Prize
in literature.
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Intonation

The sentence appears most felicitous in a contrastive
context, with contrastive accent:

(49) A: Have many lIsraelis won the Nobel Prize in
literature?

B: No, many SCANDINAVIANS have won the
Nobel Prize in literature.

Is this a contrastive focus (Herburger 1997) or con-
trastive topic?
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Focus or topic?

e Strawson (1964): topics presuppose their descriptive
content.

(50) a. *The King of France is bald.

b. The exhibition was visited by the King
of France.

This also applies to contrastive topics:

(51) A: The President of France is bald.
*B: No, the KING of France is bald.

Now consider:

(52) a. *Many MARTIANS have won the Nobel

Prize in literature.

b. Many Scandinavians have won the No-
bel Prize in silly walks.

e de Hoop and Sola (1995):

(53) a. Russia has the greatest number of sci-
entists in the world, but. . .

b. ...few of the people in Russia are sci-
entists.

c. ..Xfew SCIENTISTS are in Russia.
e Hence: SCANDINAVIANS is a contrastic topic.

e It is pronounced with a B-accent (fall-rise).
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B Semantic value

Cohen (to appear): alternatives to the B-accented ele-

ment.

B

|~ = {John loves Mary,
Bill loves Mary,

[[John] s loves [Mary|x




Contrast Semantic Value

Biiring (1997; 1999): alternatives to both focus and the

B-accented element.

[[John] s loves [Mary|x

]]B+F

{

{John loves Mary,
John loves Kate,

}’
{Bill loves Mary,
Bill loves Kate,
.. .},
- }
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Definition of relative reading

Il (N
6ot "
e What is k'7?

e Proposal: take the left-hand side, and replace every
expression with the union of its B semantic value:

[1° 0wl Julel” null’l
17 nulel"| ~ [ulg])” Nnuulw]™

e Now turn the right-hand side from a proportion to
a probability:

617 N [v]°)
[e]” Nu]”]

o Note: u[u]” Cuuy]”™

> PUY]°|ulg]” nuuw]”)
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Example

e ¢ = [Scandinavians|p

e 1) = [won the Nobel Prize in literature|p.

o [[gb]]O = Scandinavian

e [¢]” = {Scandinavian, Briton, Israeli, ...}

o U[¢]” = person
o [¢]” = u[¢]” = win-lit-Nobel

o [4]" = {win-lit-Nobel,
win-Olympic-medal,
win-Eurovision,. . . }

o Ul]" =uuW]"" = win-award

|Scandinavian N win-lit-Nobel|

|Scandinavian N win-award|

>

P(win-lit-Nobel|person N win-award)
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Unifying relative and absolute readings

e The value of the parameters k& and k' appear very
different and unrelated.

e We would like to find a unifying source for both.
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Extension semantic value

. [[gb]]E: a set of extensions of ¢, one for each world.
e If ¢ is a property, [[gb]]E is a set of sets of individuals.

e Assume Lewis's (1968, 1971, 1986) counterpart the-
ory, so that the individuals in different worlds are

different.

o U[¢]": the set of all individuals that are in the ex-
tension of ¢ at some world.
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Combining the extension and focus semantic
value

o ﬂ¢]]E+F is a set of sets; each set is the focus semantic
value of ¢ at some world.

e If ¢ is a property, UU [[¢]]E+F is a set of individuals;
each one is a member of the extension of some focus
alternative to ¢ at some world.
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Back to expectation

o PL[1"|vel” nuufl™™)
e The probability that something is a ¥ in some world,

given that it is a ¢ in some world and an alternative
to 1 in some world.

e Since individuals in different worlds are different, this
is the probability that if an individual in some world
is a ¢ and an alternative to 1, then it is a .

e This is precisely the expectation that a relevant ¢ is
a 1.
e For example:

(54) Many Nobel laurates watched [the Olympic
games|r on TV.

e The probability that someone who is a Nobel lau-
rate and watched something on TV in some world,
watched the Olympic games in that world.
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Redefining the absolute proportional reading

e many (¢(x), Y (x)) is true iff

617 N [v]°)
[e]” Nulw]"

e Note what happens if we change E to B:
e many (¢(x),¥(x)) is true iff

617 N [v]°)
[e]” Nul]”]

e This is precisely the relative reading!

> PUY]"|ulg]” nuule]”)

> PUY]°|ulg]” nuuw]®)
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The origin of the relative reading

e WWhy does many have a relative reading as well as
an absolute reading?

e Because it is almost completely vague; in the right
context, any proportion wil qualify as many (Partee

1938).

e Hence, hearers must apply strategies to “precisify”
it.

e [here are two such strategies:

1. Looking at alternative worlds—absolute reading

2. Looking at alternative values for the B-marked
element—relative reading.
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Back to generics

Generics also have relative readings:

(55) a. [Dutchmen]|p are [good]p sailors.

b. #The probability for a Dutch sailor to be
good is greater than 0.5 (absolute reading).

c. =The probability for a Dutch sailor to be
good is higher than the probability for a
sailor of arbitrary nationality to be good.
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Why 0.57

e Why does the absolute readng of generics require
the probability to be greater than 0.57

e In the case of many we assume a probability mea-
sure, which favors worlds that are expected over
worlds that are unexpected.

e But generics are not parametric on possible worlds,
hence the probability does not favor one world over
another.

e The expected value is then simply the mathematical

expectation of a random number between 0 and 1:
0.5.
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Even

e Fernando and Kamp (1996) view expectation as
probability.

e Can we give a probabilistic acount of explicit expres-
sions of expectation?

e For example:

(56) a. The food was so good, that even Denise
finished everything on her plate.
b. = We do not expect Denise to finish
everything on her plate.
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Chierchia and McConnell-Ginet (1990)

(57) a. Even NS
b. dz(z=NAS)

The logical form of (56.a) is:
(58) dx(x = d A finish-all-food(x)),
|t is satisfied just in case

(59) [finish-all-food ()] "v[Denise/s _ 4
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The presupposition of even

e A salient probabiity function P
e A salient set of individuals A

e Forevery ' € A, if a’ # a then:
ST = 1) > PSTH = 1)

e Thus, (56.a) presupposes that everybody is more
likely to finish all the food on their plate than Denise
IS.
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Is probability appropriate for even?

Francescotti (1995):

e (60) a. Granny was accused of kidnapping, and
even murder.

b. Granny was accused of murder, and
even kidnapping.

e Fact: murder is more common than kidnapping.

e Hence: the probability that Granny committed mur-
der is higher than of her committing a kidnapping.

e Hence: (60.b) ought to be felicitous, and (60.a)
ought to be odd.

e But the facts are exactly the reverse. . .
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Answer #1: probability is irrelevant
Kay (1990):

e The relevant notion is significance, not probabil-
ity.
(61) A: It looks as if Mary is doing well at Con-
solidated Widget. George [the second vice
president] likes her work.

B: That's nothing. Even Bill [the president]
likes her work.

e Fine even in a context where there is no reason to
think that Bill is less likely than George to like Mary's
work.

e Oris it?
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Answer #2: pick the sample space with care

e If the sample space contains various criminal acts,
then murder is more likely than kidnapping.

e But supposes:

— We classify actions according to how much trou-
ble they cause the performer.

— Actions that cause the same amount of trouble
are grouped into an equivalence class.

— The sample space contains these equivalence
classes.

— Under the assumption that people are not likely
to cause themselves more trouble than is neces-
sary, the equivalence class containing murder is
less likely than the one containing kidnapping.

o If the sample space is restricted to equivalence
classes of Granny's actions, the probability will de-
pend on her character: if she tends to get in a max-
imal amount of trouble, then, again, murder is more
likely than kidnapping.
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Indirect Use of Probability

e The previous lectures discussed several cases where
probability is explicitly introduced into the seman-
tics.

e We will now look at a semantic account that does
not use probability as such, but is inspired by prob-
abilistic notions.

e van der Does and van Lambalgen (2000): a logic of
perception reports.
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Veridicality

e Perception reports are not veridical.
(62) | see this arm.

e The following is not its logical form:
(63) see(IL, x)

e Given an assignment function that assigns the indi-
vidual arm in question to x, (63) is satisfied just in
case | see this arm.

e But for (62) to be true, all that is required is that
something would appear like this arm to me: this
arm, or another arm, or a leg, or a loaf of bread, or
a hallucination.

e If my vision is perfectly reliable: (63) follows
from (62).

e If my vision is completely unreliable: all that follows
IS

(64) dx see(l, x)
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Marr's (1982) theory of vision

The same object may be be represented at various levels
of detail:

e A blur where nothing is distinguished;
e a sort of cylindrical shape;

e two cylinders, corresponding to the forearm and the
upper arm;

e three cylinders, corresponding to the upper arm, the
forearm, and the hand;

e additional cylinders, corresponding to the fingers;

e a perfectly detailed picture of an arm.

110



Partial knowledge

e Perfect knowledge: the variable is free.
see(I, z)

e No knowledge: the variable is bound.
Jz see(l, x)

e Suppose: at the current level of detail, | cannot dis-
tinguish an arm from a leg, yet | am able to distin-
guish an arm from a loaf of bread.

e We do know something about the thing | see, but
not its exact identity.

e Partial knowlege: the variable is “partially” bound?
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Conditional expectation

e Used when we have only partial knowledge of the
value of a random variable.

e Let X be the height of a person picked at random.

e If our vision is infinitely accurate, we have perfect
information of the value of X.

e If our vision is very poor, we have no knowledge, and
our best guess is the expectation of X.

e What if we can distinguish whether the person is
tall, of middle height, or short?

— If the person is tall— the expected value of X
among tall people.

— If the person is of middle height— the expected
value of X among middle-height people.

— If the person is short— the expected value of X
among short people.
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The math

e Let G is an algebra generated by the sets of tall
people, middle-height people, and short people.

e Our guess of the height of the person is the condi-
tional expectation of X given G:

E(X|G).
e F(X|G) is itself a random variable, with three pos-
sible values:

1. the average height of tall people
2. the average height of medium-height people
3. the average height of short people.

e It is “smoother’ than X: it filters out distinctions
that are real, but cannot be perceived.
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Conditional quantification

A counterpart of conditional expectation:

e Let M be a model.

e F the set of assignments on M.
e G an algebra of subsets of F.

e ¢ a formula.

e Identify with a formula ¢ the set of assignments that
make it true:

{f eF o] =1}

e Then: the conditional quantifier is

3(¢]9)

and it corresponds to the set of assignments

NC € Glp CC}
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The idea

e 3(¢|G) is the best estimate of the assignments that
make ¢ true on the basis of the information available

in G.

e § contains those propositions (sets of assignments)
whose truth we can verify at the current level of
detail.

e So, an assignment makes 3(¢|G) true just in case it
makes true those statements entailed by ¢ that we
can verify at the current level of detail.
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An example

(65) a. | see this arm.
b. J(arm(x)|G)

The algebra G represents the (visual) knowledge the
speaker has.

e Suppose there are three individuals: a, [, and b

e We know that a is an arm, [ is a leg, and b is a loaf
of bread.
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1. Totally reliable vision

e G is the algebra of the power set of F, the set of all
assignments.

e So, an assignment will make (65.b) true just in case
it makes true all its entailments that the speaker can
verify.

e But since the speaker can verify everything, an as-
signment will make (65.b) true just in case it will
make arm(x) true, as desired.

e N{C € Glarm(z) C C} =
N{C C Flarm(x) CC} =
arm(z) =

{f: flx) = a}.

117



2. Totally unreliable vision

e The algebra G will be simply {0, F}.

e The set of assignments that make (65.b) true will be
those that make true all the entailments of arm(xz)
that the speaker can verify.

e But since the speaker can verify nothing, this will be
the set of all assignments.

e N{C € Glarm(zx) CC}=F =
{f: flx)=aor f(z)=1or f(zx) =D}

e So in a case of no information at all, we are not able
to distinguish any object from any other object.
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3. Partially reliable vision

e Suppose the speaker can identify the property
body-part, but not arm.

e So the speaker is able to distinguish a from b, but
not from .

e The algebra will be generated by {body-part(x)}.

e An assignment will satisfy (65.b) just in case it sat-
isfies its entailments that the speaker can verify,
namely {body-part(x)}.

e N{C € Glarm(x) C C} = {body-part(x)} =
{f(z)=aor f(z)=1}.
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The role of probability in semantics

e We have discussed the role that probability plays in
the study of semantic phenomena.

e Probability appears as a tool that aids traditional
truth conditional semantics, not as a replacement
for it.

e But could we have a more radical use of probability,
one that plays a role at the fundamentals of the
theory?
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Traditional semantics

e The meaning of a sentence is a function from situ-
ations (possible worlds) to truth values.

e T he intuition: in order to demonstrate understand-
ing of the meaning of a sentence, one must be able
to judge its truth or falsity in any situation.

e But to judge a sentence with certainty, the descrip-
tion of the situation must be complete.

e We can't judge the truth of (66) reliably not because
we don't understand it, but because we don't have
completel information.

(66) There is life on Mars.
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Towards a more realistic model

e [ his is an idealized view.

e In practice, we demonstrate understanding of a sen-

tence by judging its truth on the basis of incpmplete
informaton.

e If we wish to make the definition of meaning more
realistic, we would need to use probability at a fun-
damental level of our semantics.
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Probability-based semantics?

e Judgments of probability, rather than judgments of
truth values.

e Understanding of the meaning of a sentence is
demonstrated by judging its likelihood in a given sit-
uation, not its truth.

e The meaning of a sentence is a function from states
of knowledge (sets of possible worlds) to probabili-
ties.

e Such a semantics has yet to be developed.

e Perhaps that's because we can’t judge the probabil-
ity that (67) is true

(67) Probability-based semantics is better than
truth conditional semantics.
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